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Abstract 

Huntington's disease (HD), like many other neurological disorders, affects both lower and upper 

limb function that is typically assessed in the clinic - providing a snapshot of disease symptoms. 

Wearable sensors enable the collection of real-world data that can complement such clinical 

assessments and provide a more comprehensive insight into disease symptoms. In this context, 

almost all studies are focused on assessing lower limb function via monitoring of gait, physical 

activity and ambulation.  

In this study, we monitor upper limb function during activities of daily living in individuals with 

HD (n = 16), prodromal HD (pHD, n = 7), and controls (CTR, n = 16) using a wrist-worn wearable 

sensor, called PAMSys ULM, over seven days. The participants were highly compliant in wearing 

the sensor with an average daily compliance of 99% (100% for HD, 98% for pHD, and 99% for 

CTR). Goal-directed movements (GDM) of the hand were detected using a deep learning model, 

and kinematic features of each GDM were estimated. The collected data was used to predict 

disease groups (i.e., HD, pHD, and CTR) and clinical scores using a combination of statistical and 

machine learning-based models.  

Significant differences in GDM features were observed between the groups. HD participants 

performed fewer GDMs with long duration (> 7.5 seconds) compared to CTR (p-val = 0.021, d = 

-0.86). In velocity and acceleration metrics, the highest effect size feature was the entropy of the 

velocity zero-crossing length segments (HD vs CTR p-val <0.001, d = -1.67; HD vs pHD p-val = 

0.043, d=-0.98; CTR vs pHD p-val = 0.046, d=0.96). In addition, this same variable showed a 

strongest correlation with clinical scores. Classification models achieved good performance in 

distinguishing HD, pHD and CTR individuals with a balanced accuracy of 67% and a 0.72 recall 

for the HD group, while regression models accurately predicted clinical scores. Notably the 

explained variance for the upper extremity function subdomain scale of Unified Huntington’s 

Disease Rating Scale (UHDRS) was the highest, with the model capturing 60% of the variance. 

Our findings suggest the potential of wearables and machine learning for early identification of 

phenoconversion, remote monitoring in HD, and evaluating new treatments efficacy in clinical 

trials and medicine.  

Keywords: Huntington's disease, upper limb function, wearable sensors, accelerometer, digital 

health biomarkers  



1 Introduction 

Huntington's disease (HD) poses significant challenges due to its complex motor, cognitive, and 

behavioral symptoms. HD is an inherited autosomal dominant neurodegenerative disorder that 

manifests in midlife and progresses steadily, affecting individuals' motor functions, cognition, and 

behavior (Walker, 2007). Particularly intriguing is the period preceding clinical diagnosis, known 

as prodromal HD (pHD), during which symptoms may emerge, offering a window for early 

intervention (Papp et al., 2011). However, the lack of disease-modifying therapies underscores the 

urgency of accurate and timely monitoring to facilitate early intervention. Currently, the Unified 

Huntington’s Disease Rating Scale (UHDRS) is the primary tool used for assessing motor 

function, cognitive abilities, and behavioral symptoms in HD. It provides a comprehensive 

overview of a patient's functional capabilities and disease progression. While UHDRS provides 

critical snapshots of a patient's condition at specific points in time, wearable technology can 

supplement these by offering continuous, objective, and personalized data, thereby enhancing the 

monitoring and management of HD.  

In this context, frequent at-home monitoring emerges as a critical tool for tracking disease 

progression and assessing treatment efficacy. Automated remote monitoring offers several 

advantages over traditional clinic-based assessments, including increased frequency, reduced 

subjectivity, and the ability to capture subtle changes in motor function (Andrzejewski et al., 2016; 

Bennasar et al., 2018; Dorsey et al., 2017; Ó Breasail et al., 2021; Sharma et al., 2023).  In addition, 

remote monitoring technologies have the potential to reduce the burden of clinical care and 

research by moving assessments from the clinic to the home, potentially expanding access for 

diverse patient populations. In this context, the use of wearable sensors can provide a sensitive tool 

for tracking upper limb function during activities of daily living (Bennasar et al., 2016; Tang et 
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al., 2020; Troiano et al., 2014; Zhou et al., 2008). Specifically, goal-directed movements (GDMs), 

which are fundamental to daily activities like reaching and grasping, serve as atomic components 

of upper limb movements and offer valuable insights into motor function (Desmurget et al., 1998; 

Elliott et al., 2010). 

