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Abstract

Although social functioning relies on working memory, whether a social-specific mechanism 

exists remains unclear. This undermines the characterization of neurodegenerative conditions 

with both working memory and social deficits. We assessed working memory domain-specificity 

across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A 

novel working memory task involving social and non-social stimuli with three load levels was 

assessed across controls and different neurodegenerative conditions with recognized impairments 

in: working memory and social cognition (behavioral-variant frontotemporal dementia); general 

cognition (Alzheimer’s disease); and unspecific patterns (Parkinson’s disease). We also examined 

resting-state theta oscillations and functional connectivity correlates of working memory domain-

specificity. Results in controls and all groups together evidenced increased working memory 

demands for social stimuli associated with frontocinguloparietal theta oscillations and salience 

network connectivity. Canonical frontal theta oscillations and executive-default mode network 

anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented 

generalized working memory deficits related to posterior theta oscillations, with social stimuli 

linked to salience network connectivity. In Alzheimer’s disease, generalized working memory 

impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to 

the executive network. Parkinson’s disease showed spared working memory performance and 

canonical brain correlates. Findings support a social-specific working memory and related disease-

selective pathophysiological mechanisms.

Keywords

Working memory; social processing; social working memory; behavioral-variant frontotemporal 
dementia; Alzheimer’s disease; Parkinson’s disease

1. Introduction

Working memory (WM) plays a critical role in cognition and social functioning by allowing 

the maintenance and manipulation of information (Christophel et al., 2017; Porcelli et al., 

2019) within load-dependent limits (Cowan, 2017; Oberauer et al., 2016). Yet, it is still 

unclear whether social stimuli involve domain-general or -specific WM processes. Although 

most traditional studies have targeted non-social stimuli (Chai et al., 2018; Meyer and 

Lieberman, 2012), relevant works suggest social stimuli increase WM load resembling a 

‘social impairment’ effect (i.e., reduced WM performance linked to social processing in 

comparison to non-social cues) (Fairfield et al., 2015; Garrison and Schmeichel, 2019; 

Pessoa, 2009; Plancher et al., 2019). However, the field is not without controversy. Social 

stimuli maintenance and manipulation have been linked to canonical non-social WM 

hubs -i.e., the frontoparietal executive network (EN) (Smith et al., 2017; Thornton and 

Conway, 2013; Xin and Lei, 2015) suggesting a domain-general WM for social stimuli. 

Legaz et al. Page 2

Neurobiol Dis. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Few works have related WM for social stimuli to a broader network beyond executive 

regions -i.e., social processing hubs including medial frontal, cingulate, and temporoparietal 

areas (Meyer and Collier, 2020; Meyer et al., 2012; Meyer et al., 2015), proposing a 

domain-specific WM subsystem [or social WM (Meyer and Lieberman, 2012)]. This 

scenario limits the characterization of clinical conditions with deficits in both WM and 

social processes. Neurodegenerative lesion models can partially overcome correlational 

evidence by exposing direct associations between behavioral performance and critical 

brain regions (Birba et al., 2022; Cruzat et al., 2023; Legaz et al., 2022; Moguilner et 

al., 2022; Rorden and Karnath, 2004; Salamone et al., 2021; Santamaría-García et al., 

2022). To our knowledge, no previous work has targeted the WM domain-specificity for 

social vs non-social stimuli across neurodegenerative conditions with different WM and 

socio-cognitive impairments, such as behavioral-variant frontotemporal dementia (bvFTD), 

Alzheimer’s disease (AD), and Parkinson’s disease (PD) (Piguet et al., 2011; Salmi et al., 

2020) –let alone with a multidimensional approach indexing behavioral, electrophysiological 

(resting-state electroencephalography [rsEEG]) and neuroimaging (resting-state functional 

magnetic resonance imaging [rsfMRI]) methods. Answering these questions is relevant for 

both cognitive and translational neuroscience.

The bvFTD presents non-social WM alterations (Poos et al., 2018) predominantly related 

to frontal (Nissim et al., 2017) and secondarily to temporoinsular atrophy (Baez et al., 

2019; Migeot et al., 2022; Possin et al., 2013). However, WM dynamics for social stimuli 

remain unexamined in bvFTD. Electrophysiological WM correlates also remain unassessed, 

beyond general frontotemporal theta (θ) oscillatory disruption (Caso et al., 2012; Metin et 

al., 2018). Social processing deficits are pervasive in bvFTD (Dodich et al., 2021; Ibáñez 

and Manes, 2012; Kipps et al., 2009; O’Callaghan et al., 2016; Piguet et al., 2011) and 

have been linked to frontoinsular and temporoparietal atrophy (Baez et al., 2019; Kumfor et 

al., 2017), reduced fronto-posterior electrophysiological activity (Melloni et al., 2016), and 

salience network (SN) dysfunctions (Rijpma et al., 2022; Toller et al., 2018). Nonetheless, 

it is unknown whether a domain-general or -specific WM disruption exists in this condition 

with both WM and social processing deficits.

AD presents non-social WM impairments (Kirova et al., 2015) comparable to bvFTD (Leslie 

et al., 2016; Ramanan et al., 2017a), although linked to left temporoparietal dysfunctions 

(Kobylecki et al., 2018) and to reduced frontoparietal θ oscillations (Goodman et al., 2019; 

Hata et al., 2016). Indeed, altered WM in AD may be explained by global cognitive deficits 

(Possin et al., 2013) and related to EN dysfunctions (Agosta et al., 2012; Ibáñez et al., 

2021a; Moguilner et al., 2021; Tait et al., 2020; Zhao et al., 2019). Yet, how social stimuli 

modulate WM in AD has not been assessed. Particularly, social processing impairments 

related to default mode network (DMN) dysfunctions (Badhwar et al., 2017; Saris et al., 

2021) have also been linked to AD severity and global cognitive deficits (Dodich et al., 

2016; Musa et al., 2020; Ramanan et al., 2017b; Synn et al., 2018). In sum, the extent of 

social specificity over an altered WM remains unexamined in this general cognitive deficit 

model.

Finally, although non-social WM deficits have been reported in PD (Ramos and Machado, 

2021), dopaminergic-medicated PD patients tend to perform as well as healthy controls 
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(HCs) (Moustafa et al., 2013; Salmi et al., 2020) with increased compensatory frontal 

activity despite corticostriatal disruptions (Simioni et al., 2017). In fact, the EN is spared 

in this disease (Hou et al., 2018). Again, no previous work has studied how social stimuli 

modulate WM in PD. Indeed, social processing disturbances are still inconclusive (Argaud 

et al., 2018; Lewis and Ricciardi, 2021; Maresca et al., 2020). Altogether, it is not clear 

whether WM is selectively impaired for social stimuli in this unspecified disease model.

Briefly, the notion of distinct WM mechanisms for social relative to non-social 

stimuli remains untested in bvFTD, AD, and PD -let alone combining behavioral and 

neurofunctional dimensions. To fill this gap, we employed a novel domain-specific WM task 

with social and non-social stimuli across these conditions. The task required participants 

to identify the sameness between separately presented lists of social (e.g., cordial) and non-

social (e.g., oval) adjectives, organized in three load levels: three (triplets), four (quartets), 

or five (quintets) words. In addition, we acquired offline rsEEG modulations to capture θ 
oscillations (~4–8 Hz) given their systematic association to verbal WM load (Dai et al., 

2017; Pavlov and Kotchoubey, 2020) and social processing (Billeke et al., 2013; Gregory et 

al., 2021). Finally, offline rsfMRI was also obtained to investigate functional connectivity 

correlates of WM domain-specificity [three networks linked to WM and social processes: 

the SN, the EN, and the DMN (Feng et al., 2021); and two control networks: the visual 

network (VN), and the motor network (MN)].

