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Abstract 25 

Loeys-Dietz syndrome (LDS) is an aneurysm disorder caused by mutations that decrease 26 

transforming growth factor-β (TGF-β) signaling. Although aneurysms develop throughout the 27 

arterial tree, the aortic root is a site of heightened risk. To identify molecular determinants of this 28 

vulnerability, we investigated the heterogeneity of vascular smooth muscle cells (VSMCs) in the 29 

aorta of Tgfbr1M318R/+ LDS mice by single cell and spatial transcriptomics. Reduced expression 30 

of components of the extracellular matrix-receptor apparatus and upregulation of stress and 31 

inflammatory pathways were observed in all LDS VSMCs. However, regardless of genotype, a 32 

subset of Gata4-expressing VSMCs predominantly located in the aortic root intrinsically 33 

displayed a less differentiated, proinflammatory profile. A similar population was also identified 34 

among aortic VSMCs in a human scRNAseq dataset. Postnatal VSMC-specific Gata4 deletion 35 

reduced aortic root dilation in LDS mice, suggesting that this factor sensitizes the aortic root to 36 

the effects of impaired TGF-β signaling. 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 
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Thoracic aortic aneurysms are localized vascular dilations that increase the risk of fatal 45 

dissections and/or rupture of the vessel wall1. Effective medical therapies to prevent life-46 

threatening aortic events remain elusive2. Loeys-Dietz syndrome (LDS) is a hereditary 47 

connective tissue disorder that presents with highly penetrant aortic aneurysms3,4. LDS is caused 48 

by heterozygous, loss-of-function mutations in positive effectors of the TGF-β signaling 49 

pathway, including receptors (TGFBR1, TGFBR2), ligands (TGFB2, TGFB3) and intracellular 50 

signaling mediators (SMAD2, SMAD3)5-9. All of these mutations result in reduced 51 

phosphorylation/activation of Smad2 and Smad3, leading to defective Smad-dependent 52 

transcriptional regulation. Secondary compensatory mechanisms, including upregulation of 53 

Angiotensin II Type I Receptor (AT1R) signaling, and increased expression of TGF-β ligands 54 

and Smad proteins, ultimately elevate levels of Smad2/Smad3 activity at diseased aortic sites, 55 

with outcomes ranging from adaptive to maladaptive depending on disease progression and 56 

cellular context5,7,10-13. While LDS-causing mutations heighten aneurysm risk in all arteries, the 57 

aortic root is especially vulnerable to disease14-17. Several laboratories have highlighted how the 58 

cellular composition and/or the mechanical stresses may contribute to the increased risk of 59 

disease in this location, however, the molecular determinants of this susceptibility remain 60 

unclear13,18-22. Additionally, VSMCs are the primary cellular component of the aortic wall, but 61 

the heterogeneity of VSMCs within the aorta and its implications for aneurysm are not fully 62 

understood. In this study, we investigate the transcriptional heterogeneity of VSMCs in the 63 

normal and diseased murine aorta leveraging both scRNAseq and spatial transcriptomics. We 64 

identify Gata4 as a regional factor whose expression is intrinsically elevated in the aortic root 65 

and further upregulated in LDS samples. We also show that postnatal deletion of Gata4 in 66 

VSMCs ameliorates aortic root dilation in a murine model of LDS harboring a Tgfbr1M318R/+ 67 

genotype. 68 

 69 

Results 70 

Tgfbr1M318R/+ VSMCs downregulate extracellular matrix components, focal adhesions, and 71 

integrin receptors, and upregulate transcripts related to stress and inflammatory 72 

pathways. 73 

LDS mouse models expressing a heterozygous missense mutation in Tgfbr1 (Tgfbr1M318R/+) 74 

develop highly penetrant aortic root aneurysms11,13. To assess transcriptomic changes associated 75 

with vascular pathology in this model, we performed single cell RNA sequencing (scRNAseq) 76 

on the aortic root and ascending aorta of control (Tgfbr1+/+) and LDS mice at 16 weeks of age, 77 

resulting in the identification of all of the expected cell types according to well-established 78 

expression profiles23 (Fig. 1A, B and Supplemental Fig. 1). In consideration of the critical role of 79 

VSMCs in the pathogenesis of aortic aneurysm24,25, we focused the downstream analysis of 80 

LDS-driven transcriptional alterations on this cell type (Supplemental Table 1). Using the 81 

Cytoscape26 ClueGO27 plug-in to leverage gene set enrichment information from multiple 82 

databases, we produced a network of functionally related terms and pathways that are 83 

differentially enriched among downregulated and upregulated transcripts. (Fig. 1C, D and 84 

Supplemental Table 2). The Tgfbr1M318R/+ LDS mutation caused broad downregulation of 85 

transcripts related to the maintenance of extracellular matrix-receptor interactions, and integrity 86 

of the elastic and contractile function of the aortic wall (Fig. 1C, D, E and Supplemental Table 87 

2). Concurrently, pathways involved in cellular stress responses, inflammation, senescence, and 88 

cell death were enriched among transcripts upregulated in Tgfbr1M318R/+ VSMCs (Fig. 1C, D, E 89 

and Supplemental Table 2). Additional analysis of transcription factor target databases 90 