Recent advancements in deep learning have propelled the development of robust techniques for 

automated GDM detection from accelerometer data (Elkholy et al., 2020; McLeod et al., 2016; 

Panwar et al., 2019; Subash et al., 2022). Leveraging these advancements, we have developed 

PAMSys ULM (ULM: upper limb monitoring; BioSensics LLC, Newton, MA), a wearable sensor 

for continuous monitoring of features of GDMs during activities of daily living (A. S. Nunes et 

al., 2023). PAMSys ULM has been used for monitoring upper limb (UL) function in several 

neurodegenerative conditions including stroke (A. S. Nunes et al., 2023), Friedrich’s ataxia (R. 

Mishra et al., 2024), and ALS (A. S. Nunes et al., 2024), as well as a recent study in inclusion body 

myositis (R. K. Mishra et al., 2024). This study aims to validate the effectiveness of the PAMSys 

ULM in assessing upper limb function in HD by examining the correlation between sensor-derived 

features and established clinical scores. We postulated that GDM features would be able to identify 

group differences between individuals with HD, pHD, and healthy controls (CTR), and that these 

differences would be correlated with the clinical scores. In addition, we used machine learning-

based models to classify the groups based on the GDM features and predict their clinical scores. 

 

2 Methods 

2.1 Experimental Design 

The experimental setup was previously reported in (A. Nunes et al., 2024), where speech data were 

used. In brief, participants provided written informed consent and were enrolled in an investigator-
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initiated observational cohort study performed at the University of Rochester. The study was 

reviewed and approved by the University of Rochester Institutional Review Board. The 

longitudinal study included visits every three to 6 months, for up to 3 years of total follow-up. 

During each visit, HD, and pHD participants were assessed via the UHDRS (Kieburtz et al., 1996) 

and their demographics, concomitant medications, and health history were collected.  To derive a 

clinical assessment of the upper limb function, we use the upper extremity function subdomain 

scale of UHDRS (UHDRS-UL). UHDRS-UL is calculated by adding the following UHDRS item 

scores for both upper extremities: finger tapping, pronate/supinate, rigidity of the arms, maximal 

dystonia, and maximal chorea of the upper limbs. Following the visit, all participants wore a wrist 

sensor on the dominant hand and a pendant sensor on the chest for one week, with instructions to 

wear the sensors continuously. This study uses solely the wrist sensor accelerometer data. 

Similarly, for BioDigit Database CTR participants, the Penn State University Review Board 

approved the study where participants wore a wrist sensor for a week.  

2.2 Participants 

16 individuals with HD, 7 individuals with pHD, and 11 CTR were included in the study. HD 

status was confirmed clinically by a movement disorders specialist investigator and either a self-

reported first degree relative with HD or self-reported genetic test indicating a CAG expansion of 

>36 in the huntingtin gene (Walker 2007). Prodromal HD participants were individuals with a self-

reported CAG expansion of >36 in the huntingtin gene (Walker 2007) without a clinical diagnosis 

of HD. CTR participants were individuals in good health with no evidence of neurological 

disorders likely to cause involuntary movements or gait disturbance, as determined by the 

investigator.  They were age-matched to the participants in the HD group. Age and sex were not 

significantly different between HD and CTR groups, but pHD had significant differences for both 

https://paperpile.com/c/Y5Mpyq/apM5


groups. Exclusion criteria included pregnancy and any neurological, medical, or psychiatric 

conditions that would preclude participation in the activities in the investigator’s judgment. In 

addition, we used data from 5 sex- and age-matched healthy CTR who underwent the same type 

of monitoring for a week from BioDigit Database, a database of digital health data created and 

maintained by BioSensics (Table 1).  