We propose distinct hypotheses for each group. In HCs, we predicted a behavioral WM load 

effect (triplets > quartets > quintets), with lower performance for social vs non-social stimuli 

(Fairfield et al., 2015; Garrison and Schmeichel, 2019). Increased WM for social stimuli 

should be linked to higher θ oscillations in extended frontocinguloparietal regions [related 

to social processing (Billeke et al., 2013; Feng et al., 2021; Gregory et al., 2021) and WM 

(Constantinidis and Klingberg, 2016; Dai et al., 2020)]; as well as higher SN connectivity 

(Luo et al., 2014; Rijpma et al., 2021). Conversely, WM for non-social stimuli should be 

associated with θ oscillations in canonical right frontal regions (Dai et al., 2017; Pavlov and 

Kotchoubey, 2020) as well as higher EN and lower DMN connectivity (Chai et al., 2018; 

Liang et al., 2016; Maehara, 2017). A WM load-dependent enhancement of θ oscillations 

should be observed irrespective of stimulus type (Dai et al., 2017; Pavlov and Kotchoubey, 

2020). Compared to HCs, each patient group should present distinct WM patterns. In 

bvFTD, we expected increased WM deficits for social vs non-social stimuli, linked to θ 
oscillations in fronto-posterior hubs, and to SN connectivity. In AD, we hypothesized WM 

deficits in both social and non-social stimuli, predominantly associated to temporoparietal θ 
oscillations and EN connectivity. In PD, we predicted preserved WM, associated with frontal 

θ oscillations. A behavioral WM load effect was also expected in all neurodegenerative 

groups. By testing these hypotheses, we aim to provide multimodal evidence of social 

specificity in WM across neurodegenerative models.

2. Methods

2.1. Participants

The study was coordinated by BrainLat (Duran-Aniotz et al., 2022) and comprised 245 

participants: 90 HCs with preserved cognition and no history of neuropsychiatric diseases 

Legaz et al. Page 4

Neurobiol Dis. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and/or substance abuse; 42 people fulfilling revised criteria for bvFTD (Rascovsky et 

al., 2011); 54 people with AD, each meeting the international NINCDS-ADRDA criteria 

(Dubois et al., 2007; McKhann et al., 2011); and 59 people with PD diagnosed in 

accordance with the United Kingdom PD Society Brain Bank criteria (Hughes et al., 1992). 

Power analyses confirmed the adequacy of our sample size (Material S1.1). Participants 

were recruited from four international clinics taking part in the Multi-Partner Consortium to 

Expand Dementia Research in Latin America (ReDLat) and assessed following harmonized 

procedures (Ibáñez et al., 2021b; Ibáñez et al., 2021c; Maito et al., 2023; Moguilner et al., 

2023) as in previous reports (Donnelly-Kehoe et al., 2019; Ibáñez et al., 2021a; Legaz et al., 

2022; Melloni et al., 2016; Salamone et al., 2021; Sedeno et al., 2017). Clinical diagnoses 

were established by experts through an extensive neurological, neuropsychiatric, and 

neuropsychological examination comprising semi-structured interviews and standardized 

cognitive assessments (Table 1). Participants with neurodegenerative conditions were in 

early/mild stages of the disease. They did not fulfill criteria for other neurological, 

psychiatric and/or primary language disorders, or a history of substance abuse. As verified 

by caregivers, bvFTD and AD participants were functionally impaired, with bvFTD 

exhibiting prominent changes in personality and social behavior. PD participants were 

medicated with antiparkinsonian therapy (dopaminergic medication) and evaluated during 

the ‘ON’ phase. Each neurodegenerative sample was comparable in sex, age, and years 

of formal education with HCs (Table 1). Finally, whole-brain GM was compared between 

each neurodegenerative group and HCs, showing a predominantly orbitofrontal-cingulate-

temporal atrophy in bvFTD (Ibáñez and Manes, 2012; Whitwell et al., 2009), bilateral 

temporal with less extended frontoparietal atrophy in AD (Du et al., 2007; Landin-Romero 

et al., 2017; Pini et al., 2016), and no atrophy in PD (Huber et al., 1989; Price et al., 

2004; Schulz et al., 1999) (Fig. 1A; Table S1.2). The institutional ethics committee of each 

recruitment center approved the study protocol. All participants provided signed informed 

consent in accordance with the Declaration of Helsinki.

2.2. Experimental protocol

Participants completed a multimodal assessment protocol including a behavioral WM task, 

and offline resting-state high-density EEG recordings and MRI-fMRI sessions.

2.2.1. Behavioral data: domain-specific WM task—Behavioral data was obtained 

through a domain-specific WM task (Fig. 1B). It consists of the sequential presentation of 

two lists of words. Participants are asked to judge whether the words in the second list 

are all the same as those from the first list (beyond word’s order) by pressing predefined 

keys. The task comprises two stimulus types: social, where words are adjectives that 

describe the interaction between two persons (e.g., cordial, friendly, prudent); and non-

social, where words are adjectives that cannot be used to describe a person during a social 

interaction (e.g., oval, rocky, printed). Moreover, the task includes three load levels: social 

and non-social adjectives are organized in lists of three (triplets), four (quartets) and five 

(quintets) words. We manipulated the content of the stimuli (social/non-social) in order 

to compare their effect on WM, and the load (triplets, quartets, quintets) to confirm task 

understanding and control for potential cognitive confounds. The task was designed based 

on previous WM paradigms (Fiebach et al., 2006; Parra et al., 2010; Pietto et al., 2016; 
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Reuter-Lorenz et al., 2000). Social and non-social adjectives were validated through online 

surveys distributed across Spanish speaking countries. We controlled that words between 

social and non-social trials were statistically paired for lexical parameters (log frequency, 

number of letters, number of syllables) and for Levenshtein distance. Conversely, they were 

statistically different for sociability. We also controlled that triplets, quartets and quintets 

were statistically paired for lexical parameters within stimulus type. Full details of task 

design and validation are provided in Material S2.

Each trial consists of three phases: (a) encoding, (b) retention and (c) testing. They initiate 

with a fixation cross (random duration between 200 – 500 ms). (a) Then stimuli are 

presented (first list of triplets, quartets, or quintets). The duration depends on the stimuli 

load: 3000 ms for triplets, 4000 ms for quartets, and 5000 ms for quintets (Morrison et al., 

2016). (b) Immediately after, a black screen appears for 5000 ms. (c) Finally, a second list 

of words (same load as the first list) is shown until the subject’s response, with ‘No’/’Yes’ 

options positioned to the bottom left and right of the screen next to left/right arrows, 

respectively. Participants have to respond the sameness of the words lists by choosing 

‘No’/’Yes’ through the corresponding computer keyboard arrows with their dominant hand. 

In the testing phase, half of the lists are the same as in the encoding phase, and half are 

different. For the same lists, only the word’s order is changed. For the different lists, one 

word is replaced by another with the same initial syllable/letter (similarity between old 

and new words did not differ between social and non-social conditions, as assessed by 

Levenshtein distance [minimum number of changes required to convert one word into the 

other] – see Table S2.1.3). Instructions and a set of six practice trials are presented before 

the task. The order of trials per stimulus type, load level, and equality between first and 

second list is randomly assigned. In total, participants complete 60 trials: 20 trials per load 

(10 social, 10 non-social). The number of trials does not change according to performance. 

Approximately, the total duration of the task is 15 minutes. Accuracy and response time 

(RT) data were collected for each trial.

2.2.2. EEG: acquisition and signal preprocessing—We acquired 10-minute, high-

density offline rsEEG (eye-closed) recordings from a 91-participants subsample. Signals 

were recorded using a Biosemi ActiveTwo 128-channel acquisition system with pre-

amplified sensors and a DC coupling amplifier. Reference electrodes were set to linked 

mastoids. Analog filters were set at 0.03 and 100 Hz. Signals were sampled at 1024 Hz. 