(ENCODE28 and Chromatin Immunoprecipitation Enrichment Analysis (ChEA) via EnrichR29-32) 91 

showed that LDS-downregulated transcripts were enriched in targets of NFE2L2 (nuclear factor 92 

erythroid 2-related factor 2, also known as Nrf2), a transcription factor that activates expression 93 

of cytoprotective genes and suppresses expression of proinflammatory mediators33-35 (Fig. 1F 94 

and Supplemental Table 2). Targets of the upstream stimulatory factor (USF) family, which can 95 

modulate the expression of smooth muscle specific genes were also enriched among 96 

downregulated transcripts36-39 (Fig. 1F and Supplemental Table 2).  Conversely, target genes for 97 

GATA transcription factors and CCAAT enhancer binding protein delta (CEBPD), a positive 98 

transcriptional regulator of inflammatory responses mediated by interleukin-1 (IL-1) and IL-640-99 
43, were enriched among transcripts upregulated in LDS VSMCs (Fig. 1G and Supplemental 100 

Table 2). 101 

 102 

Spatial transcriptomic analysis of the murine aorta reveals region- and disease-specific 103 

patterns of expression for modulators of VSMC phenotypes. 104 

Given the regional vulnerability observed in LDS aortas, we leveraged insight gained from the 105 

literature and scRNAseq analysis of the aorta of control and Tgfbr1M318R/+ mice to design a 106 

custom panel for high throughput in situ hybridization using the Multiplexed error-robust 107 

fluorescence in situ hybridization (MERFISH) spatial transcriptomics platform (Supplemental 108 

Table 3). Analysis of a longitudinal section of the proximal aorta of 16-week-old control and 109 

LDS mice showed regionally defined expression of several transcripts involved in the 110 

modulation of vascular phenotypes (Fig. 2 and Supplemental Fig. 2). Transcripts more highly 111 

detected in the aortic root of LDS mice relative to the ascending aorta included Agtr1a, which 112 

codes for angiotensin II receptor type 1a, a known contributor to LDS pathogenesis, and Gata4, 113 

which codes for a transcription factor known to positively regulate Agtr1a expression in the 114 

heart44,45. CCAAT enhancer binding protein beta (Cebpb), a pro-inflammatory mediator46, and 115 

maternally expressed gene 3 (Meg3), a long non-coding RNA (lncRNA) that negatively regulates 116 

TGF-β signaling and promotes VSMC proliferation47-50, were also enriched in this region. In 117 

contrast, expression of cardiac mesoderm enhancer-associated noncoding RNA (Carmn), a 118 

positive regulator of VSMC contractile function that is downregulated in vascular disease, and 119 

expression of Myh11, a marker of differentiated VSMCs, was enriched in the distal ascending 120 

aorta, a region that is only mildly affected in LDS mouse models49,51-53. 121 

 122 

Expression of cluster-defining transcripts for the VSMC2 and VSMC1 subclusters 123 

correlates with the proximal-to-distal axis of the mouse and human aorta. 124 

To examine if the spatial VSMC heterogeneity observed with MERFISH could be captured by 125 

scRNAseq, we increased the clustering resolution for VSMCs, thus obtaining two subclusters, 126 

VSMC1 and VSMC2. We then examined these two VSMC subclusters for expression of 127 

transcripts our laboratory has previously shown to progressively increase (i.e. Tes and Ptprz1) 128 

and decrease (i.e. Enpep and Notch3) along the proximal-to-distal axis in the mouse ascending 129 

aorta54. VSMC1 and VSMC2 showed increased expression of transcripts whose expression is 130 

intrinsically enriched in the ascending aorta and the aortic root, respectively54 (Fig. 3A, B and 131 

Supplemental Table 4). Gata4 was also noted among the transcripts that defined the VSMC2 132 

subcluster and whose expression was highest in the aortic root, progressively diminishing along 133 

the proximal-to-distal axis in the ascending aorta (Fig. 3C). Considering previous work 134 

highlighting how cell lineage modulates the effect of LDS-causing mutations13,55-57, we explored 135 

the relationship between the VSMC2 and VSMC1 subclusters to the secondary heart field 136 



(SHF)- and cardiac neural crest (CNC)-lineage of origin (Supplemental Fig. 3). We found that 137 

VSMCs lineage-traced with a fluorescent reporter identifying CNC-derived cells were over-138 

represented in the VSMC1 subcluster (Supplemental Fig. 3A). However, re-analysis of a 139 

previously published dataset of SHF- and CNC-traced VSMCs (Supplemental Table 5) showed 140 

that VSMC1 and VSMC2 were not defined by lineage of origin, with VSMCs of both lineages 141 

found in either VSMC sub-cluster58 (Supplemental Fig. 3B). Nevertheless, as would be expected 142 

based on the known proximal-to-distal distribution of SHF- and CNC-derived VSMCs, there was 143 

overlap between VSMC2-defining and SHF-enriched transcripts (Supplemental Fig. 3B, C and 144 