2.3 Data analysis 

Raw accelerometer data was preprocessed as described by Nunes et al. 2024. In brief, the data was 

first bandpass filtered between 0.1 and 12 Hz with a 4th order Butterworth filter to remove the 

inertial gravity component and high frequency activity, and then down sampled to 25 Hz. The 

velocity was estimated by integrating the acceleration data. A deep learning model was used to 

detect 3-second windows with a minimum 1.5 seconds of GDM. For each window, a total of 8 

features for acceleration and for velocity magnitudes were calculated, including minimum, 

maximum, and median features. For zero-crossing features, three-axis components were used to 

calculate zero-crossing count, duration, and duration entropy. Zero crossing features in 

acceleration and velocity analysis detect shifts in movement direction or speed by counting shifts 

from positive to negative (or vice versa) and measuring the duration and variability of these shifts. 

These features are important as they can capture chorea, tremor movement or overshooting  

(Keenan & Wilhelm, 2005; Klapper et al., 2003). In addition, for each recording, the total count 

and count per GDM duration were calculated. The features were grouped per day and the median 

was extracted, then the mean across days was calculated. The median was used to avoid the 

influence of any possible outlier.  

https://paperpile.com/c/Y5Mpyq/uHDp+0fKQ


Statistical significance between groups was calculated with t-tests, and false discovery rate (FDR) 

correction was applied to identify group differences that survived multiple comparisons. Spearman 

correlations were used to assess the association between GDM features and the clinical 

assessments, as clinical scores were reported on an ordinal scale.  

Machine learning was used to classify individuals in HD, pHD, and CTR groups, and to predict 

the clinical scores of UHDRS functional, UHDRS motor, total functional capacity, and UHDRS-

UL. Maximal correlation feature selection was used to select the top 5 features as input for the 

models. An elasticnet regression model was trained for regularization, and a logistic layer was 

added for classification. Leave-one-subject-out cross validation was used to test model 

performance. In some instances a few subjects had one extra visit, thus, the total number of data 

points for classification was HD: 18, pPH: 8, CTR: 21. For regression, the total number of data 

points with available clinical scores was  HD: 17, pPH: 8, CTR: 14. In the regression model and 

correlation, all the groups were included to capture all the health spectrum, ensuring that models 

performance are tested from high severity to healthy individuals. Classification performance was 

tested using balanced accuracy and recall, and regression prediction performance with mean 

squared error, mean absolute error, correlation score, and explained variance. 

3 Results 

The participants were highly compliant in wearing the PAMSys ULM wrist sensor with an average 

daily compliance of 99% (100% for HD, 98% for pHD, and 99% for CTR) - In total, two 

participants (one pHD and on CTR) did not wear the sensor for 1 days during the 7 day monitoring 

period.   



Features extracted from GDM periods and averaged per participant were compared between 

groups. Several features were significantly different as presented in Table 2, with selected features 

shown in Figure 1. Individuals with HD performed significantly fewer GDM movements with long 

duration (> 7.5 seconds) compared to the CTR group (p-val = 0.021, d = -0.86). Notable 

distinctions emerged in velocity-related features during GDMs between HD and CTR participants. 

Specifically, median velocity (p-val = 0.019, Cohen’s d = -0.89), maximum velocity (p-val = 0.01, 

d = -0. 89), and velocity root mean squared (p-val = 0.015, d = -0.94) were greater in CTR 

participants. Acceleration features that significantly differed between HD and CTR were zero-

crossing related, namely, the average number of zero-crossings (p-val = 0.018, d = 0. 92), the 

entropy of the zero-crossing length (p-val = 0.01, d = 0. 98) and zero-crossing average duration 

length (p-val = 0.012, d = -0. 99). This indicates that HD individuals have more jerky movements, 

on average with shorter duration, while the distribution of the GDMs duration is more scattered. 

As seen in Figure 1, features have a trend with CTR and HD mean values at opposite ends and 

pHD mean values in between the two groups. However, with the current pHD sample size the 

differences are not significant despite having similar effect sizes.  

