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ABSTRACT

Intrinsically disordered regions (IDRs) are critical for cellular function yet often appear to lack
sequence conservation when assessed by multiple sequence alignments. This raises the question of if
and how function can be encoded and preserved in these regions despite massive sequence variation.
To address this question, we have applied coarse-grained molecular dynamics simulations to
investigate non-specific RNA binding of coronavirus nucleocapsid proteins. Coronavirus
nucleocapsid proteins consist of multiple interspersed disordered and folded domains that bind
RNA. Here, we focus on the first two domains of coronavirus nucleocapsid proteins: the disordered
N-terminal domain (NTD) and the folded RNA binding domain (RBD). While the NTD is highly
variable across evolution, the RBD is structurally conserved. This combination makes the
NTD-RBD a convenient model system for exploring the interplay between an IDR adjacent to a
folded domain and how changes in IDR sequence can influence molecular recognition of a partner.
Our results reveal a surprising degree of sequence-specificity encoded by both the composition and
the precise order of the amino acids in the NTD. The presence of an NTD can – depending on the
sequence – either suppress or enhance RNA binding. Despite this sensitivity, large-scale variation in
NTD sequences is possible while certain sequence features are retained. Consequently, a
conformationally-conserved dynamic and disordered RNA:protein complex is found across
nucleocapsid protein orthologs despite large-scale changes in both NTD sequence and RBD surface
chemistry. Taken together, these insights shed light on the ability of disordered regions to preserve
functional characteristics despite their sequence variability.
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Introduction

The classical structure-function paradigm states that sequence dictates structure, and structure
dictates function 1. This understanding has driven extensive study of protein structure and dynamics.
Understanding the 3D structures that proteins adopt provides insight into their normal function. It
also allows us to interpret how and why mutations that disrupt those structures and/or dynamics
impair function 2–4. However, in recent years, there has been a growing focus on understanding if
and how disordered regions can contribute to cellular function 5–9. Intrinsically disordered regions
(IDRs) are poorly described by a single 3D structure; instead, they exist as a collection of structurally
distinct interconverting conformations known as an ensemble 9–11. Despite lacking a defined 3D
structure, IDRs play critical roles in many aspects of cellular function 9. Consequently, emerging
work suggests that just as folded domains follow a sequence-structure-function relationship, IDRs
can follow an analogous sequence-ensemble-function relationship 9,12,13. Given the importance that
structure-function analysis has played in understanding the molecular basis for cellular function,
there is a promising and analogous opportunity to understand IDR function through the lens of
ensembles 9,14–18.

A major goal of modern molecular biology is to accurately predict protein function directly from
amino acid sequence. Rooted in the general assumption that similar protein sequences will exhibit
similar molecular behavior, one strategy is to compare the sequence of a protein of interest to those
of other known proteins 19–22. In many cases, multiple sequence alignment of orthologous folded
domains reveals high sequence conservation and, therefore, conserved protein function 19,23,24. This
relationship enables us to predict structures of previously unsolved protein structures and infer
function by aligning the sequences of an uncharacterized protein against sequences of
functionally-characterized folded domains 25–28. In sum, applying evolutionary information, directly
and indirectly, is a central pillar in our modern toolkit for protein sequence analysis.

While IDR sequences can be aligned, their conservation at the residue level is typically lower than
their structured counterparts 29–31. However, even without strict sequence conservation, the presence
of disordered regions in a protein is often conserved across orthologs 14,15,31–34. Assuming
orthologous proteins provide equivalent functions, this presents a question: "Can apparently
divergent IDRs confer the same molecular functions?". For some IDRs, the only feature that
matters may be the existence of Short Linear Motifs (SLiMs), such that a large IDR may appear
poorly conserved, yet functional conservation is maintained as long as a few short (5-15 residue)
regions are present 35–37. More recent work has shown that retaining specific physicochemical
properties in disordered regions can be sufficient to preserve function 14,15,29,31–34,38–42. Ultimately, the
absence of a specific 3D structure serves to loosen the relationship between sequence and function.

Viruses provide good test systems for exploring evolutionary conservation in IDRs. Eukaryotic
viruses use IDRs extensively, and their rapid evolutionary rates – driven by a combination of fast
replication times, massive numbers, and strong fitness selection – mean that even between serotypes
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of the same virus, substantial divergence in IDRs is often observed 43–48. For viruses that infect the
same host, it is reasonable to expect equivalent selective pressures and equivalent protein function.
As such, viral IDRs offer a convenient opportunity to explore how large-scale variation in IDR
sequence enables similar functional output.

In this work, we investigated the relationship between IDR sequence and RNA interaction by
performing coarse-grained molecular dynamics simulations of coronavirus Nucleocapsid (N)
proteins 49,50. Coronaviruses are positive-sense single-stranded RNA viruses with relatively large (~30
Kb) genomes 50–53. They typically consist of four major structural proteins: spike (S), envelope (E),
membrane (M), and the N protein. The N protein is the most abundant viral protein and drives
genomic RNA condensation and packaging during virion assembly, but has also been implicated in
the evasion of the host immune system 54–57. Given its abundance and importance, the N protein is a
tractable model system for exploring variation in sequence and function.

Coronavirus N proteins consist of five domains: two folded domains (the RNA Binding Domain
[RBD] and dimerization domain) and three IDRs (the N-Terminal Domain [NTD], linker, and
C-Terminal Domain [CTD]) (Fig. 1A) 58. Our prior work systematically characterized full-length
SARS-CoV-2 (SCO2) N protein using a combination of all-atom simulations, single-molecule
Förster Resonance Energy Transfer (smFRET) spectroscopy, and nanosecond Fluorescence
Correlation Spectroscopy (ns-FCS) 55. This work confirmed the disordered nature of the three IDRs
and characterized their ensemble behavior in the context of the full-length protein. Importantly, this
work revealed minimal interaction between the NTD-RBD and the remainder of the protein.

