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 Abstract  
Serum total immunoglobulin E levels (total IgE) capture the state of the immune system in relation 
to allergic sensitization. High levels are associated with airway obstruction and poor clinical 
outcomes in pediatric asthma. Inconsistent patient response to anti-IgE therapies motivates 
discovery of molecular mechanisms underlying serum IgE level differences in children with 
asthma. To uncover these mechanisms using complementary metabolomic and transcriptomic 
data, abundance levels of 529 named metabolites and expression levels of 22,772 genes were 
measured among children with asthma in the Childhood Asthma Management Program (CAMP, 
N=564) and the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS, N=309) via the 
TOPMed initiative. Gene-metabolite associations dependent on IgE were identified within each 
cohort using multivariate linear models and were interpreted in a biochemical context using 
network topology, pathway and chemical enrichment, and representation within reactions. A total 
of 1,617 total IgE-dependent gene-metabolite associations from GACRS and 29,885 from CAMP 
met significance cutoffs. Of these, glycine and guanidinoacetic acid (GAA) were associated with 
the most genes in both cohorts, and the associations represented reactions central to glycine, serine, 
and threonine metabolism and arginine and proline metabolism. Pathway and chemical enrichment 
analysis further highlighted additional related pathways of interest. The results of this study 
suggest that GAA may modulate total IgE levels in two independent pediatric asthma cohorts with 
different characteristics, supporting the use of L-Arginine as a potential therapeutic for asthma 
exacerbation. Other potentially new targetable pathways are also uncovered.   
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Introduction 
Immunoglobulin E (IgE) is an antibody that binds to mast cells and basophils in response to 
allergen exposure, contributing to asthma exacerbation in children 1. Exacerbations result in 
episodes of labored breathing, wheezing, coughing, and bronchial constriction, and are a major 
cause of disability resulting in poor quality of life and high health care costs 2.  To mitigate 
exacerbations caused by IgE, anti-IgE therapeutics such as omalizumab block the binding of IgE 
to receptors 3. However, response to anti-IgE therapeutics is inconsistent and depends on multiple 
factors, including periostin, eosinophil levels in serum 4 and allergic sensitization 5,6. Therefore, 
investigating the molecular underpinnings associated with higher serum total IgE may help 
illuminate biological and chemical pathways associated with clinical response, ultimately 
informing the best treatment approaches.  
To this end, several single-omic studies have elucidated genes and metabolites associated with 
total IgE levels in both children and adults. These studies implicated, among others, the metabolites 
valine and tyrosine 7, Interleukin 13 8,9, inflammatory and defense response, and cytokine pathways 
10, and leukocyte, lymphocyte, and mononuclear cell proliferation 11, all of which are broadly 
associated with primarily a T helper 2 (Th2) inflammatory response. 
However, the understanding of pathways associated with total IgE levels in asthma is still 
incomplete given the context of high inter-individual heterogeneity in demographics, exposure, 
and genetics 2,12. Notably, the transcriptome and metabolome capture complementary information 
relevant to these sources of heterogeneity 13. Thus, integrating the metabolome with the 
transcriptome should yield a more holistic picture of the complex metabolic processes underlying 
allergy responses and total IgE levels in pediatric asthma across heterogeneous groups. However, 
no studies have evaluated the metabolome and transcriptome in tandem in the context of total IgE. 
In this study, we evaluated the interplay between the plasma metabolome and transcriptome as it 
relates to total IgE levels among children with asthma from two independent cohorts: 1) the 
Childhood Asthma Management Program (CAMP) cohort 14 (N=564); and 2) the Genetic 
Epidemiology of Asthma in Costa Rica Study (GACRS) 15 (N=309). In each cohort, total IgE-
dependent gene-metabolite associations were identified using a linear modeling approach that 
included an interaction term between gene expression and serum total IgE and adjusted for clinical 
covariates 16,17.  Associations were validated using a null (data permutation) model, and pathway 
and chemical class enrichment analyses were performed using a comprehensive resource of 
metabolite and gene annotations 18,19. Analyses revealed total IgE-dependent gene-metabolite 
associations shared between the two cohorts that underlie key metabolic processes relevant to 
allergic and inflammatory responses. These include the glycine, serine, and threonine metabolism 
pathway, phospholipid pathways, and possible crosstalk between these pathways and Interleukin-
1 signaling. 