Supplemental Table 4 and 5). To assess if the VSMC substructure identified in murine models 145 

was relevant in the context of human aortic disease, we also re-analyzed a recently published 146 

scRNAseq dataset of aortic tissue from LDS patients and donor aortas in which the ascending 147 

aorta and aortic root were separately sequenced (Fig. 3D and Supplemental Fig. 4)59. 148 

Subpopulations of VSMCs expressing cluster-defining transcripts analogous to those found in 149 

VSMC1 and VSMC2 in mouse aortas could be identified in the human dataset (Fig. 3D and 150 

Supplemental Table 6). Although both VSMC1 and VSMC2 were present in human aortic root 151 

and ascending aorta, GATA4 expression was highest in the VSMC2 cluster from the aortic root, 152 

with no detectable expression in the ascending aorta (Fig. 3D). 153 

 154 

Gata4-expressing VSMC2 are intrinsically “poised” towards a less-differentiated, 155 

maladaptive proinflammatory transcriptional signature.  156 

To examine the biological features of VSMC1 and VSMC2, and whether they were  157 

recapitulated in both murine and patient-derived LDS VSMCs, we used the Coordinated Gene 158 

Activity in Pattern Sets (CoGAPS) algorithm to identify latent patterns of coordinated gene 159 

expression in the Tgfbr1M318R/+ VSMC mouse dataset60,61. Two patterns, transcriptional patterns 4 160 

and 5, were found to be enriched in the VSMC2 and VSMC1 subclusters, respectively, in the 161 

Tgfbr1M318R/+ VSMC mouse dataset (Fig. 3E, G, Supplemental Table 4). These same patterns were 162 

then projected onto the scRNAseq data of VSMCs from the aorta of LDS patients using 163 

ProjectR62, revealing a similar enrichment of pattern 4 in VSMC2 and pattern 5 in VSMC1 (Fig. 164 

3E-H, Supplemental Table 4). 165 

 166 

As previously observed for transcripts upregulated in Tgfbr1M318R/+ LDS VSMCs, Pattern 4-167 

associated transcripts were enriched for transcriptional targets of GATA family members 168 

(ENCODE28 and ChEA dataset, analyzed with EnrichR29-32, Fig. 3I). Differential gene set 169 

enrichment analysis using ClueGO27 to compare cluster-defining transcripts for VSMC1 and 170 

VSMC2 also showed that, in both mouse and human datasets, VSMC2-defining transcripts were 171 

enriched for pathways involved in inflammation, senescence, and cellular stress (Fig. 3J and 172 

Supplemental Table 7 and Table 8). In contrast, VSMC1 expressed higher levels of transcripts 173 

related to extracellular matrix-receptor interactions and contractile function (Fig. 3J, 174 

Supplemental Fig. 4 and Supplemental Table 7 and Table 8). Network visualization of molecular 175 

signatures database (MSigDB) VSMC2-enriched pathways shared by both mouse and human 176 

samples (probed with EnrichR30-32,63,64) (Supplemental Fig. 5A), and biological terms with 177 

shared ClueGO grouping (Fig. 3J and Supplemental Table 7 and Table 8), highlighted the 178 

biological connections between these pathways and genes over-expressed in VSMC2 relative to 179 

VSMC1 (i.e. Cxcl165-68, Irf169-71, Thbs172, Gata473) (Supplemental Fig. 5B).  Overall, in both 180 

mouse and human samples, the transcriptional profile of VSMC2 relative to VSMC1 resembled 181 

that of less-differentiated VSMCs and included lower expression of Myh11, Cnn1, and Tet2, and 182 



higher expression of transcripts associated with non-contractile VSMC phenotypes, including 183 

Klf4, Olfm2, Sox9, Tcf21, Malat1, Twist1, and Dcn74-79.  184 

 185 

Gata4 is upregulated in the aortic root of Tgfbr1M318R/+ LDS mice. 186 

Based on the analysis described above, and its known role in driving the upregulation of 187 

pathways previously involved in aneurysm progression44,73,80, Gata4 emerged as a potential 188 

molecular determinant of increased risk of dilation of the aortic root in LDS. Although levels of 189 

Gata4 mRNA are intrinsically higher in the aortic root relative to the ascending aorta even in 190 

control mice (Fig. 3C), its expression was further upregulated in VSMCs in the LDS aorta, as 191 

assessed both by scRNAseq (Supplemental Table 1) and RNA in situ hybridization (Fig. 4A). 192 

Given that levels of Gata4 protein are highly regulated at the post-transcriptional level through 193 

targeted degradation73,81,82, we also examined levels of Gata4 protein in control and LDS aortic 194 

samples, and found that protein levels are increased in LDS aortic root, both by 195 

immunofluorescence and immunoblot assays (Fig. 4B, C and Fig. 5).  196 

 197 

Postnatal deletion of Gata4 in smooth muscle cells reduces aortic root dilation in LDS mice 198 

in association with reduced levels of Agtr1a and other proinflammatory mediators. 199 

To assess whether increased Gata4 levels in aortic root of LDS mouse models promoted dilation 200 

in this location, we crossed conditional Gata4flox/flox mice83 to LDS mice also expressing a 201 

transgenic, tamoxifen-inducible Cre recombinase under the control of a VSMC specific promoter 202 