Given the relatively autonomous behavior of the NTD-RBD domains compared to the rest of the
protein, our more recent experimental and computational work focussed on assessing the interaction
of a minimal NTD-RBD construct with RNA 57. While the RBD alone binds (rU)25 with a binding
affinity of ~0.6 µM-1, the addition of the NTD enhances this affinity around 30-fold. This work also
established our ability to obtain near quantitative agreement between coarse-grained molecular
dynamics simulations and single-molecule RNA binding experiments in the context of non-specific
binding across a range of RNA lengths and in response to small perturbations in the NTD sequence.
While we cannot exclude other potential roles for the NTD, our work to date suggests that one of its
functions is to enhance N-protein:RNA interactions, presumably to facilitate genome packaging.
Despite our prior progress, many questions regarding the molecular details surrounding
NTD-RBD:RNA interaction remain.

While the NTD is highly variable in sequence and length across N protein orthologs, a disordered
NTD of some type is always present (Fig. 1B) 55. In contrast, the RBD is extremely structurally
conserved among orthologs, exhibiting a characteristic right-handed fist structure. This is formed by
a four-strand antiparallel β-fold core and a protruding β-hairpin, which we refer to as the β3
extension 59. Despite this structural conservation, RBD sequences vary across coronaviruses, leading
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to changes in surface chemistry (Fig. 1C). As such, despite its pivotal role in coronavirus replication,
N protein NTD-RBD sequences vary substantially across different coronaviruses.

Figure 1. Coronavirus nucleocapsid proteins possess a disordered, poorly-conserved N-terminal
domain (NTD) and a more well-conserved folded RNA binding domain (RBD). A. Schematic
showing full-length nucleocapsid protein architectures from coronaviruses. The nucleocapsid protein contains
three IDRs (NTD, Linker, CTD) and two folded domains (RBD, and Dimerization domains). B. Per-residue
conservation calculated over 45 orthologous NTD-RBD constructs, including SCO2, MERS, OC43, HKU1,
229E, and MHV1. Conservation is calculated based on the positional Shannon entropy, with values shown
only for residues where 80% or more of orthologs possess a residue. The NTD contains many gaps in a
relatively poor alignment, while the RBD is almost uniformly populated with relatively highly conserved
residues. Disorder propensity is calculated using metapredict. C. Overlay of RBD structures for SCO2,
MERS, OC43, HKU1, 229E, and MHV1, revealing a high degree of structural conservation in the RBD fold.
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D. (Coulomb potential scale in kcal·mol-1·e-1) Surface charge properties of the six RBD structures overlaid in
panel C, highlighting differences in surface charge properties despite the conservation of the overall fold.

Given the structurally similar RBDs but differing NTDs, we wondered whether different
coronavirus NTD-RBDs bind single-stranded RNA (ssRNA) in the same way or whether they have
distinct modes of interaction. Naively, given the large variation in NTD sequence, one might expect
fundamentally different modes of recognition. However, recent work has shown that the
conservation of IDR ensemble properties is possible despite large changes in IDR sequence 14,60,61.
More broadly, the molecular basis for how the NTD provides a 30-fold increase in binding affinity
remains unclear, especially given the NTD-RBD binds RNA almost 60-fold more tightly than the
NTD in isolation 57.

To address these questions, we performed coarse-grained molecular dynamics (MD) simulations of
NTD-RBD constructs with poly-(rU)25 to assess how changes in NTD sequence influence RNA
binding. Using this approach, we sought to understand how the sequence properties of an RNA
binding domain and flanking disordered region enable them to cooperate to bind nucleic acids and
achieve specific binding affinities. Our findings demonstrate that the ability of the SCO2
nucleocapsid protein NTD to potentiate ssRNA binding is determined by a combination of
sequence composition and the relative positioning of positively charged amino acids. Our work
supports a model in which the NTD and RBD are two halves of a single RNA binding domain,
where the two halves make up either side of a conserved RNA binding groove. The disordered
nature of the NTD substantially relaxes evolutionary constraints on the NTD, allowing many
different sequences to form structurally equivalent bound-state conformations. We suggest that such
bi-partite binding domains – made up of both folded and disordered regions – may be a common
mode of evolutionarily labile molecular recognition. Our study highlights that disordered regions can
enable the conservation of specific binding modes, even in the absence of precise sequence
conservation.
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Results

“Inert” Intrinsically Disordered Regions Diminish RNA Binding
Our previous work used coarse-grained MD simulations paired with smFRET-based RNA binding
experiments to characterize the ability of the SCO2 NTD-RBD to bind ssRNA57. These simulations
using the Mpipi forcefield were able to qualitatively recapitulate the conformational behavior of the
NTD-RBD in the presence and absence of RNA, as well as capture with semi-quantitative accuracy
the binding affinity observed for the RBD and NTD-RBD with ssRNAs of differing lengths 57,62.
Simulations and experiments showed that the addition of the disordered NTDSCO2 to the folded
RBD resulted in a 30-fold increase in the binding affinity for (rU)25 compared to the RBD alone.
Importantly, this work identified a subregion in the NTD (residues 30-50) that is predicted to
interact directly with RNA.

We first sought to establish the relationship between the NTD and RNA binding. We hypothesized
that substituting the NTDSCO2 with an inert IDR that interacts negligibly with RNA would result in a
binding affinity similar to that of the RBD alone. To our surprise, our simulations showed this was
not the case.