Materials and Methods 
The Childhood Asthma Management Program (CAMP) 
CAMP 14, available from ClinicalTrials.gov register NCT00000575, was a multi-center, 
randomized, double-masked, clinical trial designed to determine the long-term effects of inhaled 
treatments for mild to moderate asthma in children.  From December 1993 to September 1995, 
CAMP recruited 1,041 children aged 5 to 12 years at baseline with mild to moderate asthma from 
8 sites in North America 20. Treatments were randomized to either nedocromil, budesonide, or the 
placebo arm, and then followed up over the 5 to 6 years of the trial period.  All children completed 
a protocol which included questionnaires and collection of blood. A follow-up study to the primary 
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trial included age, sex, height, and weight and extracted blood samples from 620 CAMP subjects 
at early adulthood (after trial completion) for gene expression profiling when asthma was not 
exacerbated, with an average age of 16 years at follow-up 21. 
 
The Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) 
GACRS 15 recruited a total of 1,165 children aged 6-14 years with mild to moderate asthma from 
140 schools across the Central Valley of Costa Rica between February 2001 and August 2008. At 
enrollment, all children completed a protocol similar to that of the children in CAMP, including 
blood collection and quantification of serum total IgE at the same timepoint. The questionnaire 
was a translated version (from English to Spanish) of the one used in the Collaborative Study on 
the Genetics of Asthma 22. Unlike CAMP, GACRS was a cross-sectional observational study. 
Written parental and participating child consent was obtained.  The study was approved by the 
Partners Human Research Committee at Brigham and Women’s Hospital (Boston, USA) (Partners 
Human Research Committee; Protocol#: 2000-P-001130/55) and the Hospital Nacional de Niños 
(San José, Costa Rica).  
 
Data Collection 
The metabolomic samples used in our analysis were collected from plasma in 953 children and 
the transcriptomic samples from whole blood in 609 children during the follow-up timepoint 4 
years later. Serum total IgE level was determined using the UniCAP 250 system and converted to 
a log10 scale for analysis. The CAMP study was approved by the Institutional Review Board of 
Partners Healthcare (Partners Human Research Committee; Protocol#: 1999-P-001549/29), by 
all 8 CAMP clinical centers and by the CAMP Data Coordinating Center. Each child’s parent or 
guardian signed a consent statement, and the clinics also obtained each child’s assent. 
 
Metabolomic Profiling 
Plasma metabolomic profiling was conducted by the Broad Institute using 4 complementary liquid 
chromatography mass spectrometry (LC-MS) platforms as part of the Trans-Omics for Precision 
Medicine (TOPMed) initiative 23, i.e., Reversed-Phase C8 Chromatography/Positive Ion Mode 
(C8-pos), Reversed-Phase C18 Chromatography/Negative Ion Mode (C18-neg), Hydrophilic 
Interaction Liquid Chromatography/Positive Ion Mode (HILIC-pos), and Targeted Negative Ion 
Mode (Amide-neg) 24,25 in 953 children in CAMP and 1,155 children in GACRS. Data processing 
and quality control (QC) was performed using methods previously described by Kelly et al 26. 
Briefly, metabolite features with undetectable/missing levels for >75% of study samples or a 
coefficient of variance within QC samples greater than 25% were excluded. All missing values 
were imputed using the k-nearest-neighbor imputation method with k = 3. To confirm IDs during 
analytical runs, authentic standards as well as pooled QC samples were analyzed. Metabolites were 
analyzed as measured LC-MS peak areas, and log10-transformed and unit-scaled prior to analysis. 
After these QC and scaling steps, we filtered out metabolites with > 20% minimum-imputed values 
across samples, resulting in 3,756 metabolites in the GACRS cohort and 3,742 in the CAMP 
cohort, of which 583 named metabolites were present in both cohorts. Named metabolites with 
variance at or below the 5th percentile were removed. A total of 553 metabolites passed this 
threshold in the GACRS cohort and 545 in the CAMP cohort, 529 of which were in common and 
used in our statistical analyses. 
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Transcriptomic Profiling 
Whole-blood gene expression profiles were generated with 47,009 probes from the Illumina 
HumanHT-12 v4 Expression BeadChip, all of which passed stringent and commonly used quality 
control (QC) metrics (i.e., removal of failed arrays, probes with low outlying log2 intensities (<5), 
and probes with poor signal-to-noise ratios (95th percentile / 5th percentile) 27. Expression data were 
log2-transformed and quantile-normalized as a single batch using the lumiT and lumiN functions, 
respectively, from the R package lumi (version 2.22) 28,29. A standard non-specific variance filter 
was applied to the expression data using the nsFilter function from the R package genefilter 
(version 1.52) 30. Data were collapsed to a single probe per gene based on the largest interquartile 
range of expression variance. Genes not annotated with a valid Entrez gene identifier or Human 
Genome Organization (HUGO) gene symbol or with variance at or below the 5th percentile were 
removed. A total of 23,722 genes passed this threshold in the GACRS cohort and 23,723 in the 
CAMP cohort, 22,772 of which were in common and included in our statistical analyses. 
 