The subsample comprised 19 bvFTD, 27 AD, and 12 PD, each group being demographically 

matched with HCs (n = 33) (see Table S3.1). Participants were instructed to remain still 

and awake, while sitting in a comfortable chair, inside a dimly lit sound-attenuated and 

electromagnetically-shielded EEG chamber.

rsEEG signals were preprocessed offline using standard procedures in MATLAB’s 

EEGLAB toolbox (Delorme and Makeig, 2004). Recordings were band-pass filtered at 

0.5–40 Hz, and re-referenced to the average of all channels. Malfunctioning channels 

were identified and replaced using statistically weighted spherical interpolation (based 

on neighbor sensors) (Courellis et al., 2016). Data was down-sampled to 512 Hz. Eye 

movements or blink artifacts were corrected with independent component analysis (Kim 

and Kim, 2012) and with a visual inspection protocol (Birba et al., 2021; Dirlich et al., 
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1997; Garcia-Cordero et al., 2017; Garcia-Cordero et al., 2016; Pollatos and Schandry, 2004; 

Salamone et al., 2021; Schandry and Montoya, 1996).

2.2.3. Neuroimaging: acquisition and preprocessing—MRI and rsfMRI 

acquisition and preprocessing steps are reported as recommended by the Organization for 

Human Brain Mapping (Nichols et al., 2017; Poldrack et al., 2017). Following standard 

protocols (Garcia-Cordero et al., 2016; Gonzalez Campo et al., 2019), we obtained 

offline three-dimensional volumetric and 10-minute rsfMRI sequences from a subsample 

of 165 participants. These comprised 19 bvFTD, 32 AD, and 48 PD, each group being 

demographically matched with HCs (n = 66) (see Table S3.2). Recordings were performed 

in different scanners (for harmonization details see Table S3.3). Participants were asked not 

to think about anything in particular, move or fall asleep. To avoid noisy signals coming 

from the visual cortex, we chose the closed-eyes modality (Zou et al., 2015).

First, to ensure that magnetization achieved a steady state, we discarded the first five 

volumes of each subject’s resting-state recording. Then, images were preprocessed using 

the Data Processing Assistant for Resting-State fMRI (DPARSF V2.3) (Chao-Gan and 

Yu-Feng, 2010) open-access toolbox in MATLAB, which generates an automatic pipeline 

for fMRI analysis by calling the Statistical Parametric Mapping software (SPM12) and the 

Resting-State fMRI Data Analysis Toolkit (REST V.1.7). As in previous studies (Salamone 

et al., 2021; Yoris et al., 2018), preprocessing steps included slice-timing correction (using 

middle slice of each volume as the reference scan) and realignment to the first scan of the 

session to correct head movement (SPM functions) (Barttfeld et al., 2012; Garcia-Cordero 

et al., 2016; Melloni et al., 2016; Sedeno et al., 2016). Then, images were normalized to 

the MNI space using the default echo-planar imaging template from SPM12 (Ashburner and 

Friston, 1999), smoothed using an 8-mm full-width-at-half-maximum isotropic Gaussian 

kernel, and bandpass filtered between 0.01–0.08 Hz to correct and remove low-frequency 

drifts from the scanner. Finally, we regressed out six motion parameters, cerebrospinal fluid, 

and white matter signals to reduce motion and physiological artifacts such as cardiac and 

respiration effects (REST V1.7). Motion parameters were estimated during realignment, 

and cerebrospinal fluid and white matter masks were derived from the tissue segmentation 

of each subject’s T1 scan in native space with SPM12 (after co-registration of each 

subject’s structural image with the functional image). Finally, we excluded recordings with 

movements greater than 3 mm and/or rotation higher than 3° (Table S3.4) (Supekar and 

Menon, 2012; Supekar et al., 2008).

2.3. Statistical analysis

2.3.1. Behavioral analysis: domain-specific WM task—First, to improve the 

responses’ signal-to-noise ratio and avoid random responses, we removed trials with RTs 

< 250 ms and then excluded those trials falling three Median Absolute Deviations (MADs) 

away from the median of each subjects’ RT. This approach has proven to be more robust 

against outliers’ effect compared to SDs from the mean (Dave and Varma, 2014; Yang et 

al., 2019). Next, to ensure non-significant differences in the final number of trials between 

conditions, we randomly selected and kept the same number of trials per stimulus type and 

load level, for each subject (for data curation details see Fig. S1, Table S4.1, and Table 
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S4.2). Finally, to quantify WM performance, we used the inverse efficiency score (IES) 

(Hesse et al., 2016; Hesse et al., 2019), a standard metric that combines accuracy and RT 

to holistically establish weighted behavioral outcomes (Jacques and Rossion, 2007; Jacquet 

and Avenanti, 2015), previously applied in neurodegenerative studies (Salamone et al., 

2021). The IES is calculated by dividing the mean RT by the proportion of correct responses 

(Brozzoli et al., 2008; Mevorach et al., 2006), thus controlling for biases introduced by 

fast RTs with low accuracy and vice versa. Therefore, the higher the IES, the poorer 

the performance. Average IES scores were calculated for each stimulus type (social, non-

social) and load level (triplets, quartets, quintets), per subject. Given that Shapiro-Wilk’s 

tests revealed a non-normal distributions for IES indexes, and that analyses based on non-

normalized data may promote Type I and Type II errors (Rasmussen, 1985), IES scores were 

normalized using Ordered Quantile Normalization transformation (Table S4.3, Table S4.4), 

previously applied in literature (Das et al., 2022; Minnier et al., 2021). Based on a rank 

mapping of the observed data to the normal distribution, this technique guarantees normally 

distributed transformed data if ties are not present (Peterson and Cavanaugh, 2019).

Second, we run mixed ANOVA models of the IES across stimulus type and load level (2 

[type] * 3 [load]) for each group separately. These analyses confirmed the task validation 

regarding the expected ‘social impairment’ effect in HCs and the load effect at each group 

(for further details see Table S4.5 and Fig. S2).

Finally, since our main hypotheses hinged on differences between each patient group and 

HCs, statistical analyses of behavioral data were performed to compare group pairs of 

patients and controls (bvFTD vs HCs, AD vs HCs, PD vs HCs) as in previous reports 

with neurodegenerative conditions (Chiong et al., 2016; Garcia-Cordero et al., 2016; 

Garcia-Cordero et al., 2019; Legaz et al., 2022; Salamone et al., 2021; Shany-Ur et al., 

2014; Shany-Ur et al., 2012; Sollberger et al., 2014; Sollberger et al., 2009). IES was 

first compared between groups via mixed model ANOVAs, for each stimulus type and 

load level (4 [group] * 2 [type] * 3 [load]). Then, specific WM patterns in each patient 

group relative to HCs were assessed through pairwise comparisons (bvFTD-HCs, AD-HCs, 

and PD-HCs) via Tukey’s HSD tests. This procedure accounts for multiple comparisons 

reducing the probability of Type I error (Nanda et al., 2021). Effect sizes were reported 

with partial eta squared (ηp2). Behavioral analyses were performed using BestNormalize 

(Peterson and Cavanaugh, 2019), lmerTest (Kuznetsova et al., 2017), afex (Singmann et al., 

2015), and effectsize (Ben-Shachar et al., 2020) packages in R software (Version 4.0.2, R 

Foundation for Statistical Computing). Figures were generated using the Seaborn Python 

package (Version 0.9.0) (Waskom, 2021).

2.3.2. EEG: source localization analysis—After preprocessing, we conducted a 

source analysis of the rsEEG in the frequency domain using the standardized Low-

Resolution Electromagnetic Tomography method [sLORETA (Grech et al., 2008; Pascual-

Marqui, 2002)] to examine associations between behavioral WM outcomes and θ 
oscillations correlates related to WM (Dai et al., 2017; Pavlov and Kotchoubey, 2020) and 

social processing (Billeke et al., 2013; Gregory et al., 2021). First, we computed the EEG 

cross-spectrum at the sensor level from the discrete Fourier transforms obtained for each 

EEG channel, using a 2s-length window. Then, the cross-spectrum was used to calculate 
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the standardized current density maps. These maps were obtained using a three-concentric-

spheres head model, in a predefined source space of 6239 voxels (voxel size of 5 × 5 × 5 

mm3) of the MNI average brain (Evans et al., 1993). A brain segmentation of 82 anatomic 

compartments (cortical areas) was implemented using the automated anatomical labeling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002). Current densities maps of each participant were 

frequency-wise normalized. For each frequency, the spectral power computed in each voxel 

was divided by the mean spectral power (6239 voxels’ average) (for further details see 

Material S5.1).