In the Mpipi model, glycine and serine residues have negligible interactions with RNA or other
amino acids. This agrees with prior experimental work that suggests GS-repeat sequences behave as
relatively inert Gaussian-like chains 63–65. We took advantage of this and replaced the 50-residue
NTDSCO2 with a length-matched GS repeat – (GS)25 – and performed simulations with this
(GS)25-RBDSCO2 chimera (Fig. 2A) 25,26,66. Our simulations revealed repeated association and
dissociation events between (rU)25 and the (GS)25-RBD constructs (Fig. 2B), enabling us to calculate
an apparent binding association constant, KA , as done previously (see Methods for details) 57. For
convenience, we normalize this apparent binding affinity by the binding affinity associated with
wildtype NTD-RBD binding (rU)25, reporting this normalized binding affinity as KA*. KA* > 1
reflects tighter binding than wildtype, while KA* < 1 reflects weaker binding.
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Figure 2. An inert disordered region can suppress a folded domain’s RNA binding ability. A. A
snapshot of the bound state from a (GS)25-RBD + (rU)25 simulation trajectory. Simulations utilize the Mpipi
forcefield 62. The model represents both amino acids and nucleotides as single beads with specific amino
acid-amino acid and amino acid-nucleotide interactions. Folded domains are rigid, and both disordered
regions and nucleic acids are dynamic. B. The distances between the COM of the (GS)25-RBD and (rU)25 are
plotted over the course of the simulation. A distance threshold (black line) is determined in C (see also
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Methods) and plotted to delineate the bound and unbound frames. C. COM-COM distances from B are
plotted as a histogram and show a bimodal distribution that correlates with the bound and unbound states of
the protein. The distributions are fitted with dual Gaussians. A distance threshold, which separates bound and
unbound frames, is determined by minimizing the overlap of the two populations. D. Schematic of the four
constructs shown in current “D” + (rU)25. E. An apparent binding affinity (KA) is calculated by utilizing the
fraction of bound and unbound frames and Eq. 1. This is then converted to a relative apparent binding
affinity (KA*) by normalizing all values by dividing by the KA calculated from the SCO2 NTD-RBD + (rU)25
simulations. Blue points represent each individual simulation KA*, while the red point is the mean of all of the
replicate simulations for a given construct. The error bars are the ratio propagated standard error of the mean
calculated using Eq. 2. Significance is determined by a Mann-Whitney-Wilcoxon test two-sided with
Bonferroni correction. p-value annotation legend: (ns: 5.00e-02 < p <= 1.00e+00), (*: 1.00e-02 < p <=
5.00e-02), (**: 1.00e-03 < p <= 1.00e-02), (***: 1.00e-04 < p <= 1.00e-03), (****: p <= 1.00e-04).

To our surprise, the (GS)25-RBD construct bound half as tightly as the RBD alone ((GS)25-RBD KA*
= 0.020 ± 0.003, RBD KA* = 0.037 ± 0.004) (Fig. 2D). This result is driven by an entropic excluded
volume effect, whereby the (GS)25 impedes the ability of RNA molecules to interact with the RBD
by occupying space adjacent to positively charged residues on the RBD. Importantly, this result
suggests that the tighter binding affinity associated with NTDSCO2-RBDSCO2 compared to RBDSCO2

alone is due to a cooperative interplay between the NTD and the RBD with RNA 57,67.

Next, we sought to understand how the NTDSCO2 enhanced the binding affinity. Given our prior
work identified residues 30-50 in the NTDSCO2 as an RNA interacting region, we replaced this region
with a (GS)10 linker. While we anticipated a reduction in binding affinity compared to wildtype, we
expected this construct to be stronger than that of the RBD alone. In actuality, we again observed
weaker RNA binding compared to the RBD alone with a KA* = 0.021 ± 0.003 (Fig. 2D),
statistically indistinguishable from the (GS)25-RBD construct. With this in mind, our results suggest
residues 30-50 are critical for robust RNA binding.

It is widely known that sequence composition and patterning govern the properties adopted by
intrinsically disordered regions9,68. However, for IDRs adjacent to RNA binding domains and their
binding interfaces, our results illustrate that sequence properties can either enhance or diminish
RNA binding affinity, depending on the specific IDR sequence. Taken together, our results suggest
that the sequence of the N-terminal IDR adjacent to coronavirus RBDs needs to be relatively
specific and is most likely conserved, albeit not in the traditional sense of direct sequence alignment;
otherwise, without specific residues, the IDR could interfere with RNA binding to the extent of
diminishing binding affinity.

Coronavirus Nucleocapsid Protein NTDs have Conserved Sequence Composition
While NTD’s in coronavirus nucleocapsid proteins appear to always be disordered, their absolute
sequence conservation is poor (Fig. 1B, Supplementary Fig. 3). If NTDs exist to enhance RNA
binding affinity, and disordered NTDs can diminish RNA binding if the ‘wrong’ sequence is present,
then how do coronavirus NTDs ensure tight RNA binding is conserved despite large scale variation
in sequence?
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The decrease in binding affinity caused by (GS)10 and (GS)25 mutant NTDs indicates that any
enhancement in RNA binding provided by the NTDSCO2 is sequence-dependent. This conclusion is
consistent with our prior work, in which we found even small changes in NTD sequence had
measurable effects on RNA binding affinity as measured both by single-molecule experiments and
by simulations 57.

Operating under the assumption that the NTDSCO2 has a role in enhancing RNA binding affinity of
the RBD (Supplementary Fig. 4), we reasoned there may be some selective pressure towards NTD
sequences that result in a consistent macroscopic RNA binding affinity for the NTD-RBD.
Additionally, while RBD structures are highly conserved across coronaviruses, their charged surface
residues vary (Fig. 1D)69. As such, we also wondered if there may be a co-evolutionary coupling
between the NTD sequence and the RBD surface. Thus, despite the diverging surface charge of the
RBDs, conserved interactions between the NTDs and their respective RBDs could lead to a
consistent macroscopic RNA binding affinity.

To investigate this hypothesis, in addition to the NTD-RBD taken from SCO2, we examined
NTD-RBD constructs from five other coronaviruses: human coronaviruses OC43, HKU1, and
229E, the Middle East Respiratory Syndrome Coronavirus (MERS), and the Mouse Hepatitis Virus
(MHV1). We reasoned that focusing on coronaviruses that predominantly infect the same host
would ensure host selective pressures are consistent, thereby minimizing this as a confounding factor
to explain differences in RNA binding affinities.

We first examined NTD physicochemical properties that are routinely used to describe IDRs
(Supplementary Table S3-S6). Despite the large variation in NTD length, all NTDs possess a net
positive charge, with the least positive NTD possessing a net charge per residue of +0.056.
Expanding this analysis to 45 different coronavirus NTDs, we found no examples in which the net
charge was lower than +0.056 (Supplementary Fig. 5). This is consistent with RNA binding
proteins typically binding RNA through positive electrostatic surfaces that interact with negatively
charged RNA 70.