(Myh11-CreER)84, and administered tamoxifen at 6 weeks of age to ablate expression of Gata4 in 203 

VSMCs (Fig. 5). VSMC-specific postnatal deletion of Gata4 in LDS mice (Tgfbr1M318R/+; 204 

Gata4SMcKO) resulted in a reduced rate of aortic root dilation relative to control LDS animals 205 

(Tgfbr1M318R/+; Gata4Ctrl) (Fig. 6A), and amelioration of aortic root medial architecture relative to 206 

control LDS aortas at 16 weeks of age (Fig. 6B). No significant dilation was observed in the 207 

ascending aorta of Tgfbr1M318R/+ mice at 16 weeks of age, and Gata4 deletion had no effect on 208 

the diameter of this aortic segment (Supplemental Fig. 6). Gata4 deletion in VSMCs also did not 209 

associate with changes in blood pressure (Supplemental Fig. 7).  210 

 211 

Previous work has shown that Gata4 binds to the Agtr1a promoter inducing its expression in 212 

heart tissue44,45, and that Agtr1a is transcriptionally upregulated in the aortic root of LDS mice, 213 

resulting in up-regulation of AT1R, which exacerbates LDS vascular pathology11,13,45. 214 

Accordingly, Gata4 deletion associated with reduced expression of Agtr1a in the aortic root of 215 

LDS mice (Fig. 7). Similarly, deletion of Gata4 reduced expression of Cebpd and Cebpb (Fig. 8 216 

and Supplemental Fig. 8), which code for proinflammatory transcription factors regulated by 217 

and/or interacting with Gata4 in other contexts43,46,85,86, which were highly expressed in VSMC2 218 

relative to VSMC1, and further upregulated in the presence of LDS mutations (Fig. 1, Fig. 2, 219 

Supplemental Table 1, Supplemental Table 7).  220 

 221 

Discussion   222 

LDS is a hereditary connective tissue disorder characterized by skeletal, craniofacial, cutaneous, 223 

immunological, and vascular manifestations, including a high risk for aggressive arterial 224 

aneurysms4. It is caused by mutations that impair the signaling output of the TGF-β pathway, 225 

leading to defective transcriptional regulation of its target genes5-9. Although loss-of-signaling 226 

initiates vascular pathology, compensatory upregulation of positive modulators of the pathway 227 

results in a “paradoxical” increase in activation of TGF-β signaling mediators (i.e 228 



phosphorylated Smad2 and Smad3) and increased expression of target genes in diseased aortic 229 

tissue of both LDS patients and mouse models5,7,10-13. This secondary upregulation depends, in 230 

part, on increased activation of angiotensin II signaling via AT1R, which positively modulates 231 

the expression of TGF-β ligands and TGF-β receptors87. Whereas upregulation of the TGF-β 232 

pathway can have both adaptive and maladaptive consequences depending on disease stage and 233 

cellular context13,54,88-95, upregulation of AT1R signaling has consistently been shown to be 234 

detrimental to vascular health, and both pharmacological (i.e. with angiotensin receptor blockers)  235 

and genetic antagonism of this pathway ameliorates vascular pathology in LDS mouse 236 

models87,96-99. 237 

 238 

Even though LDS-causing mutations confer an increased risk of disease across all arterial 239 

segments, the aortic root is one of the sites that is particularly susceptible to aneurysm 240 

development14-17. In this study, we leveraged scRNAseq in conjunction with spatial 241 

transcriptomics to investigate the heterogeneity of VSMCs in an LDS mouse model, with the 242 

ultimate goal of identifying regional mediators that may drive upregulation of pro-pathogenic 243 

signaling in this region. We identify distinct subpopulations of VSMCs characterized by 244 

expression patterns that preferentially map to the ascending aorta (VSMC1) and aortic root 245 

(VSMC2) in mouse aorta. We also show that the regional vulnerability of the aortic root 246 

depends, in part, on higher levels of Gata4 expression in a subset of VSMCs (VSMC2), which is 247 

intrinsically more vulnerable to the effect of an LDS-causing mutation.  248 

 249 

Prior to the advent of single-cell analysis tools, which allow precise and unbiased unraveling of 250 

cellular identity, the ability to investigate VSMC heterogeneity in the proximal aorta was limited 251 

by the availability of experimental approaches to investigate known or expected diversity. In 252 

consideration of the mixed embryological origin of the aortic root and distal ascending aorta, 253 

earlier work thus focused on understanding how the effect of LDS mutations on VSMCs was 254 

modified by the SHF- and CNC lineage of origin. In both mouse models and in iPSCs-derived in 255 

vitro models, signaling defects caused by LDS mutations were found to be more pronounced in 256 

VSMC derived from SHF (or cardiac mesoderm) progenitors relative to CNC-derived 257 

VSMCs13,57.  258 

 259 

Like SHF-derived VSMCs, Gata4-expressing VSMC2 are enriched in the aortic root and are also 260 

more vulnerable to the effects of an LDS-causing mutation. They also express a transcriptional 261 

signature similar to that of SHF-derived VSMCs (Supplemental Fig. 3). Reciprocally, SHF-262 

derived cells are over-represented in the VSMC2 cluster in our dataset (Supplemental Fig. 3). 263 