Normalized current densities maps computed in the θ frequency band of the EEG were 

correlated with behavioral outcomes (IES) for both, stimulus type (social and non-social) 

and the most extreme load level (quintets [high] and triplets [low]) conditions, using Pearson 

correlation tests. To adjust for multiple comparisons and reduce the probability of Type 

I error, we used false discovery rate (FDR) rate (P < 0.05 FDR-corrected) (Benjamini 

and Yekutieli, 2001; Bennett et al., 2009; Brancaccio et al., 2020). To increase behavioral 

variance and statistical power, analyses collapsing all groups together (HCs, bvFTD, AD, 

and PD) were added to the individual group’s correlation analyses (Garcia-Cordero et al., 

2016; O’Callaghan et al., 2016; Sollberger et al., 2009).

2.3.3. Neuroimaging: resting-state functional connectivity analysis—After 

preprocessing, we used seed analyses to examine associations between behavioral WM 

outcomes and dynamic functional connectivity across three core brain networks associated 

to social processing and WM (Feng et al., 2021): the SN, related to salient-social 

information processing (Porcelli et al., 2019; Toller et al., 2018; Uddin, 2015); the EN, 

implicated in externally goal-oriented executive processes including WM (Constantinidis 

and Klingberg, 2016; Menon and D’Esposito, 2022); and the DMN, that supports internally-

related processes (Smallwood et al., 2021) and inversely correlates with the EN activation 

during high load WM processes (Liang et al., 2016). To test the specificity of our predictions 

for these networks, we also examined associations between WM and connectivity along 

two additional unrelated networks: the VN and the MN. To calculate each resting-state 

network connectivity, we located bilateral seeds on different MNI coordinates for each 

network (Koslov et al., 2011) (for further details see Material S5.2). Then we employed a 

weighted Symbolic Dependence Metric (wSDM) non-linear correlation coefficient across 

the whole time series obtained in the resting-state acquisition which proved robust in 

neurodegenerative conditions (Moguilner et al., 2018). After that, we used standard masks 

(Shirer et al., 2012) to isolate the voxels that are typically involved in each resting-state 

network. Finally, we spatially averaged across all included voxels to obtain one feature per 

network. Resulting connectivity maps were correlated with behavioral outcomes (IES) for 

both, stimulus type (social and non-social) and the most extreme load level (quintets [high] 

and triplets [low]) conditions, through the SPM12 multiple regression module. To adjust 

for multiple comparisons, we used cluster-wise inference with false discovery rate (FDR) 

rate correction (P≤0.05 FDR-corrected) (Han et al., 2019). In line with the EEG analysis 

pipeline, in addition to individual groups correlation analyses, we performed analyses 

collapsing all groups together (HCs, bvFTD, AD, and PD) to increase behavioral variance 
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and statistical power (Garcia-Cordero et al., 2016; O’Callaghan et al., 2016; Sollberger et al., 

2009).

2.4. Availability of data and materials

The datasets supporting the conclusions of this article are publicly available in the OSF 

repository, http://osf.io/bx27h (Legaz, 2022).

3. Results

3.1. Behavioral results

Our analysis revealed significant main effects for group (F 3,240 = 25.22, P < 0.001, ηp2 = 

0.24) and load (F 2,480 = 408.61, P < 0.001, ηp2 = 0.63), but not for type (F 1,240 = 1.87, P 
= 0.17, ηp2 = 0.007). On the other hand, a significant group-by-type interaction effect was 

found. Compared to HCs, participants with bvFTD performed significantly worse in both 

social and non-social stimulus types. The same pattern was observed in participants with 

AD. No significant differences were found in PD’s performance relative to HCs in either 

stimulus type (Table 2, Fig. 1C). The group-by-load interaction effect was also significant. 

Participants with bvFTD performed worse than HCs in all load levels (triplets, quartets, 

quintets). Similar results were observed in AD. PD participants presented significantly lower 

performance than HCs only in triplets (Table 2, Fig. S2). Finally, no significant load-by-type 

(F2,480 = 0.18, P = 0.83, ηp2 = 0.0007), neither group-by-type-by-load interaction effects 

were observed (F 6,480 = 0.81, P = 0.56, ηp2 = 0.01).

3.2. Theta oscillatory correlates of social and non-social WM

In all groups together, better WM for social stimuli correlated to increased θ oscillations 

in extended bilateral frontocingulate areas (Table 3, Fig. 2). Better WM for non-social 

stimuli was associated with increased θ oscillations in a specific right frontal cluster (Table 

4, Fig. 2). Also, better high load (quintets) WM was associated with increased bilateral 

frontocingulate and left parietal θ oscillations. Meanwhile, better low load (triplets) WM 

predominantly correlated with increased bilateral frontocingulate θ oscillations (Table S6.1, 

Fig. S3).

In HCs, better WM for social stimuli was associated with increased θ oscillations in bilateral 

frontocingulate and left parietal regions (Table 3, Fig. 2). In contrast, better WM for non-

social stimuli was associated with increased θ oscillations in specific right frontocingulate 

areas (Table 4, Fig. 2). Moreover, better high load (quintets) WM was associated with 

increased θ oscillations in a specific right frontal cluster, while better low load (triplets) WM 

was associated with bilateral frontocingulate θ increment (Table S6.1, Fig. S3).

In bvFTD, WM deficits for social stimuli were associated with increased θ oscillations 

in left posterior regions (Table 3, Fig. 2), and WM deficits for non-social stimuli with a 

left posterior cluster (Table 4, Fig. 2). The same pattern was found among load levels, 

with significant associations between both high load (quintets) and low load (triplets) WM 

deficits, and increased θ oscillations in left posterior areas (Table S6.1, Fig. S3).
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In AD, WM deficits for social stimuli were associated with decreased θ oscillations in the 

temporoparietal junction (Table 3, Fig. 2). In contrast, WM deficits for non-social stimuli 

were linked to decreased θ oscillations in extended temporoparietal areas, and to increased 

θ oscillations in right temporolimbic regions (Table 4, Fig. 2). High load (quintets) WM 

alterations were associated with decreased θ oscillations in left posterior regions, and low 

load (triplets) WM deficits correlated with a left parietal θ decrement (Table S6.1, Fig. S3).

In PD, we observed significant associations between better WM for social stimuli and 

increased θ oscillations in frontocingulate regions, while better WM for non-social stimuli 

was significantly associated with increased θ oscillations in a specific right frontal cluster 

(Table 3, Table 4, Fig. 2). Better high load (quintets) WM was associated with increased 

bilateral frontocingulate θ oscillations, while better low load (triplets) WM correlated with 

increased θ oscillations in a less extended bilateral frontocingulate cluster (Table S6.1, Fig. 

S3).

3.3. Brain network correlates of social and non-social WM

For all groups together (Fig. 3), seed analyses revealed that the better the WM for social 

stimuli, the higher the SN connectivity (r = −0.443, P-FDR = 0.03). In contrast, better WM 

for non-social stimuli was significantly associated with increased EN (r = −0.424, P-FDR 
= 0.03) and decreased DMN (r = 0.387, P-FDR = 0.04) connectivity. Also, better high load 

(quintets) WM was associated with increased EN connectivity (r = −0.401, P-FDR = 0.05). 

No significant associations were found for control networks (VN and MN) neither with low 

load (triplets) (see Table 5, Fig. S4). HCs presented non-significant associations.