Next, we examined solvent-accessible residues on the RBD surface. We generated five RBD
structures for each of the coronaviruses using AlphaFold2, and then took the average of our
calculated properties across the five structures 66. The net charge per residue (NCPR) of the RBD
surface residues stratified into three categories: relatively positively charged (229E = 0.126, SCO2
=0.066, MERS = 0.052,) neutral (HKU1 = 0.0, MHV1 = -0.011), and negatively charged (OC43 =
-0.053). However, in all case we found that the β3 extension surface was positively charged, albeit to
different extents (Fig. 1D).

In summary, while the surface charge of the RBD domains appears more variable, our analysis
suggests two key features conserved across coronavirus N proteins: (1) a net positive NTD and (2) a
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positive charge on the structurally conserved β3 extension. Compositional conservation in the NTD
(i.e., the retention of specific physicochemical features, such as net charge) could enable conserved
interactions despite the lack of absolute sequence conservation. We next sought to determine if
composition was sufficient or if other sequence properties were important to determine RNA
binding.

Sequence Composition Alone Does Not Determine NTD Contribution to Binding Affinity
One possible interpretation of our analysis is that the only factor that matters for NTD function is a
net positive charge. To test if composition is the only thing that matters, we designed sequence
variants that moved residues 30-50 (which contain several positively charged residues) to different
locations across the NTD. 57,67. We placed residues 30-50 at positions 1, 6, 11, 16, 21, 26 (referred to
as mutants T1, T6, T11, T16, T21, T26) and 31 (wildtype) of the NTDSCO2 (Fig. 3A). We then
performed simulations with (rU)25 and calculated apparent binding affinities of each variant. These
sequences maintain the same sequence composition but rearrange the amino acids, which allows us
to determine whether there are positional contributions to RNA binding or if sequence composition
alone is sufficient to achieve RNA binding.

To our surprise, the relative position of residues 30-50 has a significant impact on the apparent
binding affinity (Fig. 3B). Two mutants showed wild-type-like binding affinities, yet the others
bound RNA more weakly. This suggests that the relative location of positive charge with respect to
the RBD tunes RNA binding affinity.

Why do the T6 and T11 variants show wild-type-like binding? Our results thus far suggest that
placing a cluster of positively charged residues either directly adjacent (as is the case in the wild-type
sequence) or ~30-40 residues (as is the case in the T11 and T6 variants) from the RBD are optimal
for tight binding. Indeed, in the wild-type sequence, a pair of arginine residues is found around
residues 10-14. However, why such a pattern matters for RNA binding was initially unclear.

To further test how the relative position of positively charged residues impacts RNA binding, we
generated 172 scrambled NTDSCO2 sequences in which the sequence composition is identical, yet the
order of the amino acids has been changed. These scrambles were generated in four ways: The first
by randomly shuffling the NTDSCO2; the second by shuffling the NTDSCO2 while also making each
amino acid change as chemically different from the wild-type sequence as possible in terms of
charge and aromaticity; third, by shuffling the NTDSCO2 while forcing positively charged residues
from falling in the 30-50 residue region; and fourth, by shuffling the NTDSCO2 while restricting the
majority of charged residues to the 30-50 region or a region spanning residues 4-17. Using these
scrambled sequences, we performed coarse-grained MD simulations and calculated KA

* with (rU)25.
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Figure 3. Clusters of positively charged residues determine the affinity enhancement provided by the
NTD on RNA binding A. Schematic showing the wild type and mutants that systematically reposition
residues 30-50 from the wild-type sequence. B. Binding affinity for mutants schematized in panel A. Mutant
T6 and T11 show wildtype-like binding affinity, whereas all other variants show binding affinity less than the
wild type. C. Graphical schematic highlighting the positively-charged and dynamic ‘groove” that can form
upon RNA binding between the positively-charged β3 extension on the RBD and the cluster of positively
charged residues on the NTD. In the RBD positively charged surfaces are colored blue, negatively charged
surfaces are colored red, and neutral surfaces are colored white. A representative NTD is drawn with the blue
circles representing the relative positions of the positively charged residues. D. Binding affinities for 172
scramble variants. Orange bars within each plotted box represent the value of the mean KA* of each
scrambled sequences replicate simulations. Each variant reports on the binding affinity for an NTD-RBD
construct, where for each variant the NTD sequence was randomly scrambled. Despite having an identical
amino acid composition, sequence order enables a four-order-of-magnitude change in binding affinity,
highlighting the importance of sequence in dictating binding affinity. E. Scramble sequences plotted with
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binding affinity vs. the average position of positively charged residues distributed across the sequence. For
positional bins, average binding affinity is shown as a blue circle. Individual points are colored based on the
IWD+ score, which reports on the clustering of positively charged residues (darker colors = more highly
clustered). The wildtype NTD-RBD sequence is shown with both a green arrow and green circle around its
data point. Bins that spanned residues 15-20 and 20-25 were each significantly different from the wild-type
bin (p = 0.00013 and 0.016, respectively ) F. Same data as shown in E, with an additional set of scrambles
designed to cluster positively charged residues. The average binding affinity of this second set is shown as
black circles.

Binding affinities were calculated for each of the scrambled sequences and compared with one
another (Fig 3D, Supp. Table 7). The dynamic range of KA

* observed here spans five orders of
magnitude, demonstrating the dramatic impact relative amino acid position can have on binding
affinity. However, for the majority of the scrambled sequences, the binding affinity is fairly similar,
and, importantly, this “average” binding affinity is almost an order of magnitude weaker than the
wild-type NTD-RBD.

Taken together with our simulations that shifted the 30-50 amino acid region around the NTDSCO2,
these results suggest composition is not the sole determinant of how the NTDSCO2 influences RNA
binding. While 172 scrambled sequences are only a fraction of the total number of possible sequence
shuffles that could be generated for the NTDSCO2, the observation that the wild-type NTDSCO2

sequence is among those with the highest apparent affinity suggests that the ordering of the residues
in the NTDSCO2 is specific.

Disordered Region Residue Sequence Positioning Dictates RNA Binding Capacity
While most scrambled sequences had similar binding affinities that were much weaker than the
wild-type sequence, we identified a subset of sequences that had binding affinities equal to or greater
than that of the wild-type sequence. Based on our simulations testing positioning of the 30-50 amino
acid region, we reasoned that the relative position of positively charged residues might underlie the
increased binding affinity of these select sequences, highlighting regions of the NTD that are more
binding-competent.