However, the identity of VSMC2 and VSMC1 is not defined by lineage-of-origin, and SHF- or 264 

CNC-derived origin is only an imperfect approximation of the VSMC heterogeneity that can 265 

now be assessed via scRNAseq.  266 

 267 

Heterogeneity beyond that imposed by lineage-of-origin was also shown by scRNAseq analysis 268 

of the aorta of the Fbn1C1041G/+ Marfan syndrome (MFS) mouse model, which revealed the 269 

existence of an aneurysm-specific population of transcriptionally modified smooth muscle cells 270 

(modSMCs) at a later stage of aneurysmal disease, and which could emerge from modulation of 271 

both SHF- and non-SHF (presumably CNC)-derived progenitors58,100. These cells, which could 272 

also be identified in the aneurysmal tissue derived from the aortic root of MFS patients, showed 273 

a transcriptional signature marked by a gradual upregulation of extracellular matrix genes and 274 



downregulation of VSMC contractile genes58,100. We were not able to identify this population of 275 

modSMCs in the aorta of Tgfbr1M318R/+ LDS mouse models, even though it was shown to exist in 276 

the aorta of LDS patients62. 277 

 278 

Similar to the early effect of Smad3-inactivation, the Tgfbr1M318R/+ LDS mutation caused broad 279 

downregulation of gene programs required for extracellular matrix homeostasis and those 280 

favoring a differentiated VSMC phenotype54 (Fig. 1); conversely, proinflammatory 281 

transcriptional repertoires, with an enrichment in pathways related to cell stress, was observed 282 

among upregulated transcripts. This latter profile likely represents a response to the initial insult 283 

caused by decreased expression of extracellular matrix components whose expression requires 284 

TGF-β/Smad activity98.  285 

 286 

We also noted downregulation of several components of the lysosome, whose function is 287 

required for cellular homeostasis and degradation of protein targets via selective 288 

autophagy33,73,101,102 (Fig. 1). Gata4 levels are regulated via p62-mediated selective autophagy73 289 

and by mechanosensitive proteasome-mediated degradation82,103. The aortic root would be 290 

especially vulnerable to a defect in either of these processes given increased baseline levels of 291 

Gata4 mRNA expression in VSMC2. Increased levels of Gata4 may contribute to vascular 292 

pathogenesis by several potential mechanisms. In other cellular contexts, Gata4 has been shown 293 

to promote induction of the pro-inflammatory senescence-associated secretory phenotype 294 

(SASP) as well as transcription of the lncRNA Malat1, which promotes aneurysm development 295 

in other mouse models78. Gata4 is also a negative regulator of contractile gene expression in 296 

Sertoli and Leydig cells104. Additionally, Gata4 binds the promoter and activates the expression 297 

of Agtr1a44, which is known to drive pro-pathogenic signaling in LDS aorta45. Accordingly, we 298 

find that Gata4 deletion downregulates expression of Agtr1a in the aortic media of LDS mouse 299 

models (Fig. 7).  300 

 301 

Re-analysis of a scRNAseq dataset of human aortic samples from LDS patients, which included 302 

both the aortic root and the ascending aorta, shows that a population of Gata4-expressing VSMC 303 

similar to that found in mice can also be identified in LDS patients. Additionally, patterns of 304 

coordinated gene expression identifying VSMC1 and VSMC2, which were learned from the 305 

scRNAseq analysis of mouse aorta, could be projected onto the human dataset, suggesting that 306 

these two subsets of VSMCs are conserved across species and that the existence of a Gata4-307 

expressing VSMC2 population may underlie increased risk in the aortic root of LDS patients as 308 

well. Assessing the effects of Gata4 deletion at additional postnatal timepoints will be important 309 

to understand the consequences of increased Gata4 and its downstream targets during later stages 310 

of disease. Although direct targeting of Gata4 for therapeutic purposes is unfeasible given its 311 

critical role in the regulation of numerous biological processes in non-vascular tissues105-109, this 312 

work highlights how the investigation of factors that increase or decrease the regional risk of 313 

aneurysm may lead to a better understanding of adaptive and maladaptive pathways activated in 314 

response to a given aneurysm-causing mutations. This knowledge may be leveraged to develop 315 

therapeutic strategies that target the vulnerabilities of specific arterial segments.  316 

 317 

 318 

 319 

 320 



Methods 321 

 322 

Animal Experiments  323 

Study approval  324 

Animal experiments were conducted according to protocols approved by the Johns Hopkins 325 

University School of Medicine Animal Care and Use Committee. 326 

 327 

Mouse models  328 

All mice were maintained in an animal facility with unlimited access to standard chow and water 329 

unless otherwise described. Tgfbr1+/+ and Tgfbr1M318R/+ 11(The Jackson Laboratory, strain 330 

#036511) mice, some bearing the EGFP-L10a110 (The Jackson Laboratory, strain #024750) 331 

conditional tracer allele and a CNC-specific CRE recombinase expressed under the control of 332 

