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Abstract
A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised
learning (SSL) was developed to perform pathologic classi�cation of neuroblastic tumors and assess
MYCN-ampli�cation status using H&E-stained whole slide digital images. The model demonstrated
strong performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and
MYCN-ampli�cation on an external test dataset. This AI-based approach establishes a valuable tool for
automating diagnosis and precise classi�cation of neuroblastoma tumors.

Introduction
Neuroblastoma is a neuroblastic tumor (NT) and the most common extracranial pediatric solid tumor,
affecting nearly 800 children in the United States annually.1 To select optimal treatment strategies,
patients are risk-strati�ed according to prognostic clinical, pathologic, and molecular variables including
age, stage, histopathology, and MYCN-ampli�cation.2,3 Approximately 40% of patients with
neuroblastoma are classi�ed as high-risk, which carries a 60% overall three-year likelihood of event free
survival.4 MYCN-ampli�cation is present in 20% of NTs and, when identi�ed, places the patient in the
high-risk category.5

The pathologic classi�cation of NTs is a major contributor to risk strati�cation. The International
Neuroblastoma Pathology Committee (INPC) uses combinations of four features—age, diagnostic
category (neuroblastoma, ganglioneuroblastoma intermixed, ganglioneuroma, or ganglioneuroblastoma
nodular), grade of differentiation, and mitosis-karyorrhexis index (MKI) — to classify tumors as favorable
or unfavorable histology.6 INPC classi�cation has signi�cant prognostic ability unto itself, as those with
unfavorable histology have a four times higher likelihood of relapse compared to those with favorable
histology.2

Histology from hematoxylin and eosin (H&E)-stained slides can also serve as a rich data source for deep
learning models, which can be used to identify nuanced motifs in tumor morphology and produce
precise risk strati�cation criteria.7–9 Machine learning algorithms have been used to analyze NT digitized
histology as early as 2009, with models that segmented cells and extracted texture features from
histology images to predict tumor grade.10 More recently, convolutional neural networks (CNNs) have
been deployed on NT histology risk strati�cation.11

Using our open-source deep learning analysis pipeline, Slide�ow (2.3.1), we developed an attention-
based multiple instance learning (aMIL) model with features extracted by CTransPath, a pre-trained self-
supervised learning (SSL) model.12–14 In contrast to conventional CNNs, aMIL models rely on pre-trained
features to begin model training (Fig. 1). These features are obtained by passing images through a
feature extractor network that has been pre-trained on either domain-speci�c or non-speci�c images.
CTransPath is a domain-speci�c model that has been trained on unlabeled H&E-stained slides from The
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Cancer Genome Atlas (TCGA).12 For limited datasets such as those obtainable in rare diseases, using
domain-speci�c features to train an aMIL can offer signi�cant performance advantages over non-
speci�c models such as ImageNet.15,16

In this study, we leveraged the largest reported study cohort of digitized NTs analyzed with these state-
of-the-art deep learning methods. We generated a training dataset of whole slide images (WSIs) from
patients from the University of Chicago and the Children’s Oncology Group. These WSIs were used to
develop models for predicting diagnostic category, grade, MKI, and MYCN-ampli�cation status. Model
performance was validated on an external test dataset of WSIs from patients seen at Lurie Children’s
Hospital. We aimed to demonstrate the feasibility of using aMILs to aid in NT classi�cation and risk
strati�cation.

The median age of patients with digitalized NT in the training dataset (n = 172) was 2.63 years (SD = 
4.37). Among patients with additional known clinical information, 84 of 138 (60.2%) had metastatic
disease and 94 of 133 (70.7%) were high-risk. For diagnostic category, the dataset includes 24
ganglioneuroblastomas and 148 neuroblastomas which were con�rmed by pathologists (KD, HS, PP). Of
the 148 tumors with a diagnostic category of neuroblastoma, 93.2% were poorly differentiated and 25%
had high MKI. Of the 135 tumors with known MYCN status, 40 were ampli�ed (29.6%). The median age
of the external test dataset (n = 25) was 3.33 years (SD = 2.90). All patients in the test dataset were high-
risk and 23 of 25 (92%) had metastatic disease. Of the 23 tumors classi�ed as neuroblastoma, all were
poorly differentiated. Eleven of these 23 tumors (48%) had a high MKI. Eight of the 25 tumors (32%) were
MYCN-ampli�ed.