To assess how the position of positively charged residues correlates with binding affinity, we plotted
binding affinity versus the average position of all positively charged residues in each scrambled
sequence that we initially tested (Fig 3E, blue circles are the binned means of each sequence). The
average position is calculated as the mean of the location of the arginine and lysine residues in the
linear sequence of the NTDSCO2. This analysis revealed a correlation between strong binders and the
average position of positively charged residues. When the average position of positive residues is
around residues 30-40, binding affinity is drastically increased in comparison to the other regions.
This same region is relatively positively charged in the wild-type NTDSCO2.

The importance of the position of positively charged residues offers a ‘structural’ explanation for the
enhanced binding affinity afforded by the wild-type NTD. Charged residues within this region
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enable the formation of a positively charged ‘groove.’ One-half of this groove is made of the
positively charged surface of the RBD β3 extension, while the other half comes from the disordered
NTD. This charged groove enables simultaneous multivalent interactions between the NTDSCO2 and
the RBDSCO2 with RNA and, thus, tight RNA binding (Fig 3C). To further explore if a disordered
charged groove underlies high-affinity NTD binding, we examined the relationship between charge
clustering and RNA binding.

The average position of positive charges along the NTD does not capture the clustering of positively
charged residues. To address this, we used the inverse weighted distance (IWD+) metric to calculate
the clustering of positively charged residues71,72. Our initial set of scrambles showed relatively similar
charge clustering, although in almost all cases, sequences with a greater degree of positively charged
residue clustering bound more tightly than those where residues were less clustered (Fig. 3E).

To more systematically investigate the impact of positive charge clustering, we designed a second
library of 214 additional scrambles. In this library, sequences were designed such that all positively
charged residues were locally clustered at a specific location (Fig. 3F). Sequences with clusters of
positive charge generally exhibited increased binding affinities. Moreover, sequences where positively
charged residues were clustered towards the C-terminus of the NTD showed – in general – tighter
binding than those where positively charged clusters were N-terminal. These results confirm that the
presence of a positively charged cluster on the NTD adjacent to the RBD provides the highest
affinity binding interface.

Our results thus far are consistent with a model in which the local density of positively charged
residues forms one-half of a positively charged binding grove (Fig. 3C). While we conventionally
think of binding clefts as forming between two folded domains, here we propose a binding interface
that straddles the folded RBD surface and the disordered NTD, akin to a flexible thumb and a
structured hand. This disordered binding groove model makes several predictions.

First, this model predicts that the NTD should remain disordered upon binding RNA. This
prediction is supported by recent nanosecond FCS experiments in which no loss of conformational
heterogeneity was seen upon RNA binding 57. Second, very different sequences should be
compatible with RNA binding, a prediction supported by results from our scrambles, which show
that if appropriate sequence constraints are met, there are many NTDs with wild-type-like binding
(Fig. 3F). Third, this model predicts that across different coronaviruses we should expect the mode
of RNA binding by the NTD-RBD to be conserved. In other words, even as the surface and
sequence of the RBD and NTD vary, we should expect the conformational features of the
bound-state ensemble to be preserved. To test this prediction, we next performed simulations of five
additional orthologous NTD-RBD constructs with (rU)25
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NTD-RBD:RNA Behavior in the Bound State is Conserved Across Orthologs
Our scrambles confirm that the NTD sequence has a substantial impact on NTD-RBD RNA
binding affinity. We therefore asked if natural NTD sequences encode a similar positively charged
“groove” binding mode despite seemingly large-scale variation in NTD sequence and RBD surface
chemistry. In this model, specific subregions of the NTD come into closer proximity to the RBD
driven by favorable NTD-RNA interactions on one side and RBD-RNA interactions on the other
(Fig. 3C). To test this, we performed simulations of each of the six ortholog NTD-RBD constructs
with (rU)25 and assessed the bound-state conformational ensemble of the NTD.

Bound-state ensembles were quantified using scaling maps. Scaling maps capture the average
inter-residue distance between all pairs of residues for RNA-bound conformers, and offer a way to
quantify the conformational ensemble of an IDR 55,73–75. Here, scaling map values are calculated as
the inter-residue distance measured in the RNA-bound state normalized by the inter-residue distance
of sequence-matched NTD-RBD simulations performed in the absence of RNA (Fig. 4A). Shades
of purple reflect distances that are closer together in the bound state, while shades of green denote
regions that are further apart in the bound state. In this way, the scaling map provides a quantitative
description of the RNA-bound ensemble of the NTD.

For SCO2, this analysis identified two regions in the NTD that are closer to the RBD in the bound
state ensemble centered around residues 10-20 and residues 30-50, similar to our simulations that
shifted the 30-50 amino acid region around the NTDSCO2and as reported previously 57. This analysis
can be done selectively for one of the residues in the NTD to visualize where it increases RBD
interactions when bound to RNA by mapping its distances across the entire NTD-RBD construct
with RBD residues colored with respect to NTD distance (Fig. 4B). Doing so shows that in the
bound state, the NTD moves closer to the positively charged RBD β3 extension, highlighting the
formation of a positively charged groove between the positive β3 extension and the positive region
spanning amino acids 30-50, as well as contributions from the region spanning amino acids 10-20 in
the NTDSCO2. This positive groove effectively envelopes RNA, facilitating a specific bound-state
ensemble.