Wnt2 promoter111 (The Jackson Laboratory, strain #003829) were used for scRNAseq as 333 

described below. All mice were maintained on a 129-background strain (Taconic, 129SVE). 334 

Tgfbr1+/+ and Tgfbr1M318R/+ mice were bred to Gata4flox/flox 83(The Jackson Laboratory, strain 335 

#008194) and mice carrying the Myh11-CreER transgene84 (The Jackson Laboratory, strain 336 

#019079). Myh11-CreER is integrated on the Y chromosome therefore only male mice were used 337 

for this set of experiments. Tgfbr1+/+ and Tgfbr1M318R/+ bearing Gata4flox/flox and Myh11-CreER are 338 

referred to as Gata4SMcKO. Tgfbr1+/+ and Tgfbr1M318R/+ bearing Gata4+/+ with or without Myh11-339 

CreER or Gata4flox/flox or Gata4flox/+ without Myh11-CreER are referred to as Gata4Ctrl. All 340 

Gata4SMcKO and Gata4Ctrl mice were injected with 2 mg/day of tamoxifen (Millipore Sigma, 341 

T5648) starting at 6 weeks of age for 5 consecutive days. Mice were genotyped by PCR using 342 

primer sequences described in the original references for these models. Serial echocardiography 343 

was performed using the Visual Sonics Vivo 2100 machine and a 30 MHz probe. As there is 344 

some variability in the onset of aortic dilation in Tgfbr1M318R/+ mice, and starting aortic size will 345 

affect final measurements, aortic root diameter of 1.9 mm and above at baseline (8 weeks of age) 346 

was defined a priori as an exclusion criterion. 347 

 348 

Molecular validation techniques  349 

Aortic Sample Preparation  350 

All mice were euthanized by halothane inhalation at a 4% concentration, 0.2 ml per liter of 351 

container volume (Millipore Sigma, H0150000). As we described previously11,54, the heart and 352 

thoracic aorta were dissected en bloc and fixed in 4% paraformaldehyde (Electron Microscopy 353 

Sciences, 15710) in PBS at 4oC overnight. Samples were subsequently incubated in 70% ethanol 354 

at 4oC overnight prior to embedding in paraffin. Paraffin-embedded tissues were cut into 5 355 

micron sections to expose a longitudinal section of the thoracic aorta. Sections were then stained 356 

with Verhoeff-van Gieson (StatLab, STVGI) to visualize elastic fiber morphology or to assess 357 

protein and RNA abundance by immunofluorescence or fluorescence in situ hybridization.  358 

 359 

Immunofluorescence   360 

Immunofluorescence was performed following a protocol adapted from Cell Signaling 361 

Technology (CST) for formaldehyde-fixed tissues as previously described in detail45, using a 362 

rabbit monoclonal antibody for GATA4 (Cell Signaling Technology, CST36966) and a donkey 363 

anti-rabbit secondary antibody Alexa Fluor 555 (ThermoFisher, A32794). Images were taken 364 

using a Zeiss LSM880 Airyscan FAST confocal microscope at 20× magnification and are 365 

presented as maximal intensity projection. 366 



 367 

RNAscope Fluorescence in situ hybridization  368 

RNA in situ hybridization was performed using the RNAscope Multiplex Fluorescent Reagent 369 

Kit v2 Assay (ACD Biosciences, 323100) according to the manufacturer’s protocol with the 370 

following probes Mm-Gata4 (417881), Mm-Agtr1a (481161), Mm-Cebpd (556661), Mm-Cebpb 371 

(547471). Images were taken using a Zeiss LSM880 Airyscan FAST confocal microscope at 20× 372 

magnification and are presented as maximal intensity projection.  373 

 374 

Immunoblotting  375 

Aortic root tissue was flash-frozen immediately upon dissection and stored at -80oC until protein 376 

extraction. Protein was extracted using Full Moon Lysis Buffer (Full Moon Biosystems, 377 

EXB1000) with added phosphatase and protease inhibitors (MilliporeSigma, 11836170001 and 378 

4906845001) and Full Moon lysis beads (Full Moon Biosystems, LB020) using an MP 379 

Biomedicals FastPrep 24 5G automatic bead homogenizer. After homogenization, the cell debris 380 

was pelleted, and the supernatant was collected. Immunoblot was performed as previously 381 

described in detail54, using a rabbit monoclonal antibody for Gata4 (Cell Signaling Technology, 382 

36966) and a mouse monoclonal antibody for ß-Actin. (Cell Signaling Technology, 8H10D10). 383 

 384 

Transcriptomic Analyses  385 

Single Cell RNA sequencing and analysis  386 

Single cell RNA sequencing was performed as we previously described112. Single cell 387 

suspensions from each mouse were processed separately using the 10x Genomics 3’ v3 platform 388 

and sequenced on an Illumina NovaSeq. A total of 30,704 aortic cells were sequenced from six 389 

female mice. The raw data was processed, aligned to the mouse genome (mm10), and aggregated 390 

using 10x Genomics Cell Ranger V6113. The data were then filtered using the Seurat V5 391 

package112 based on the following criteria: >1000 transcripts detected per cell but <5000, >1500 392 

total molecules detected per cell but <25000, and <20% mitochondrial transcripts per cell. 393 