The �nal models demonstrated highly accurate performance across all outcomes in the training cohort
(Fig. 2). Area Under the Receiver Operator Curve (AUROC) for diagnostic category, grade, MKI, and MYCN
were 0.96, 0.85, 0.71, and 0.77, respectively, and (Area Under the Precision Recall Curve) AUPRC was
0.99, 0.99, 0.88, and 0.89, respectively. The model had the most success identifying diagnostic
categories, with a sensitivity of 0.93 and speci�city of 0.92. For MYCN status, a sensitivity of 0.75 and
speci�city of 0.73 was demonstrated in the analysis.

Using an independent cohort of clinically annotated NT tumors, the models demonstrated high accuracy
across all analyzed outcomes, validating the �ndings in the training data set (Fig. 2). For diagnostic
category, the AUROC was 0.85 [95% Con�dence Interval (CI) 0.71–0.99], with an AUPRC of 0.99 (95% CI
0.94-1.0), sensitivity of 0.87 (95% CI 0.68–0.95), and speci�city of 0.50 (95% CI 0.09–0.91). The AUROC
for MKI was 0.74 (95% CI 0.56–0.92), with an AUPRC of 0.83 (95% CI 0.68–0.99), sensitivity of 0.50
(0.25–0.75), and speci�city of 0.91 (95% CI 0.62–0.98). For MYCN status, the AUROC was 0.81 (95% CI
0.65–0.98), with an AUPRC of 0.77 (95% CI 0.64–0.97), sensitivity of 1.0 (95% CI 0.78-1.0), and
speci�city of 0.63 (95% CI 0.30–0.86). Grade could not be assessed in the external test cohort as all
samples were poorly differentiating.
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Expert pathologist (PP) review of the model's attention heatmaps, generated using GRAD-CAM, revealed
that the models were primarily focusing on neoplastic areas of the tumor, rather than relying on non-
tumor tissues such as �brosis, �brovascular stroma, or adrenal tissue. While in most cases the model
accurately identi�ed and focused on the relevant tumor regions, in some instances correlation was
unevenly distributed across the relevant tumor area. This suggests that this variation in attention may
correlate with less well characterized diffuse histopathological signatures that have unclear associations
with standard pathologic descriptions. Further investigation into these attention patterns is necessary to
elucidate novel morphological features or subtypes within neuroblastoma tumors.17 Overall, the
pathologist's analysis con�rmed that the model was generally making predictions based on the most
relevant areas within the neoplastic regions of each sample.

We show the feasibility of using small datasets of H&E-stained WSIs to develop models for morphologic
classi�cation of NTs and accurate assessment of MYCN-ampli�cation status at diagnosis using an aMIL
deep learning model. While prior deep learning models for NTs relied heavily on morphological feature
extraction and labeled data, our method used unlabeled data in conjunction with SSL methods to
improve model performance when working with a small dataset.10,11 The model achieved notable
performance in identifying diagnostic category and a strong ability to identify MYCN-ampli�cation. The
highly accurate automatic classi�cation produced by the model could be re�ned with additional data to
eventually streamline pathologist work�ows.

The model’s ability to identify MYCN-ampli�cation status from histology is an encouraging result,
particularly given the limited data used to train the model. This suggests models could also be built to
predict other relevant genomic features such as copy number variations and ploidy. As 50% of high-risk
NTs do not harbor MYCN-ampli�cation and typically have other �ndings such as 11q aberrations, a deep
learning approach may also provide the ability to readily identify features that drive aggressive growth in
non-MYCN-ampli�ed high-risk tumors.18 Unlike immunohistochemistry or �uorescence in situ
hybridization where a single gene aberration is probed, deep learning models analyze the image at a
global level and may be able to more readily identify morphological signatures produced by
combinations of gene alterations that could further aid in stratifying NTs.