We repeated this analysis for the remaining five orthologs, as well as the (GS)10-RBD and
(GS)25-RBD constructs, to determine if these NTDs also move closer to the RBD. This analysis
reveals that the same two specific subregions within the NTD come closer to the RBD across
coronavirus orthologs. Despite large-scale variation in both folded-domain surface charge and NTD
sequence, the bound-state ensemble (and hence RNA binding mode) appears to be largely
conserved across the six coronavirus NTD-RBD constructs examined. However, for the GS mutant
NTDs this conformational conservation is lost (Supplementary Fig. 6), highlighting the sequence
dependence of these interactions.
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Figure 4. Orthologous nucleocapsid proteins show similar bound-state ensembles despite variations
in RBD surface charge residues and NTD sequence. A. Scaling maps quantify the average inter-residue
distance between NTD residues (X-axis, colored pink) and NTD or RBD residues (Y-axis, colored pink and
light blue respectively) in the bound state. Heatmap values are calculated by calculating the average
inter-residue distance in the RNA-bound state and dividing that distance by the average inter-residue distance
in the RNA-unbound state. Purple colors report on inter-residue distances that are closer together in the
bound state while green colors report on inter-residue distances that are further apart in the unbound state. In
all six orthologs, the NTD is closer to the β3 extension in the bound state, reporting on the formation of a
positively charged groove in the bound state. B. Regions closer to the NTD in the RNA-bound state are
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highlighted on the SCO2 RBD structure in shades of purple with more intense purple signifying closer on
average. (C-H) Representative snapshots from RNA-bound-state ensembles. In all cases, RBD configuration
is aligned in the same way, enabling conservation of binding mode to be directly visualized across six distinct
orthologs.

To better visualize this result, we generated structural models of the bound-state ensemble with six
conformers each (Fig. 4C). While these make up a tiny fraction of the bound-state frames, it should
be clear that in all cases, RNA binding occurs through a conserved bound-state ensemble, whereby
RNA lies along a disordered groove generated between the β3-extension on one side and the NTD
on the other. Taken together, our work suggests that co-evolution of the NTD-RBD occurs at the
level of preserving a bound-state ensemble, as opposed to sequence or conformational properties in
the unbound state.

Discussion and Conclusion

Intrinsically disordered proteins and protein regions are prevalent across eukaryotic, prokaryotic, and
viral proteomes9. They play a wide variety of essential roles yet – perhaps paradoxically – often
appear to be relatively poorly conserved sequences by alignment29–31. In this study, we sought to
understand how a specific molecular function (RNA binding) could be conserved despite large-scale
changes in amino acid sequence. We utilized two domains of various coronavirus nucleocapsid
protein orthologs as a convenient model that contains both a disordered region (NTD) and a folded
domain (RBD) that binds RNA. Despite poor sequence conservation assessed by alignment across
NTDs, we found that the orthologs were compositionally conserved. That is, the orthologs have
similar charge properties in both the NTD and portions of the RBD. Specifically, NTDs harbor a
net positive charge, while RBDs retain specific positively charged regions on a specific region of
their surface. Despite this conservation, the length and sequence of N protein NTDs vary
dramatically, and while RBDs maintain the same 3D structure, orthologous RBDs showed a diverse
set of surface properties, including negatively charged patches and changes in positive regions.

To assess how the sequence composition of the disordered NTDs influences interactions with the
RBDs and impacts RNA binding, we performed coarse-grained molecular dynamics simulations of
coronavirus nucleocapsid proteins with single-stranded RNA. These simulations enabled us to
interrogate the role of sequence composition and residue positioning in coronavirus NTDs ability to
increase binding affinity of the NTD-RBD. We first showed that RNA binding could be enhanced
(NTD-RBD) or suppressed ((GS)25-RBD) compared to the RBD in isolation depending on the IDR
sequence. Further, by testing hundreds of different sequences with the same overall composition, we
determined that composition alone does not dictate RNA binding affinity. Instead, our simulations
highlight the importance of clusters of positively charged residues, and that the relative position of
positive clusters along the NTD also matter. Specifically, our simulations reveal the mode of binding
occurs via a disordered, positively charged grove that forms between the NTD and the positive
surface of the RBD (specifically the β3 extension). In this way a ‘structural’ basis for RNA binding
emerges, despite the fact the bound state is highly heterogeneous (a result we previously confirmed
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via ns-FCS experiments) 57. Moreover, this specific binding mode is conserved across five additional
orthologous NTD-RBD constructs, despite largescale variation in sequence.

This charged groove and the dynamic nature of the RNA-protein interaction is potentially similar to
the high affinity yet highly dynamic interactions that have been observed for polyelectrolyte
complexes formed by charged polymers or the H1-Prothymosin alpha interaction, and for other
IDR:RNA interactions76–78. Here the NTD is able to remain highly dynamic and disordered yet still
maintain relatively tight binding affinity. Our rationally-designed sequences suggest tighter binding is
certainly possible, but whether tighter binding would be functionally advantageous for viral
replication is unclear.

Our work here implicates synergistic cooperation between a folded domain and a disordered region
to enable high-affinity binding. The exceptional structural conservation of RBDs across
coronaviruses may reflect their crucial role in virion structural stability, perhaps enabled via a
network of stacked aromatic residues in the RBD core. While RNA binding domains often posses
binding clefts, our work here suggests that such clefts need not be fully structuctured, and that a
partially disordered binding groove can also enable evolutionarily-labile RNA binding.

Recent work identified arginine-rich motifs within disordered regions adjacent to DNA binding
domains across transcription factors, implicating these regions as mediating RNA binding in concert
with the DNA binding domain 79. Given the conserved binding mode uncovered in our work here,
we speculate that while defining RNA/DNA binding domains in terms of their folded domains is
convenient, the full ‘domain’ could in some cases be extended to include flanking IDRs that
potentiate and/or regulate binding. In particular, we have explicit examples in which adjacent IDRs
enhance80, supress81,82, or have no effect83 on DNA binding affinity. These observations dovetail with
our own work that suggests the amino acid chemistry of IDRs adjacent to nucleic acid binding
domains impacts the macroscopic binding affinity. Furthermore, highly charged flanking IDRs can
lubricate interactions between folded domains and nucleic acids by competing with the folded
domain for nucleic acid interaction, or nucleic acids for folded domain interactions, a model
proposed by the Levy lab almost fifteen years ago 84–88.

The cooperative effect of NTD and RBD binding with loose structural coupling opens the door to
compensatory changes in either domain. While identifying such couplings is inherently challenging,
we note that the ortholog with the least prominent NTD:RBD interaction profile (229E; Fig. 4A)
also has the most positively charged RBD, pointing to a potential mechanism to compensate for a
‘weaker’ (less positively charged) NTD.