In bvFTD, WM deficits for social stimuli were associated to reduced SN connectivity (r = 

−0.431, P-FDR = 0.03). In AD, significant associations were found between WM deficits for 

non-social stimuli (r = −0.395, P-FDR = 0.04) and for high load (quintets) level (r = −0.372, 

P-FDR = 0.04) and reduced EN connectivity. PD presented non-significant associations. 

Finally, non-significant results were found in any individual group for neither low load 

(triplets) associations (Table 5, Fig. S4).

4. Discussion

We examined the WM domain-specificity for social vs non-social stimuli in healthy 

participants and neurodegenerative conditions at behavioral, oscillatory, and functional 

connectivity levels. In HCs, a WM load effect and decreased WM for social stimuli 

confirmed our hypotheses. Considering all groups together, WM for social stimuli was 

associated with higher frontocingulate θ oscillations and SN connectivity. Conversely, WM 

for non-social stimuli was linked to canonical right frontal θ oscillations, higher EN and 

lower DMN connectivity. Relative to HCs, bvFTD presented generalized WM deficits 

associated with increased θ oscillations in posterior regions (being abolished in canonical 

frontal hubs), and WM for social stimuli specifically linked to lower SN connectivity. In 

AD, generalized WM deficits were related to temporoparietal θ oscillations, with WM for 

non-social stimuli particularly linked to lower EN connectivity. PD showed preserved WM, 

with social and non-social stimuli related to frontocingulate and frontal θ oscillations, 

respectively. Together, these multimodal findings reveal specific social and non-social 
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stimuli mechanisms in WM across different pathophysiological models sensitive to WM and 

social processing impairments (bvFTD), generalized cognitive deficits (AD), and unspecific 

alterations (PD).

4.1. Domain-specific WM for social stimuli in controls

In HCs, behavioral and brain correlates confirmed the task’s robustness and our predictions. 

WM performance was reduced by high load and social stimuli (social impairment effect) 

(Cowan, 2017; Garrison and Schmeichel, 2019; Plancher et al., 2019). WM social 

modulation increased θ oscillations in extended regions beyond canonical hubs (Dai et 

al., 2017; Pavlov and Kotchoubey, 2020), including: frontal [involved in action-execution 

(Gu et al., 2019), WM (Marvel et al., 2019), and social-saliency processing (Van der Molen 

et al., 2017)]; cingulate [related to error-prediction and ‘other-oriented’ cues (Apps et al., 

2016; Billeke et al., 2013)]; and left parietal [engaged in social processing (Billeke et al., 

2014) and verbal WM (Eriksson et al., 2015; Li et al., 2017)] hubs. This broader network 

suggests θ oscillations are involved in the integration of bottom-up (stimulus-driven) and 

top-down (cognitive) processes across distributed areas (Brenner et al., 2014). The need 

for more efficient propagation of information in order to cope with socially-demanding 

WM processes might recruit this extended oscillatory network. Regarding rsfMRI, WM for 

social stimuli was related to SN connectivity. Insular-cingulate hubs (Seeley, 2019; Seeley 

et al., 2007) are critical for executive and social processing (Uddin, 2015) by mediating the 

interaction between bottom-up and top-down WM processes for social stimuli (Luo et al., 

2014). Then, the SN seems to be critical to successful WM for externally-perceived social 

stimuli. This network would dynamically reallocate resources between the DMN (related 

to social cognition) and the EN (linked to WM) to optimize responses to salient (social) 

stimuli (Maehara, 2017; Uddin, 2015). In contrast, WM for non-social stimuli involved the 

predicted EN-DMN anticorrelation (Chai et al., 2018; Liang et al., 2016). Moreover, the lack 

of associations with control networks (VN and MN) confirmed the differential impact of 

social and non-social stimuli over WM. All in all, results in HCs and in all groups together 

support a relative domain-specific WM for social stimuli with increased behavioral demands 

indexed by frontocinguloparietal θ oscillations and the SN connectivity, compared to frontal 

θ oscillations and EN-DMN anticorrelation for non-social stimuli.

4.2. Distinct WM mechanisms across neurodegenerative models

In bvFTD, contrarily to the social stimuli selectivity hypothesis, WM deficits were 

generalized. Although to some extent unexpected, this is consistent with the syndrome’s 

well-known, overall, and sui generis dysexecutive profile (Beeldman et al., 2018; Gonzalez-

Gomez et al., 2021; Kamath et al., 2019). Similarly, overall absent frontal θ correlates 

suggest a generalized WM alteration linked to impaired oscillatory mechanisms. Indeed, 

WM decay was linked to higher posterior visual-encoding θ oscillations (Takase et al., 

2022), interpreted as a paradoxical response to frontal θ abolition (Caso et al., 2012; Metin 

et al., 2018) necessary for WM compensation (Dai et al., 2017). Beyond bvFTD lack of 

domain-specificity across behavioral and oscillatory correlates, impaired WM for social 

stimuli was specifically linked to lower SN connectivity. This network is distinctly disrupted 

in bvFTD relative to HCs and AD (Brown et al., 2020; Moguilner et al., 2021; Pini et 

al., 2022; Salamone et al., 2021; Seeley, 2019; Zhou et al., 2010) and has been related to 
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their inability to hold and manipulate social cues in complex social situations (Baez et al., 

2014; Zhou and Seeley, 2014). Then, SN abnormalities may disrupt the ‘switch’ between the 

EN and DMN during executive processes involving social stimuli (Maehara, 2017; Uddin, 

2015). Altogether, a primary (domain-neutral), sui generis WM impairment in bvFTD is 

accompanied by a distinctive social domain-specific WM pathophysiological mechanism 

related to the SN.

In AD, results supported the hypothesis of unspecific WM decline across behavioral and 

brain correlates, possibly explained by overall cognitive deficits (Ibáñez et al., 2021b; 

Ramanan et al., 2017b). Resulting socially-related temporoparietal θ decay confirmed the 

DMN-related attentional and social processes engagement (Igelström and Graziano, 2017) 

already impaired in AD (Lattanzio et al., 2021). Moreover, non-social stimuli deficits were 

linked to broader temporoparietal θ decrease (Goodman et al., 2019; Kobylecki et al., 

2018) and to unexpected temporolimbic θ increase. Recent works in AD have reported 

both positive and negative θ dynamics, in terms of hypo- and hyperconnectivity (Herzog 

et al., 2022; Prado et al., 2023). The observed mixed correlations may be explained by 

temporo-posterior atrophy and decreased dynamic range of cortical activity (Prado et al., 

2023). Positive θ associations could be triggered by functional reorganization (Parra et 

al., 2017) including temporolimbic θ hyperconnectivity (Prado et al., 2023), and overall 

cognitive deficits (Musaeus et al., 2018). Finally, canonical frontal θ correlates were absent 

during both stimulus types, previously related to AD cognitive withdrawal (Hata et al., 

2016). Regarding rsfMRI, the observed link between non-social WM deficits and lower 

EN connectivity adds evidence of a disrupted frontoparietal mechanism (Zhao et al., 2019) 

underlying this condition’ WM decay (Wang et al., 2015). In contrast to bvFTD, AD 

social deficits appear to be related to general-cognitive alterations. Thus, results support the 

overall WM alteration hypothesis in AD, primarily indexed by temporoparietal θ and EN 

dysfunctions that jointly aligns with a domain-general WM pathophysiological mechanism.

In PD, the predicted spared WM suggests a cognitive compensation possibly related to 

dopaminergic medication (Moustafa et al., 2013; Salmi et al., 2020). Social modulation 

over WM was comparable to HCs, indicating that WM for social stimuli is not primarily 

altered in this disease. In fact, social processing deficits in PD might be mediated by general 

executive functions (Kosutzka et al., 2019; Maggi et al., 2022; Romosan et al., 2019). 