Correlations between count-based features and clinical scores were not significant. Median, 

maximum, root mean squared, and zero-crossing duration entropy velocity features correlated 

significantly with all the clinical scores with negative correlation values ranging from -0.71 to 

0.59. Acceleration features that significantly correlated with all the clinical scores were entropy 

and zero-crossing average duration, with correlation values ranging from -0.52 to 0.51. All the 

correlations are illustrated in Figure 2A as a heatmap, and selected features plotted as a scatterplot 

in Figure 2B.  The correlation values and significance are provided in the supplementary materials 

(Table S1) 



A logistic regression with an elasticnet regularization was used to classify individuals in HD, pHD 

and CTR groups. Balanced accuracy was used as the main metric of performance and the model 

achieved a balanced accuracy of 0.67, with 0.33 being the chance level. The recall for the HD 

group was 0.72, for the pHD 0.62 and for the CTR 0.67. Figure 3 shows the corresponding 

confusion matrix. It can be noted that the model had more difficulties in distinguishing pHD from 

controls, due to the small differences between them.  

For predicting clinical scores, regression models with elasticnet regularization were used. Table 3 

shows the models’ performance. The highest explained variance was achieved with the UHDRS 

UL explaining 60%, showing that GDM features are good candidates for predicting upper limb 

function. UHDRS motor scores were also predicted with good explained variance with 56% of the 

variance captured by the model. Total Functional Capacity performance was moderate with 33% 

of the explained variance captured by the model. Figure 4 shows the scatterplots of the actual and 

predicted scores.  

4 Discussion 

The study presents a novel approach to monitoring upper limb function in individuals with HD 

and pHD using accelerometer data collected over a span of seven days. This method offers several 

advantages, including the ability to potentially provide more precise and frequent assessments in 

a natural living condition and capturing subtle changes in motor function that may not be evident 

during clinic-based evaluations. Our approach encompassed several key steps. Firstly, we 

examined group differences and correlations in goal-directed movements (GDMs) between 

individuals with HD, prodromal HD, and CTR participants. Subsequently, leveraging machine 

learning techniques, we trained models to gauge the informative nature of GDM features for two 



main purposes: classifying individuals into HD, prodromal HD and CTR groups, and predicting 

clinical scores, including the UHDRS UL score. Through this multifaceted approach, we aimed to 

elucidate the potential of accelerometer data for remote monitoring and early intervention 

strategies in HD, specifically, how automated GDM detection can be used to monitor upper limb 

function in HD. 

Results from this study indicate significant differences in the number of GDM counts, velocity-

related GDM features between individuals with HD and CTR participants. Notably, HD 

participants demonstrated fewer and shorter-duration GDMs, which could be due to increased 

pauses during movements, potentially in the setting of emergent competing motor features (e.g., 

chorea). In addition, HD participants had lower median velocity, maximum velocity, and velocity 

root mean squared values than CTR. Similarly, acceleration-related features, such as zero-crossing 

metrics, differed significantly between HD and CTR groups, suggesting differences in movement 

characteristics between the two cohorts. While decreased velocity indicates GDM movements that 

are performed slower, zero-crossing features indicate jerkiness in the movements, being less 

smooth with a zigzag pattern where acceleration changes signs. These results are in accordance 

with previous studies that have shown upper limb difficulties in movement control characterized 

by target overshooting and movement overcorrections when performing goal-oriented movements 

(Gordon et al., 2019; Klein et al., 2011; Lemay et al., 2008), in addition to involuntary choreatic 

movements (Mann et al., 2012; Reilmann et al., 2011) 

Classification models utilizing machine learning techniques showed promising results in 

classifying individuals into HD, prodromal HD, and CTR groups, with good performance 

particularly in distinguishing the HD group with respect to several GDM-based features. To 

potentially aid early identification, zero crossing entropy of velocity in particular exhibited 

https://paperpile.com/c/Y5Mpyq/k9LJ+7Rz6+hh6E
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significant difference between pHD and control groups, as this feature is governed by both the rate 

of sign changes and uncertainty in the measured velocity. Moreover, regression models 

demonstrated the ability to predict clinical scores with significant correlations, with the UHDRS 

UL score showing the highest explained variance. This suggests that GDM features extracted from 

accelerometer data could serve as valuable predictors of upper limb function, providing insights 

for experts to monitor disease progression and treatment efficacy. 