Our simulations also hint at the presence of a second RNA binding region in the NTD, centered
around residues 12 in SCO2. This is highlighted by the appearance of two local subregions that are
close to the RBD in the bound state – one around residues 30-50 but a second around residues 5-15
(Fig. 4A). This region is clearly insufficient to enable RNA binding in isolation, because replacing
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residues 30-50 in NTDSCO2 with a (GS)10 yielded a binding affinity indistiguishable from one where
the entire NTD was replaced by (GS)25 (Fig. 2E). Nevertheless, designs that repositioned residues
NTDSCO2

30-50 to the location of this potential second hotspot (T6 and T11) recovered wildtype-like
affinity, suggesting this relative position from the RBD may also be well-poised for RNA binding
(Fig. 3). We speculate this may reflect an optimal distance between loop-closure entropy,
electrostatic repulsion between binding regions, and effective concentration; i.e. that at this number
of residues away from the RBD, the NTD can ‘fold’ back on itself and interact with RNA that is
bound to the RBD surface. While they lack absolute sequence conservation, the conserved nature of
these hotspots across five of the six orthologs implicates these regions as potentially playing an
auxiliary regulatory role in RNA binding.

Recent work has suggested that small-molecules that target specific IDR ensembles may provide a
route for sequence-specific pharmacological interventions 89,90. Given the essential role N
protein:RNA interaction has in coronavirus lifecycles, our work here hints at principles to enable the
rational design of bivalent molecules that might enable specific NTD-RBD inhibition by
outcompeting with RNA to bind in a conformationally-conserved manner. If conventional antiviral
structure-guided drug design focusses on conserved structural features, targeting conserved
conformational features offers an alternative but conceptually analogous route to pharmacological
intervention against regions traditionally considered ‘undruggable’91,92.

While this study focused on the NTD-RBD from coronavirus nucleocapsid proteins, we expect the
insights gleaned here will be widely applicable to a range of disordered nucleic acid-binding proteins.
While absolute sequence conservation may not be present, there is still the possibility of conserved
behavior encoded into diverging sequences. Rather than solely focusing on sequence alignments to
provide information on conservation and important residues, quantitatively describing the ensemble
that a disordered region takes on and assessing how it behaves with and without its ligand(s) may
provide better insight into the residues that are important and sequence features that need to be
maintained to ensure proper biological function.

Methods

Molecular Dynamics Simulations
All simulations were performed using the LAMMPS simulation engine93. We performed molecular
dynamics simulations in the NVT ensemble using the default parameters of the physics-driven
coarse-grained force-field Mpipi developed by Joseph et al. 62 The model represents both amino acid
residues and nucleotides as chemically unique singular beads and was parameterized to recapitulate
the behavior of disordered proteins in isolation as well as their ability to undergo phase separation
with and without RNA. Inter-bead interactions consist of a combination of short-range
contributions from a Wang-Frenkel potential, which captures a combination of Van der Waals,
cation-pi, and pi-pi interactions, and a long-range Coulombic potential for amino acids with net
charge and RNA nucleotides. The ability of the Mpipi force field to recapitulate disordered protein
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dimensions has been previously shown 62,94. Simulations were performed under an effective ionic
strength of 50 mM NaCl, conditions we previously found to engender good agreement between
simulation and experiment when comparing with experimentally-measured RNA binding affinities
using single-molecule experiments 57.

We also assessed the ability of the Mpipi forcefield to recapitulate single-stranded RNA (ssRNA)
dimensions by comparing simulations of (rU)40 with scattering data from small-angle X-ray (SAXS)
experiments for the same construct95. This comparison revealed excellent agreement across the full
scattering curve and in terms of the scattering-derived radius of gyration; using the Molecular Form
Factor approach of Riback et al., Rg

sim = 30.9 ± 0.1 Å while Rg
exp = 30.2 ± 0.3 Å) (Supplementary

Fig. 1) 96.

Simulations were performed in a 30 nm3 simulation box with periodic boundary conditions. Protein
and RNA are allowed to diffuse freely throughout the box. Disordered regions and ssRNA behave
as dynamic flexible polymers, sampling an ensemble of conformations 62. However, as done
previously, folded domains were made rigid, and residues buried within folded domains experienced
downscaled non-bonded interactions 57,62. Unless otherwise specified, all simulations were run for
300 million steps per replicate. The exceptions are the ‘scrambled’ simulations, which were run for
100 million steps per replicate. Protein and RNA configurations were saved every 10,000 steps, and
the first 0.2% was removed for equilibration. Visualization of protein-RNA complexes was done
with Protein Imager and VMD 97,98. Simulations were analyzed using SOURSOP and MDTraj 74,99.
Small angle X-ray scattering was analyzed using the Molecular Form Factor (MFF)
(http://sosnick.uchicago.edu/SAXSonIDPs), while synthetic scattering data for simulations were
generated using FOXS default settings 96,100.

We performed simulations of the NTD-RBD, NTD, and RBD of six coronavirus orthologs.
Specifically, we examined five coronaviruses that infect humans: SARS-CoV-2 (SCO2), Middle
Eastern Respiratory Syndrome virus (MERS), Human Coronaviruses OC43, Human Coronavirus
HKU1, and Human Coronavirus 229E, as well as Murine Hepatitis Virus (MHV1). Sequence
alignments were compared to determine a region of the RBD that was well conserved between all
orthologs to delineate the start and end positions of the NTD and RBD’s of each ortholog 58,101–103.
For simulations with ssRNA, all simulations were done using (rU)25.

To capture conformational heterogeneity in an artificially rigid structure, we utilized Colabfold to
generate five different starting structures for each coronavirus orthologous RBD 25,66. For
simulations of wild-type versions of each ortholog's NTD-RBD all five starting structures are used,
to enable conclusions to be less biased by a specific starting conformation. As expected, certain
RBD conformers bind RNA better than others, but in all cases where different NTDs are
compared, the same sets of RBD conformers are used, such that any RBD conformation-specific
biases are consistent across the set (Supplementary Fig. 2). For the large scrambled library, 1

http://sosnick.uchicago.edu/SAXSonIDPs#collapse4
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conformation for the SCO2 RBD is used. All simulations were run with multiple replicates per
starting RBD structure, with a minimum of five replicates per RBD conformation.