Similarly, preserved frontocingulate and frontal θ correlates in both stimulus type can also 

be explained by the overall-brain θ regularization triggered by dopaminergic medication 

(Moustafa et al., 2013; Orcioli-Silva et al., 2020; Ramos and Machado, 2021; Simioni et al., 

2017). Lack of neurofunctional correlates (rsfMRI) is not surprising considering the more 

lenient impact of atrophy, the relative cognitive preservation, and the ‘ON’ dopaminergic-

medication state of our sample (Cole et al., 2013; Dang et al., 2012; Kalpouzos et al., 2012; 

Wolters et al., 2019). In fact, absent connectivity correlates of executive performance in 

PD is not novel (Engels et al., 2018). Multimodal results converge in a spared dopaminergic-

medicated PD model with predominant frontal θ correlates supporting WM and social 

processing preservation.
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4.3. Theoretical and clinical implications

Our findings support theoretical accounts of a relative domain-specific WM for social 

stimuli, with higher behavioral demands and extended social brain regions beyond canonical 

WM hubs. The cingulate cortex was engaged in all domain-specific neurofunctional 

mechanisms: the distributed θ oscillations and the SN. This hub may play a pivotal role 

during WM for social stimuli. Specifically, it may index error-prediction WM mechanisms 

that are particularly modulated by the integration of socio-contextual information (Lavin et 

al., 2013). Then, when social and cognitive processes operate simultaneously and compete 

with each other for the limited neural resources (Hur et al., 2017), the cingulate may 

coordinate their interaction allowing the successful maintenance and manipulation of social 

cues. This interpretation fits well with externally-perceived social stimuli, contrasting other 

WM reports based on internally-generated social cues (Meyer and Lieberman, 2012; Meyer 

et al., 2012; Meyer et al., 2015). Our findings support the idea that previous controversies 

regarding WM domain-specificity (Meyer and Collier, 2020; Thornton and Conway, 2013; 

Xin and Lei, 2015) are primarily explained by differences in the internal vs external stimulus 

sources (Smith et al., 2017).

The detection of specific WM mechanisms for social stimuli carries clinical implications 

providing better characterization of neurodegenerative conditions. Comparable bvFTD 

and AD behavioral deficits were indexed by different domain-specific and -general 

pathophysiological mechanisms, respectively. Then, findings suggest differential therapeutic 

strategies, including: (a) general-WM training as a potential tool to induce EN enhancement 

(Constantinidis and Klingberg, 2016) and to improve daily-functioning in AD (Hernes et 

al., 2021); and (b) both general- and social specific-WM training to boost everyday social 

competence in bvFTD (Maehara, 2017; Meyer and Lieberman, 2012). Moreover, spared 

neurocognitive mechanisms in PD highlight the essential role of dopaminergic medication in 

WM preservation beyond striatal alterations. In sum, we offer relevant evidence of distinct 

neural correlates underlying social modulation over WM across neurodegenerative models, 

allowing differential diagnosis and treatment.

4.4. Limitations and further research

We acknowledge certain limitations to our study and outline new avenues for further 

research. First, although our work is based on a modest sample size, it is larger than those 

of other multimodal neurodegenerative reports (Birba et al., 2021; Garcia-Cordero et al., 

2016; Hughes et al., 2011; Legaz et al., 2022; Melloni et al., 2016; Moretti et al., 2009; 

Salamone et al., 2021). Moreover, strict control of demographic and clinical variables, as 

well as systematic diagnostic procedures, counteract this limitation. Also, our sample size 

power analysis, the results consistency across dimensions together with moderate-to-large 

effect sizes further attests to their robustness. In any case, future studies should replicate 

and extend these results with larger samples. Second, we focused on θ oscillations since 

research strongly supports its involvement in WM (Pavlov and Kotchoubey, 2020) across 

neurodegeneration (Goodman et al., 2019), and social processing (Gregory et al., 2021; van 

der Velde et al., 2021). However, future works should also target alpha/gamma oscillations 

and cross-frequency coupling also related to WM (Dai et al., 2017; Roux and Uhlhaas, 

2014) and reported impaired in neurodegenerative conditions (Güntekin et al., 2022; Ishii 
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et al., 2017; Kitchigina, 2018). Third, beyond the novel contributions of convergent rsEEG 

and rsfMRI methodologies across multiple neurodegenerative models, future works should 

also include active paradigms to better elucidate brain networks directly engaged in social 

WM modulation. Finally, our work rises new evidence regarding the domain-specificity of a 

critical daily-life process (Maresca et al., 2020; Porcelli et al., 2019). Our findings call for 

a more synergic understanding of social cognition and WM blending. These processes are 

not isolated, but integrated across different dimensions. New studies should examine how 

WM for social stimuli differentially impacts everyday functioning across neurodegenerative 

profiles with an ecological approach. This would better capture implicit socio-contextual 

modulations over WM and social cognition dynamics in real-life settings (Ibáñez, 2022).

5. Conclusions

Our multimodal neurodegenerative lesion model approach reveals convergent evidence of 

social and non-social effects over WM across healthy controls and neurodegenerative 

conditions. Findings support a relative domain-specific WM for social stimuli indexed 

by frontocinguloparietal θ oscillations and the SN that contrast with canonical frontal 

θ correlates and EN-DMN anticorrelation for non-social stimuli. Also, results provide 

different pathophysiological mechanisms, including a bvFTD primary WM alteration but 

specific network mechanisms linked to WM for social stimuli, domain-general WM 

deficits linked to cognitive deficits and related pathological brain correlates in AD, 

and behavioral and neurofunctional preservation in dopaminergic-medicated PD. Further 

research may bring a new clinical agenda favoring differential diagnosis and treatment 

among neurodegenerative conditions with common WM and social processing alterations.
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Abbreviations:

AD Alzheimer’s disease

BvFTD behavioral variant frontotemporal dementia

HCs healthy controls

IES inverse efficiency score

DMN default mode network

EN executive network

MN motor network

NINCDS-ADRDA National Institute of Neurological and Communicative 

Disorders and Stroke - Alzheimer’s Disease and Related 

Disorders Association

PD Parkinson’s disease

rsEEG resting-state EEG

rsfMRI resting-state functional magnetic resonance imaging

sLORETA standardized Low-Resolution Electromagnetic 

Tomography method

SN salience network

SPM12 Statistical Parametric Mapping software v.12

θ theta

VN visual network

WM working memory
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Fig. 1. 
GM atrophy, task design and behavioral results. (A)GM atrophy in patients. GM integrity 

was assessed via voxel-based morphometry, based on w-score maps of the normalized 

and smoothed DARTEL outputs (Chung et al., 2017; Jack et al., 1997; La Joie et 

al., 2012; Ossenkoppele et al., 2015; van Loenhoud et al., 2017). We ran two sample 

t-tests between each neurodegenerative group and HCs using the statistical non-parametric 

mapping (SnPM13) toolbox for SPM12 (5000 random permutations, P<0.001 for cluster-

forming threshold, and P<0.05 FWE-corrected for cluster-wise threshold (Kim et al., 2020; 

Salamone et al., 2021; Shih et al., 2019)). BvFTD showed orbitofrontal-cingulate-temporal 

atrophy. AD showed bilateral temporal with less extended frontoparietal atrophy. No atrophy 

was found in PD (Table S1.2). Results are presented on MNI space using the AAL(Tzourio-

Mazoyer et al., 2002), in neurological convention. (B) Task design. Participants judged 

if adjectives from a second list (testing phase) were the same as those from a first 

list (encoding phase) after a retention phase. Adjectives were either social or non-social 

(stimulus type) and randomly presented in three load levels: quintets, quartets or triplets 