However, the study has some limitations, notably the small sample size, particularly in the 

prodromal HD group, which may limit the generalizability of the findings. Effects sizes in pHD 

were notable but due to the sample size significance was not reached. In addition, age and sex 

differences in the pHD groups compared to the other groups might further hinder finding 

significantly different features. Future studies with larger sample sizes, especially in prodromal 

HD cohorts, would be beneficial to validate the efficacy of this approach in detecting subtle 

changes in motor function. 

In conclusion, the study highlights the potential of using accelerometer data and machine learning 

techniques for remote monitoring of upper limb function in individuals with HD and prodromal 

HD. The results suggest that this approach could serve as a valuable screening technique and aid 

in early intervention strategies for individuals at risk of developing HD, particularly when 

extended to larger sample sizes. Additionally, the ability to predict clinical scores, particularly the 

UHDRS UL, underscores the importance of remote monitoring in assessing disease progression 

and treatment response.  
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Table 1. Participants Demographics and Clinical Characteristics (Mean ± Standard Error) 

 HD (n=16) pHD (n=7) CTR (n=16) 
Age, mean (SD) 51.9 (11.0) 36.5 (13.1) 58.9 (12.2) 
Female, n (%) 8 (50.0) 6 (85.7) 11 (68.5) 
Education level, n (%)    

Doctoral degree 1 (6.25) 0 (0.0) 0 (0.0) 
Master’s degree 1 (6.25) 1 (14.2) 0 (0.0) 
Some graduate school 0 (0.0) 0 (0.0) 2 (18.2) 
Four-year college degree 5 (31.25) 0 (0.0) 3 (27.3) 
Two-year college degree 2 (12.5) 1 (0.0) 4 (36.4) 
Some college 1 (6.25) 2 (28.6) 1 (9.1) 
High school diploma/GED 6 (37.5) 3 (42.9) 1 (9.1) 

Race, n (%)     
American Indian or Alaska Native 0 (0.0) 1 (14.3) 0 (0.0) 
White 16 (100) 6 (85.7) 14 (100) 

Ethnicity, n (%)    
Not Hispanic or Latino 16 (100) 7 (100) 14 (100) 

UHDRS   (n=11) 
Total Functional Capacity, mean (SD) 8.8 (3.14) 12.5 (1.13) 12.7 (0.9) 
Functional, mean (SD) 19.4 (4.5) 23.6 (1.1) 23.6 (1.2) 
Motor, mean (SD) 45.7 (18.3) 1.7 (2.6) 0.7 (1.4) 

CAG length, mean (SD) 45.7 (5.2) 44 (3.9)  
HD: Huntington’s disease, pHD: Prodromal Huntington’s disease, CTR: Controls, UHDRS: 

Unified Huntington's Disease Rating Scale, SD: Standard Error 

 

  



Table 2. Group means and statistical significance. All GDM metrics are averaged daily values 
measured over 7 consecutive days. The feature values are the daily averages. Bold statistics 
indicate significant differences, and * indicates surviving multiple comparison corrections. 

 HD pHD CTR HD vs pHD HD vs CTR pHD vs CTR 

 Mean ± std Mean ± std Mean ± std Cohen's D pval Cohen's D pval Cohen's D pval 

Daily GDM counts                    

Daily GDMs, n 1110.6 ± 427.1 1046.6 ± 348 1217.36 ± 499.9 0.16 0.732   -0.23 0.521   0.37 0.428   

Daily GDMs with 

duration > 4.5 s, n 805.92 ± 303.3 736.31 ± 226.5 796.04 ± 271.11 0.25 0.594   0.03 0.9235   0.23 0.616   

Daily GDMs with 

duration > 7.5 s, n 98.98 ± 46.99 102.53 ± 51.76 286.9 ± 304.19 -0.07 0.873   -0.86 0.0211 

*

  0.71 0.131   

Daily GDMs with 

duration > 10.5 s, n 35.59 ± 18.87 37.46 ± 22.59 121.94 ± 136.17 -0.09 0.839   -0.89 0.018 

*

  0.73 0.122   

Daily GDMs with 

duration > 13.5 s, n 13.77 ± 7.95 15.28 ± 10.56 56.17 ± 66.85 -0.17 0.708   -0.89 0.017 