Filtering reduced this dataset from 30,704 aortic cells to 24,971 cells for further analysis. The 394 

data was then normalized using the function SCTransform v2. As samples were prepared on 395 

multiple days, the data was integrated across batches using reciprocal principal component 396 

analysis (RPCAIntegration). Principal component analysis and uniform manifold approximation 397 

and projection (UMAP) were performed followed by the FindNeighbors and FindClusters 398 

functions. We opted to cluster at a low resolution (0.25) to differentiate aortic cell types and to 399 

identify only major subpopulations of smooth muscle cells that vary by a large number of 400 

differentially expressed genes. FindMarkers was used to identify cluster-defining transcripts and 401 

differentially expression genes between control and diseased cell populations based on a 402 

Wilcoxon rank sum test.  403 

 404 

Re-analysis of human aortic cells from Pedroza et al., 2023 405 

For re-analysis of the ascending aorta and aortic root samples from a recently published 406 

scRNAseq dataset of the donor and LDS patient aortas59 we used the following criteria: > 1000 407 

transcripts detected per cell but< 6000, > 1500 total molecules detected per cell < 30000, and < 408 

20% mitochondrial transcripts per cell.  This reduces this dataset from 58,947 aortic cells to 409 

43,349 for further analysis. We analyzed this dataset as described above with the FindClusters 410 

resolution parameter set to 0.15.  411 

 412 



CoGAPS and ProjectR  413 

CoGAPS60,61 (v3.22), an R package that utilizes non-negative matrix factorization to uncover 414 

latent patterns of coordinated gene expression representative of shared biological functions, was 415 

used to identify transcriptional patterns associated with VSMC subpopulations, with the 416 

npatterns parameter set to 8, in scRNAseq analysis of murine aortas. ProjectR62 (v1.2), an R 417 

package that enables integration and analysis of multiple scRNAseq data sets by identifying 418 

transcriptional patterns shared among datasets, was used to project these patterns into scRNAseq 419 

analysis of the human aortic root and ascending aorta. 420 

 421 

Gene over-representation analyses 422 

ClueGO27 was used for gene over-representation analysis and visualization of enriched 423 

functional terms for transcripts globally dysregulated in all VSMCs as well as VSMC subsets.  424 

Transcripts were filtered based on an adjusted P-value less than 0.05 and an average absolute 425 

Log2 fold change of 0.25 or greater, as well as detection in at least 20 percent of either control or 426 

LDS VSMCs. The resulting list of 502 downregulated and 200 upregulated genes was compared 427 

against five gene ontology databases (MSigDB Hallmark, KEGG, WikiPathways, Bioplanet, and 428 

Reactome). The list of transcripts and ClueGO log files are provided in supplemental material. 429 

Differentially expressed gene lists were also analyzed using the online gene list enrichment 430 

analysis tool EnrichR30-32 (https://maayanlab.cloud/Enrichr/) for pathways using the Molecular 431 

Signatures Database (MSigDB)63,64 and for transcription factors target enrichment using the 432 

ENCODE28 and ChEA29 databases.  433 

 434 

Multiplexed Error-Robust Fluorescence in situ Hybridization (MERFISH) Spatial 435 

Transcriptomics  436 

MERFISH spatial transcriptomics using a custom panel was performed on 5-micron Formalin-437 

Fixed Paraffin-Embedded (FFPE) sections of control and LDS aortas according to 438 

manufacturer’s protocols (MERSCOPE FFPE Tissue Sample Preparation User Guide_Rev B, 439 

Vizgen). Slides were processed and imaged on a MERSCOPE instrument platform according to 440 

the manufacturer’s protocols (MERSCOPE Instrument User Guide Rev G, Vizgen). The raw 441 

images were processed by the instrument software to generate a matrix of spatial genomics 442 

measurements and associated image files that were analyzed using the MERSCOPE visualizer 443 

software.  444 

 445 

Statistics 446 

GraphPad Prism 10.0 was used for data visualization and statistical analysis. Data tested for 447 

normality using the Shapiro-Wilk test and upon verification of normal distribution, analyzed 448 

using the Brown-Forsythe ANOVA test. For echocardiographic and blood pressure 449 

measurements, data are presented as a box and whisker plot with the whiskers indicating the 450 

maximum and minimum values and a horizontal bar indicating the median. All individual data 451 

points are shown as dots. Figures indicating statistical significance include the statistical tests 452 

used in the figure caption.  453 

 454 

Data availability  455 

All single-cell RNA sequencing data, both raw fastq files and aggregated matrixes, will be 456 

available in the gene expression omnibus (GEO) repository under accession number 457 

GSE267204. MERFISH spatial transcriptomics data is available upon request. 458 

https://maayanlab.cloud/Enrichr/
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Figure 1. Downregulation of transcripts associated with extracellular matrix-receptor interactions and upregulation of stress and 

inflammation pathways in Tgfbr1M318R/+ LDS VSMCs. (A) Uniform manifold approximation and projection (UMAP) of aortic cells from 

control (Tgfbr1+/+) and LDS (Tgfbr1M318R/+) mice. (B) Dot plot of cluster defining transcripts used to identify endothelial cells, leukocytes, 

fibroblasts, and VSMCs. Color of the dot represents a scaled average expression while the size indicates the percentage of cells in which 

the transcript was detected. (C) ClueGO gene enrichment analysis network of transcripts dysregulated in LDS VSMCs relative to controls. 