(dark, medium and light gray, respectively). Note: Adjectives were displayed and validated 

in Spanish (Material S2). English translations are simply communicative renditions for 

the benefit of non-Spanish readers. (C)Behavioral results: between-group comparisons. We 

compared the WM performance of HCs and patient groups via mixed model ANOVA 

(group[4]*type[2]*load[3]) and post-hoc Tukey comparisons using the normalized inverse 

efficiency score (IES). Significant results were found for group-by-type (plotted) and group-
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by-load interactions (Table 2, Fig. S1, Fig. S2, Material S4.) Dot-plots represent results 

for HCs (dark blue), bvFTD (turquoise), AD (light blue), and PD (pink). Vertical-dotted 

lines show mean (black dot) and standard deviation (lines). The asterisk indicates significant 

differences (P<0.05). The between-groups mean difference (effect size) between each patient 

group and HCs is reported below each result. AD: Alzheimer’s disease, bvFTD: behavioral-

variant frontotemporal dementia, GM: grey matter, HCs: healthy controls, L: left, PD: 

Parkinson’s disease, R: right, WM: working memory.
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Fig. 2. 
Associations between EEG θ oscillations and WM stimulus types. Pearson’s correlations 

between frequency-wise normalized current densities maps computed in the EEG θ 
frequency band, and WM performance (normalized IES) for social and non-social stimulus 

types (P≤ 0.05 FDR-corrected). Analyses were run in all groups together and individually 

per group (HCs, bvFTD, AD and PD). For further details see Table 3 and Table 4. Results 

are plotted in top, front, back, right external, right internal, left external, and left internal 

views of the brain. For results in high (quintets) and low (triplets) load levels see Fig. S3. 

Results were obtained with a demographically matched sample (Table S3.1). Associations 

between source space θ oscillations and WM for (A) social stimuli and (B) non-social 

stimuli. AD: Alzheimer’s disease, bvFTD: behavioral-variant frontotemporal dementia, 

HCs: healthy controls, IES: inverse efficiency score, PD: Parkinson’s disease.
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Fig. 3. 
Associations between networks and WM. Seed analyses over five networks (SN, EN, DMN, 

VN, MN, P≤0.05 FDR-corrected) were performed to test the association between each 

network’ functional connectivity and WM performance (normalized IES) for social and 

non-social stimuli, and for high (quintets) and low (triplets) load levels. Analyses were run 

in all groups together and individually for HCs, bvFTD, AD and PD (Table 5). (A) Target 

network associations for stimulus type. Associations are plotted between target networks 

(SN, EN and DMN) and WM for social and non-social stimuli. WM for social stimuli was 

significantly linked to the SN in all groups together and in bvFTD. WM for non-social 

stimuli was significantly linked to the EN in all groups together and in AD, and to the 

DMN in all groups together. Black-border squares indicate significant associations. For HC 

and PD non-significant associations see Fig. S4. (B) Correlation matrix for each stimulus 

type. Correlation matrix for social and non-social stimulus type across all groups together 

and individual groups. Black-border squares indicate significant associations. (C) Functional 

connectivity associations for each stimulus type and load level. Circular plots represent all 

functional connectivity correlations between groups (upper semi-circle) and brain networks 
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(lower semi-circles). Links represent significant group-network correlation. They are color-

coded according to the network. High load (quintets) WM significantly correlated to the 

EN in all groups together and in AD. Non-significant results were found across associations 

with low load (for further details see Fig. S4). Results were obtained with a demographically 

matched sample (Table S3.2) and across scanners (Table S3.3). Standard masks (Shirer et 

al., 2012) were used to isolate the voxels involved in each network in MNI anatomical space. 

None of the participants showed head movements greater than 3 mm and/or rotations higher 

than 3° (Table S3.4). AD: Alzheimer’s disease, bvFTD: behavioral-variant frontotemporal 

dementia, DMN: default mode network, EN: executive network, HCs: healthy controls, 

IES: inverse efficiency score, MN: motor network, PD: Parkinson’s disease, SN: salience 

network, VN: visual network, wSDM: weighted Symbolic Dependence Metric.

Legaz et al. Page 30

Neurobiol Dis. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Legaz et al. Page 31

Table 1

Samples’ demographic and neurocognitive data.

HCs (n = 
90)

bvFTD (n 
= 42)

AD (n = 
54)

PD (n = 
59)

Stats Post-hoc comparisons

Demographics

Sex (M:F) 39:51 26:16 22:32 35:24 χ2 = 7.87, P = 0.048* HCs-bvFTD: P = 0.071; HCs-AD: P = 
0.896; HCs-PD: P = 0.081

Age a 71.21 
(6.82)

69.45 (9.67) 74.65 
(5.82)

67.9 
(9.01)

F = 7.69, P < 0.001*, 
ηp2 = 0.08

HCs-bvFTD: P = 0.618; HCs-AD: P = 
0.051; HCs-PD: P = 0.054

Education 13.4 
(3.92)

13.98 (4.61) 11.7 
(4.82)

11.8 (4.7) F = 3.61, P = 0.013*, 
ηp2 = 0.04

HCs-bvFTD: P = 0.899; HCs-AD: P = 
0.120; HCs-PD: P = 0.138

Handedness 
(R:L)

85:1 35:1 50:1 56:2 – –

Cognitive assessment

MoCA a 25.72 
(3.15)

20.69 (4.94) 17.27 
(4.38)

23.33 
(4.44)

F = 50.22, P < 0.001*, 
ηp2 = 0.39

HCs-bvFTD: P < 0.001*; HCs-AD: P 
< 0.001*; HCs-PD: P = 0.003*

IFS a 22.08 
(3.69)

18.81 (5.26) 14.95 
(4.98)

19.21 
(4.85)

F = 27.39, P < 0.001*, 
ηp2 = 0.26

HCs-bvFTD: P = 0.001*; HCs-AD: P 
< 0.001*; HCs-PD: P = 0.001*

Results are presented as mean (SD). The asterisk (*) indicates significant differences with an alpha level of P < 0.05.

a
indicates variables with significant differences (P < 0.05) between neurodegenerative groups, precluding comparisons between them in our target 

measures. Demographic and cognitive data were assessed through ANOVAs and Tukey post-hoc pairwise comparisons –except for sex, which 

was analyzed via Pearson’s chi-squared (χ2) test. Effects sizes were calculated through partial eta (ηp2). AD: Alzheimer’s disease, bvFTD: 
behavioral-variant frontotemporal dementia, HCs: healthy controls, IFS: INECO Frontal Screening, MoCA: Montreal Cognitive Assessment, PD: 
Parkinson’s disease.
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Table 2

Statistical comparison between group * load * stimulus type.

Group-by-type

Stimulus type HCs bvFTD AD PD Stats Post-hoc comparisons

Social − 0.31 
(0.84)

0.23 (0.99) 0.52 (0.97) − 0.05 
(0.93)

F3,240 = 4.99, P = 
0.002*, ηp2 = 
0.06

HCs-bvFTD: P = 0.001* HCs-AD: P < 
0.001* HCs-PD: P = 0.10

Nonsocial − 0.44 
(0.92)

0.35 (0.98) 0.53 (0.96) − 0.19 
(0.95)

HCs-bvFTD: P < 0.001* HCs-AD: P < 
0.001* HCs-PD: P = 0.23

Group-by-load

Load level HCs bvFTD AD PD Stats Post-hoc comparisons

Triplets − 1.04 
(0.76)

− 0.19 (1.04) 0.1 (1.07) − 0.59 
(0.92)

F6,480 = 7.28, P < 
0.001*, ηp2 = 
0.08

HCs-bvFTD: P < 0.001* HCs-AD: P < 
0.001* HCs-PD: P = 0.01*

Quartets − 0.42 
(0.67)

0.21 (0.92) 0.56 (0.89) − 0.26 
(0.83)

HCs-bvFTD: P < 0.001* HCs-AD: P < 
0.001* HCs-PD: P = 0.69

Quintets 0.35 (0.58) 0.85 (0.68) 0.92 (0.72) 0.5 (0.71) HCs-bvFTD: P < 0.001* HCs-AD: P < 
0.001* HCs-PD: P = 0.41

Results are presented as mean (SD). The asterisk (*) indicates significant differences with an alpha level of P < 0.05. Between-group comparison 
on WM performance (normalized inverse efficiency score [IES]) for stimulus type (social, non-social) and load level (triplets, quartets, quintets) 
was assessed through a mixed model ANOVA (type III) and Tukey post-hoc comparisons. Effects sizes were calculated through partial eta 

(ηp2). Results are plotted in Fig. 1C. AD: Alzheimer’s disease, bvFTD: behavioral-variant frontotemporal dementia, HCs: healthy controls, PD: 
Parkinson’s disease.
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Table 3

Associations between EEG θ oscillations and WM for social stimuli.