*

  0.72 0.127   

Daily GDMs with 

duration > 16.5 s, n 5.1 ± 2.99 5.96 ± 4.38 26.86 ± 34.4 -0.25 0.587   -0.89 0.017 

*

  0.72 0.129   

Velocity features                   

Minimum velocity, m/s 18.46 ± 4.53 20.8 ± 3.11 19.21 ± 4.49 -0.56 0.230   -0.17 0.638   -0.38 0.409   

Median velocity, m/s 
59.03 ± 14.41 69.97 ± 7.85 69.77 ± 9.28 -0.85 0.075   -0.89 0.0187 

*

  -0.02 0.961   

Maximum velocity, m/s 109.95 ± 27.45 132.13 ± 11.3 132.09 ± 14.23 -0.93 0.054   -1.01 0.008 * 0 0.995   

Velocity root mean 

squared, m/s 67.42 ± 16.57 80.51 ± 8.19 80.4 ± 9.69 -0.89 0.062   -0.96 0.011 

*

  -0.01 0.980   

Entropy velocity 4.26 ± 0.01 4.26 ± 0 4.26 ± 0.01 0.45 0.337   0.18 0.619   0.04 0.929   

Velocity zero crossings 

count, n 4.48 ± 0.68 4.53 ± 0.39 4.47 ± 0.39 -0.08 0.868   0.03 0.943   -0.16 0.734   

Velocity zero crossings 

duration entropy 0.94 ± 0.03 0.96 ± 0.01 0.98 ± 0.02 -0.98 0.043   -1.67 <0.001 * 0.96 0.046   

Velocity zero crossings 

average duration, n 38.02 ± 2.58 39.25 ± 1.22 40.38 ± 2.94 -0.54 0.247   -0.85 0.022 

 

* 0.44 0.340   

Acceleration 

features                   

Minimum acceleration, 

m/s
2 0.73 ± 0.23 0.92 ± 0.16 0.89 ± 0.18 -0.86 0.070   -0.77 0.036   -0.15 0.747   

Median acceleration, 

m/s
2 3.46 ± 1 4.1 ± 0.53 3.92 ± 0.64 -0.71 0.130   -0.55 0.129   -0.29 0.532   

Maximum acceleration, 

m/s
2 10.32 ± 2.98 11.09 ± 0.89 10.64 ± 1.38 -0.3 0.517   -0.14 0.704   -0.36 0.4363   

Acceleration root mean 

squared, m/s
2 4.37 ± 1.21 5 ± 0.51 4.86 ± 0.64 -0.6 0.198   -0.52 0.155   -0.23 0.615   

Entropy acceleration 4.23 ± 0.02 4.24 ± 0 4.24 ± 0.04 -0.77 0.105   -0.37 0.299   0 0.999   

Acceleration zero 

crossings count, n 35.47 ± 6.46 32.71 ± 3.43 31.07 ± 3.39 0.48 0.3023   0.85 0.022 

*

  -0.48 0.298   

Acceleration zero 

crossings duration 

entropy 1.04 ± 0.02 1.03 ± 0.01 1.02 ± 0.01 0.51 0.269   0.99 0.008 * -0.65 0.169   

Acceleration zero 

crossings average 

duration, n 7.15 ± 1.49 7.88 ± 0.85 9.11 ± 2.36 -0.55 0.240  -0.99 0.009 * 0.6 0.202  



 HD: Huntington’s disease, pHD: Prodromal Huntington’s disease, CTR: Controls, SD: 

Standard Error, pval: p-value, m: meters, s: seconds 

 

 
Figure 1. Scatterplot of GDM features across groups. The selected features were significantly 
different between HD and CTR participants. Although pHDs were not significantly different in 
the majority of features, it can be noted that the pHD mean lies in between the CTR and HD 
levels. * indicate significance <0.05, ** <0.01, *** <0.001 
 

  



 
Figure 2. Correlations between GDM features and clinical assessment scores. A) heatmap 
showing all the correlations. It can be noted that velocity and acceleration features correlate the 
most with the clinical scores. B) Scatterplots for each clinical assessment and a GDM feature 
which was significantly correlated.  
 