Limitations of this study arise largely from data availability. As NTs are rare, it remains di�cult to collect
su�cient samples to train a robust deep learning model. Our approach makes use of a network
architecture that seeks to overcome this limitation. However, the model could further be improved with
more data. Additionally, this study seeks to aid molecular pathology diagnostics and does not constitute
a pathologist replacement. The model’s predictions act as a second pair of eyes and could alert a
pathologist to review speci�c, notable aspects of the histology.

This work provides an important step forward in automating diagnosis and precise classi�cation of NTs
with the addition of deep learning-based image analysis. Ultimately, this can increase global access to
molecular and pathological classi�cation for tumors in regions without access to experts. We also
demonstrate the ability of aMIL models to perform well on small datasets; this model architecture could
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be extended to other rare cancers that suffer from low data availability. This arti�cial intelligence-based
approach establishes another data modality in the pathologist’s toolbox for NT classi�cation.

Methods

Dataset description
H&E-stained slides from the time of initial diagnosis were obtained from the University of Chicago (n = 
102), the Children’s Oncology Group (n = 70), and Lurie Children’s Hospital (n = 25). The images were
reviewed by trained pathologists (HS, PP, KD) who annotated the tumor regions and de�ned the
diagnostic category (ganglioneuroblastoma/neuroblastoma), grade (differentiating/poorly
differentiating), and MKI (low/intermediate and high). MYCN status was abstracted from patient records
(ampli�ed/non-ampli�ed). This study was approved by the University of Chicago (IRB20-0659) and Lurie
Children’s Hospital Internal Review Boards (IRB 2021–4498).

Image processing
WSIs were captured using an Aperio AT2 DX WSI Scanner. To remove normal background tissue and
maximize cancer-speci�c training, image tiles were extracted from within pathologist-annotated regions
of tumor. Image tiles were extracted from WSIs with a width of 302µ and 299 x 299 pixels using
Slide�ow version 2.3.1 and the libvips backend. Grayspace �ltering, Otsu’s thresholding, and gaussian
blur �ltering (sigma = 3, threshold = 0.02) were used to remove background.

Classi�er training
Extracted tiles were converted into feature vectors using CTransPath with ‘reinhard mask’ normalization
applied.12 aMIL models were trained on extracted features in Slide�ow with the FastAI API and Pytorch.
The aMIL model parameters were: weight decay of 1e− 5, bag size of 256, batch size of 32, and training
for 10 epochs. aMIL models were evaluated with 5-fold cross validation and by calculating the average
AUROC, AUPRC, sensitivity, speci�city, and F-1 score. Patients were excluded from a given model if the
measure of interest was unknown.

Model Validation
The aMIL model developed during training was used on the unseen external test dataset. Samples were
evaluated in one run without any hyperparameter tuning on test data to ensure no validation leakage.
Model performance was assessed as above.

Pathologist Explainability Assessment
Explainability heatmaps were generated using GradCAM.19 PP reviewed the heatmaps to identify
whether tumor regions that the model found important for outcome prediction had clinical correlation to
the given outcome.
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Figure 1

attention-based multiple instance learning (aMIL) models use feature vectors as inputs, grouped in bags,
to make predictions aggregated from all vectors within a bag. (A) Number of slides in the training and
test cohorts by pathologic category. (B) Models were pre-trained with histology-speci�c digital images
using unsupervised domain-speci�c learning to extract features with CTransPath. (C) Whole slide
images (WSI) were divided into tiles, passed through the �ne-tuned network to generate neuroblastoma-
speci�c feature vectors, which are divided into bags per WSI. The aMIL network assigns attention scores
to vectors, and a slide-level prediction is determined based on the aggregated predictions weighted by
attention scores.



Page 11/12

Figure 2

Model performance and explainability. (A) Performance metrics for training and external test models. (B)
AUROC plots for the external test models. (C) Explainability heatmaps generated with GradCAM. Yellow
regions were highly weighted and informative to the model while dark purple regions corresponded to
low weights in generating predictions. Abbreviations: AUROC, Area Under the Receiver Operator Curve;
AUPRC, Area Under the Precision Recall Curve.
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