Regions r P-FDR MNI coordinates BA

x y z

Social

All groups together

 Superior frontal gyrus R − 0.528 0.041 25 35 45 8

 Superior frontal gyrus L − 0.525 0.044 − 10 − 55 40 9

 Middle frontal gyrus R − 0.529 0.041 45 20 50 8

 Middle frontal gyrus L − 0.527 0.042 − 25 45 35 9

 Medial orbital frontal L − 0.527 0.042 − 5 − 65 0 10

 Medial superior frontal gyrus L − 0.527 0.042 − 10 − 60 30 10

 Inferior frontal (pars opercularis) R − 0.527 0.042 50 20 40 8

 Anterior cingulum L − 0.527 0.042 − 10 35 30 8

 Middle cingulum L − 0.527 0.042 − 5 − 20 35 8

HCs

 Superior frontal gyrus R − 0.556 0.044 20 − 10 − 60 6

 Superior frontal gyrus L − 0.551 0.046 − 25 10 60 6

 Middle frontal gyrus L − 0.551 0.046 − 25 − 15 − 50 6

 Supplementary motor area R − 0.558 0.041 5 − 25 60 6

 Supplementary motor area L − 0.583 0.045 − 15 − 15 60 6

 Precentral gyrus L − 0.589 0.041 − 25 − 20 60 6

 Parahippocampal gyrus L − 0.601 0.039 − 20 − 25 − 20 36

 Middle cingulum L − 0.589 0.041 − 10 − 25 50 6

 Paracentral lobe R − 0.556 0.044 5 − 25 65 4

 Paracentral lobe L − 0.600 0.039 − 15 − 30 60 4

 Postcentral gyrus L − 0.597 0.040 − 20 − 30 55 1

 Precuneus L − 0.641 0.035 − 15 − 35 60 7

 Superior parietal lobe L − 0.553 0.045 − 20 − 40 65 1

BvFTD

 Cuneus L 0.707 0.029 − 15 − 75 20 18

 Calcarine fissure L 0.722 0.027 − 20 − 70 20 19

 Fusiform gyrus L 0.729 0.027 − 25 − 75 20 19

 Superior occipital gyrus L 0.728 0.027 − 20 − 75 20 19

 Middle occipital gyrus L 0.709 0.029 − 30 − 80 20 19

 Fusiform gyrus L 0.727 0.027 − 20 − 80 20 18

 Lingual gyrus L 0.699 0.030 − 15 − 85 15 18

AD

 Supramarginal gyrus L − 0.550 0.044 − 65 − 45 30 39

 Inferior parietal lobe L − 0.541 0.044 − 60 − 50 40 40

 Angular gyrus L − 0.532 0.045 − 60 − 55 35 40

PD
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Regions r P-FDR MNI coordinates BA

x y z

 Inferior frontal (pars triangularis) R − 0.792 0.021 40 35 15 46

 Medial superior frontal gyrus R − 0.778 0.022 5 30 40 6

 Superior frontal gyrus R − 0.815 0.019 20 30 30 9

 Middle frontal gyrus R − 0.805 0.019 35 25 35 9

 Inferior frontal (pars opercularis) R − 0.810 0.019 35 20 35 9

 Insula R − 0.799 0.021 30 20 15 45

 Anterior cingulum R − 0.840 0.016 5 10 30 24

 Anterior cingulum L − 0.837 0.017 − 5 10 25 24

 Middle cingulum R − 0.832 0.017 5 10 25 32

 Middle cingulum L − 0.796 0.020 − 5 10 35 32

 Supplementary motor area R 0.789 0.021 15 5 45 6

Pearson correlations (P ≤ 0.05 FDR-corrected) were performed to test the association between normalized current density maps in the EEG 
θ frequency band and WM performance (normalized inverse efficiency score [IES]), for social stimulus type. Analyses were run in all 
groups together and individually per group (HCs, bvFTD, AD and PD). Results are plotted in Fig. 2.A. These results were obtained with a 
demographically matched sample (see Table S3.1). AD: Alzheimer’s disease, BA: Brodmann area, bvFTD: behavioral-variant frontotemporal 
dementia, HCs: healthy controls, PD: Parkinson’s disease.
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Table 4

Associations between EEG θ oscillations and WM for non-social stimuli.

Regions r P-FDR MNI coordinates BA

x y z

Non-social

All groups together

 Superior frontal gyrus R − 0.525 0.044 30 5 65 6

 Middle frontal gyrus R − 0.527 0.042 45 10 55 8

 Precentral gyrus R − 0.525 0.044 45 − 5 60 6

HCs

 Superior frontal gyrus R − 0.672 0.032 3 51 8 6

 Frontal inferior operc. R − 0.626 0.037 35 15 35 8

 Middle frontal gyrus R − 0.685 0.031 25 15 50 8

 Middle cingulum R − 0.641 0.035 15 10 40 8

 Supplementary motor area R − 0.656 0.034 15 5 45 6

 Precentral gyrus R − 0.660 0.034 30 − 5 50 6

BvFTD

 Calcarine fissure L 0.623 0.037 − 10 − 100 − 10 18

 Lingual gyrus L 0.671 0.032 − 10 − 100 − 15 18

AD

 Rolandic operculum R 0.552 0.045 50 5 0 44

 Insula R 0.558 0.044 40 5 − 10 13

 Inferior temporal gyrus R 0.567 0.043 35 5 − 45 38

 Caudate R 0.565 0.043 35 5 − 15 38

 Fusiform gyrus R 0.575 0.042 25 5 − 45 38

 Middle temporal pole R 0.567 0.042 25 5 − 35 36

 Superior temporal pole R 0.572 0.041 25 5 − 20 34

 Amygdala R 0.577 0.041 20 0 − 15 38

 Parahippocampal gyrus R 0.572 0.041 15 0 − 15 36

 Postcentral gyrus R − 0.553 0.045 65 − 5 15 4

 Superior temporal gyrus R − 0.563 0.043 65 − 5 0 21

 Superior temporal gyrus L − 0.579 0.041 − 55 − 45 20 22

 Hippocampus R 0.570 0.042 15 − 5 − 15 28

 Middle frontal gyrus L − 0.551 0.045 − 25 − 15 − 50 6

 Inferior parietal lobe L − 0.616 0.038 − 60 − 50 40 39

 Supramarginal gyrus L − 0.627 0.037 − 60 − 50 − 35 39

 Middle temporal gyrus L − 0.579 0.041 − 50 − 50 20 39

 Angular gyrus L − 0.616 0.038 − 60 − 55 35 39

PD

 Medial superior frontal gyrus R − 0.621 0.038 5 40 55 8

 Superior frontal gyrus R − 0.606 0.039 15 30 60 6

 Supplementary motor area R − 0.600 0.039 10 25 60 6
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Pearson correlations (P ≤ 0.05 FDR-corrected) were performed to test the association between normalized current density maps in the EEG θ 
frequency band and WM performance (normalized inverse efficiency score [IES]), for non-social stimulus type. Analyses were run in all groups 
together and individually per group (HCs, bvFTD, AD and PD). Results are plotted in Fig. 2.B. These results were obtained with a demographically 
matched sample (see Table S3.1). AD: Alzheimer’s disease, BA: Brodmann area, bvFTD: behavioral-variant frontotemporal dementia, HCs: 
healthy controls, PD: Parkinson’s disease.
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