Limitations of Coarse-Grained Simulations
Our use of the Mpipi model should not be taken to imply that RNA or proteins are faithfully
represented at one bead per residue/nucleotide resolution. Both proteins and RNA are complex
biomolecules with many degrees of freedom, a chemically heterogeneous structure, and can engage
in a variety of sequence and structure-specific interactions that are not captured by a simplified
coarse-grain model. Our goal in using a simplified coarse-grain model is to enable high-throughput
biophysical assessment in a system that, based on prior work, we have good reason to believe is
semi-quantitative in terms of relative accuracy 57,62. While we refer to the molecules in our
simulations as protein and RNA, in reality, they are better thought of as RNA- and protein-flavored
polymers. The simplicity of this model enables us to address questions that would be intractable
using either higher-resolution simulation approaches or experiments. Despite this, we are under no
illusion regarding the simplifying assumptions made for a coarse-grain model.

Calculating Apparent Association Constants From Simulations
We determined apparent association constants (KA) by using an updated version of our previous
center of mass (COM) calculations that were able to qualitatively recapitulate SCO2 NTD-RBD
single-stranded RNA binding 57. To do this, post-equilibration simulation frames were divided into
bound and unbound states. This delineation was achieved by first taking the intermolecular
center-of-mass distances between the protein and the RNA and plotting the distribution of
distances. The histogram of intermolecular distances follows a bimodal distribution that reports on
the bound and unbound states, and can be fit with two Gaussians (Fig. 2C). We then determined the
intersection that minimizes the overlap of the two distributions to define a cutoff distance. The
cutoff distance varies based on the size of the protein and RNA. Finally, as done previously, we
classify frames as bound or unbound by assessing the linear intermolecular COM distance trajectory
and delineating frames as bound when five or more frames are below the cutoff distance. This
minimum number of consecutive frames allows us to distinguish between transient random
interactions between protein and RNA vs. encounters with a reasonable “lifetime”, implying direct
and continuous interaction. The distributions and distance cutoffs are calculated for every set of
NTDa-RBDb + (rU)n simulations, where a and b represent specific NTD or RBD sequences and n
the length of the single-stranded (rU), allowing us to determine protein-RNA specific distance
thresholds for each simulation.

The resultant fraction of bound frames is used to calculate an apparent KD with the equation:

(Eq. 1)𝐾𝐷 =  (1−𝑓𝑏𝑜𝑢𝑛𝑑)2𝑁𝐴𝑉𝑓𝑏𝑜𝑢𝑛𝑑
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Here refers to the fraction of frames where the protein and RNA are determined to be in the𝑓𝑏𝑜𝑢𝑛𝑑
bound state from our COM-COM distribution analysis. refers to Avagodro’s constant, and V is𝑁𝐴
the simulation box volume in liters, which returns a in mol/L. is then calculated using the𝐾𝐷 𝐾𝐴
expression = 1/ . While we determine if two molecules are bound or unbound in a different𝐾𝐴 𝐾𝐷
manner, this approach is analogous to that of Tesei et al. 104.

It is important to note that the KAs determined from these simulations are not meant to represent
absolute values that would be comparable to those determined from experiment. Our prior work has
shown that KAs calculated from Mpipi simulations for this system lack absolute agreement with
experimentally measured values. Despite this, when experiment and simulation-derived KA values are
normalized by an internally consistent reference (i.e., the KA obtained from NTD-RBD binding
(rU)25), we see good agreement between simulations and experiment, both as a function of RNA
length and as a function of the presence/absence of the NTD 57. To that end, binding affinity here is
reported as KA*, a normalized binding affinity we define as the ratio of the apparent KA of a given
protein + RNA simulation divided by the corresponding KA for the analogous SCO2 NTD-RBD
binding to (rU)25. This enables the SCO2 NTD-RBD + (rU)25 simulations binding affinity to be a
reference point with which to understand the strength of interactions of other orthologs. All KA*
values are thus greater than 1 (stronger binding than the SCO2 NTD-RBD + (rU)25) or less than 1
(weaker binding than the SCO2 NTD-RBD + (rU)25).

Error is propagated for our ratio (KA*) using:

= (Eq. 2)
𝑅𝑒𝑟𝑟𝑜𝑟𝑅 ( 𝐴𝑒𝑟𝑟𝑜𝑟𝐴 )2 + ( 𝐵𝑒𝑟𝑟𝑜𝑟𝐵 )2

R and Rerror here represent the ratio and the error of the ratio. A and B represent the numerator and
denominator of our ratios, respectively, and Aerror and Berror are their associated errors (standard error
of the mean).

Disorder prediction
Disorder prediction is done using metapredict (V2-FF)60,105.

Calculating Charge Clustering in Disordered Regions
Charge clustering is quantified by the inverse weighted distance (IWD), a metric that has been
applied to study amino acid clustering in several systems 71,72,106,107. Unlike the patterning parameters
κ (“kappa”) or sequence charge decoration (SCD), which quantify the patterning of oppositely
charged residues with respect to one another, here our interest is on the clustering of positive
residues only 68,108. The IWD score allows us to quantify the clustering of a specific subset of
residues. When residues are clustered together, the IWD score is high, whereas when residues are
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evenly distributed, the IWD score is low. IWD scores were calculated using sparrow
(https://github.com/idptools/sparrow).

Statistical Analysis
Every simulation has a minimum of five independent replicates, and calculated values are presented
as 95% confidence intervals (box plots, with medians marked), mean and standard error of the
mean, or geometric mean and geometric standard deviation (clarified in text below figures). Fitting
of Gaussian distributions was done in Python using scipy.optimize.curve_fit 109.

Data Availability and Software
Analysis code and data (calculated distance distributions and contact map information) are deposited
at https://github.com/holehouse-lab/supportingdata/tree/master/2023/alston_2023. For further
information on using the code, please refer to the deposited Jupyter notebooks.

https://github.com/idptools/sparrow
https://github.com/holehouse-lab/supportingdata/tree/master/2023/alston_2023
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