Each node represents a term/pathway or individual genes associated with that term. The color of the node corresponds to the ClueGO 

group to which each node belongs. The size of the node indicates significance of the enrichment calculated by the ClueGO algorithm. (D) 

ClueGO network in which terms differentially enriched among transcripts downregulated in LDS VSMCs are highlighted in blue, while 

those enriched among transcripts upregulated in LDS VSMCs are highlighted in red. (E) Dot plot showing expression of a selection of 

transcripts significantly dysregulated in LDS VSMCs. (F,G) EnrichR gene over-representation analysis for the ENCODE and ChEA 

Consensus transcription factors (TF) databases showing the top three most significant terms associated with transcripts that are 

downregulated (F) or upregulated (G) in LDS VSMCs. 
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Figure 2. MERFISH reveals spatially heterogeneous transcriptional profiles in LDS VSMCs. MER-

FISH images of the proximal aorta of LDS (A) and control (B) mice, scale bar is 1 mm. The first panel 

displays all detected transcripts across the aortic tissue, with key anatomic landmarks indicated. Subse-

quent panels depict the colocalization of Myh11 and transcripts of interest. Insets note regions of the 

ascending aorta and aortic root that are presented at higher magnification.
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Figure 3. Transcriptionally and spatially-defined VSMC subclusters with distinct responses to LDS-caus-

ing mutations can be identified in both murine and human aortas. (A) UMAP of VSMCs from control 

(Tgfbr1+/+) and LDS (Tgfbr1M318R/+) mice shown split by genotype. (B) Dot plot showing enrichment of cluster-de-

fining transcripts in VSMC1 and VSMC2. For a given transcript, the color of the dot represents a scaled average 

expression while the size indicates the percentage of cells in which it was detected. (C) RNA in situ hybridization 

showing the expression of Gata4 along the length of the murine aorta in a 16-week old control animal. (D) UMAP 

of control and LDS VSMCs from human patients and dot plot of cluster defining markers in this dataset split by 

aortic region (Pedroza et al., 2023). (E,F) UMAP overlayed with weights for CoGAPS patterns 4 and 5, in mouse 

and human scRNAseq datasets. (G,H) Violin plots showing the distribution of pattern 4 and 5 weights in VSMC 

subclusters from mouse and human scRNAseq datasets. P-values refer to Wilcoxon test. (I) EnrichR gene 

over-representation analysis for the ENCODE and ChEA Consensus TF databases showing the top four most 

significant terms associated with transcripts that define CoGAPs Patterns 4 and 5. (J) ClueGO network of terms 

differentially enriched in mouse and human LDS VSMC2 relative to VSMC1. Terms highlighted in blue are 

enriched in VSMC1, while those highlighted in red are enriched in VSMC2.
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Figure 5
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Figure 5. Gata4 protein is upregulated in LDS aortic root of Gata4Ctrl and effectively 

ablated in Gata4SMcKO mice. Representative images of immunofluorescence for GATA4 at 16 

weeks of age. Three independent biological replicates are shown per genotype abbreviated as 

follows Control (Tgfbr1+/+) and LDS (Tgfbr1M318R/+) with (Gata4SMcKO) or without (Gata4Ctrl) smooth 

muscle specific deletion of Gata4 Insets identify location shown at higher magnification in 

subsequent panels. Images were acquired at 20x magnification. Scale bars 50 and 200 

microns, respectively.
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Figure 7. Smooth muscle-specific deletion of Gata4 results in reduced expression of Agtr1a. 

Representative images of RNA in situ hybridization for Agtr1a in the aortic root of mice at 16 weeks of 

age.Three independent biological replicates are shown per genotype abbreviated as follows Control 

(Tgfbr1+/+) and LDS (Tgfbr1M318R/+) with (Gata4SMcKO) or without (Gata4Ctrl) smooth muscle specific 

deletion of Gata4. Insets identify location shown at higher magnification in subsequent panels. Images 

were acquired at 20x magnification. Scale bars 50 and 200 microns, respectively.
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Figure 8. Smooth muscle-specific deletion of Gata4 results in reduced expression of 

Cebpb. Representative images of RNA in situ hybridization for Cebpb in the aortic root of mice of 

indicated genotype at 16 weeks of age. Three independent biological replicates are shown per 

genotype abbreviated as follows Control (Tgfbr1+/+) and LDS (Tgfbr1M318R/+) with (Gata4SMcKO) or 

without (Gata4Ctrl) smooth muscle specific deletion of Gata4. Insets identify location shown at 

higher magnification in subsequent panels. Images were acquired at 20x magnification. Scale 

bars 50 and 200 microns, respectively.
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