  



 
Figure 3. Confusion matrix for group classification. The percentage of subjects is presented in 
each box. The diagonal values indicate the recall, the percentage of group subjects correctly 
identified. Total data points per group was 18 HD, 8 pPH and 21 CTR. 
  



 

 
Table 3. Model performance in predicting clinical scores. 
 MSE MAE R Explained variance 

UHDRS Functional 11.5 2.4 0.45 0.18 
UHDRS Motor 256.78 12.43 0.75 0.56 
TFC 6.07 1.88 0.58 0.33 
UHDRS UL 31.28 4.1 0.77 0.6 

MSE: mean squared error, MAE: mean absolute error, R: correlation score, TFC: Total 

functional capacity, UL: upper limb 

  



 

 
Figure 4. Clinician-rated clinical scores vs. predicted scores scatterplots. The predicted scores 
were from the leave one out test data. TFC: Total functional capacity, UL: upper limb 

 

  



Supplementary material 

 

 
Table S1. GDM features correlations with clinical assessment scores. All GDM metrics are 
averaged daily values measured over 7 consecutive days. Bold statistics indicate significant 
differences, and * indicates surviving multiple comparison corrections. 

 UHDRS Functional UHDRS Motor TFC  UHDRS UL 

 corr pval corr pval corr pval corr pval 

GDM counts features             

GDM, n 0.09 0.607   0.12 0.510   0.00 0.999  0.02 0.923   

GDM with a duration < 4.5 s, n 0.02 0.921   0.20 0.280   -0.08 0.640  0.10 0.587   

GDM with a duration > 7.5 s, n 0.20 0.264   -0.01 0.977   0.14 0.432  -0.07 0.681   

GDM with a duration > 10.5 s, n 0.22 0.213   -0.04 0.817   0.16 0.369  -0.11 0.520   

GDM with a duration > 13.5 s, n 0.24 0.171   -0.04 0.819   0.18 0.300  -0.10 0.565   

GDM with a duration > 16.5 s, n 0.20 0.266   0.00 0.998   0.15 0.402   -0.06 0.741   

Velocity features             

Minimum velocity, m/s 0.29 0.093   -0.34 0.058   0.28 0.108  -0.34 0.046   

Median velocity, m/s 0.39 0.021   -0.50 0.004 * 0.41 0.016  -0.52 0.002 * 

Maximum velocity, m/s 0.46 0.006   -0.53 0.002 * 0.47 0.005 * -0.56 0.001 * 

Velocity root mean squared, m/s 0.42 0.015   -0.51 0.003   0.44 0.010 * -0.53 0.001 * 

Entropy velocity -0.21 0.225   0.26 0.155   -0.29 0.102  0.30 0.083   

Velocity zero crossings count, n 0.03 0.880   -0.07 0.694   0.04 0.813  -0.02 0.921   

Velocity zero crossings duration entropy 0.48 0.004   -0.71 0.000 * 0.59 0.000 * -0.67 0.000 * 

Velocity zero crossings average 

duration, n 0.21 0.236   -0.32 0.071   0.27 0.124   -0.30 0.082   

Acceleration features             

Minimum acceleration, m/s2 0.43 0.012   -0.51 0.003 * 0.44 0.009 * -0.54 0.001 * 

Median acceleration, m/s2 0.35 0.044   -0.39 0.027   0.36 0.040  -0.42 0.014 * 

Maximum acceleration, m/s2 0.15 0.406   -0.19 0.296   0.10 0.566  -0.16 0.362   

Acceleration root mean squared, m/s2 0.30 0.088   -0.36 0.043   0.29 0.093  -0.36 0.035   

Entropy acceleration 0.35 0.042   -0.50 0.003 * 0.41 0.016  -0.46 0.006 * 

Acceleration zero crossings count, n -0.31 0.073   0.31 0.082   -0.37 0.030  0.40 0.020   

Acceleration zero crossings duration 
entropy 

-0.28 0.116   0.35 0.050   -0.34 0.049  0.38 0.026   

Acceleration zero crossings average 
duration, n 

0.42 0.013   -0.47 0.007 * 0.51 0.002 * -0.52 0.001 * 

TFC: Total functional capacity, UL: upper limb, pval: p-value, m: meters, s: seconds, corr: 

correlation 

 