Data Pretreatment 
Supplementary Figure 1 illustrates the data pretreatment procedure. Only samples that could be 
run on all platforms and that included serum total IgE levels, weight, height, age, race/ethnicity 
(CAMP only) and study arm (CAMP only) as well as metabolomic and transcriptomic data were 
retained. In the CAMP clinical data, a single variable combined race and ethnicity (i.e., “Hispanic” 
was represented as a racial group). Race/ethnicity was omitted from GACRS analyses because the 
study population was ethnically homogeneous. Levels of 2-deoxyuridine, reduced glutathione, and 
indole-3-propanoic acid had variances in GACRS that exceeded the maximum variance of any 
metabolite in CAMP. Upon further inspection, these outlier values were attributed to 10 samples 
in GACRS, which were removed as they did not pass the generalized extreme Studentized deviate 
(ESD) test for outliers with ⍺ = 0.0001.  In total, 309 GACRS and 564 CAMP samples were 
analyzed. 
 
Identification of Gene-Metabolite Relationships Dependent on Total IgE 
Pairwise linear models were used to capture IgE-dependent gene-metabolite relationships using 
Integration of Omics Data Using Linear Modeling (IntLIM) 2.0 17, described in Equations 1-2 for 
GACRS and CAMP, respectively.  
 
𝑚𝑒𝑡𝑎𝑏 = 𝛽! + 𝛽"𝑔𝑒𝑛𝑒 + 𝛽#𝐼𝑔𝐸 + 𝛽$(𝑔𝑒𝑛𝑒: 𝐼𝑔𝐸) + 𝛽%𝑎𝑔𝑒 + 𝛽&	𝑠𝑒𝑥 + 𝛽'𝑤𝑒𝑖𝑔ℎ𝑡 +
𝛽(ℎ𝑒𝑖𝑔ℎ𝑡 + 	𝜀	        (Equation 1, GACRS cohort) 
𝑚𝑒𝑡𝑎𝑏 = 𝛽! + 𝛽"𝑔𝑒𝑛𝑒 + 𝛽#𝐼𝑔𝐸 + 𝛽$(𝑔𝑒𝑛𝑒: 𝐼𝑔𝐸) + 𝛽%𝑎𝑔𝑒 + 𝛽&	𝑠𝑒𝑥 + 𝛽'𝑤𝑒𝑖𝑔ℎ𝑡 +
𝛽(ℎ𝑒𝑖𝑔ℎ𝑡 + 𝛽)𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝛽*𝑟𝑎𝑐𝑒/𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 + 	𝜀	   (Equation 2, CAMP cohort) 
 
The significance of the statistical interaction between gene expression and serum IgE (b3) denotes 
the strength of the total IgE-dependent gene-metabolite relationship.  All models are adjusted for 
age, sex, weight, height, and for CAMP only race/ethnicity and treatment arm. The P-value of the 
b3 coefficients were corrected for multiple comparisons (Benjamini-Hochberg False Discovery 
Rate (FDR)) 31. Models with significant FDR-adjusted P-values (< 0.05), 𝛽$ coefficients in > 80th 
percentile; and model R2 > 0.1 were considered statistically significant in each cohort.   
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Model Validation 
An additional model validation, based on randomly permutated data, was performed using IntLIM 
2.0 to ensure that statistically significant IgE-dependent gene-metabolite pairs identified within 
each cohort were robust when validated against a null model (e.g., not uncovered in permuted 
data).  To do this, serum IgE was randomly assigned to samples in 100 individual permutations 
while the levels of genes, metabolites, and other covariates retained their original assignment. For 
each permutation, IgE-dependent gene-metabolite association models were applied in the same 
manner as the original unpermuted data. Associations present in fewer than 10 random 
permutations (out of 100) were considered non-random and retained as significant. 
 
Functional Analyses 
For each cohort, a network was constructed, where metabolites and genes were nodes, and IgE-
dependent gene-metabolite associations were the edges. Metabolite hubs were defined as 
metabolites with at least 10 edges (i.e., having IgE-dependent associations with at least 10 genes). 
Pathway, metabolite chemical class, and reaction-based functional analyses were carried out using 
Relational Database of Metabolomic Pathways (RaMP-DB) 2.0 32. For each cohort, metabolites 
and genes from significant IgE-dependent associations were utilized as input pathway and 
chemical class enrichment. Fisher’s tests were calculated for enrichment analyses.  We further 
evaluated each significant gene-metabolite pair in CAMP and GACRS to determine whether it 
corresponded to a known chemical reaction. Information regarding each reaction was extracted 
from the RaMP-DB reaction label for Rhea 33 reactions. For the Human Metabolome Database 
(HMDB) 34, the protein corresponding to the gene in the gene-metabolite pair was found using 
manual lookup on the National Center for Biotechnology Information website . The protein and 
metabolite were then used to further query the form of the reaction in HMDB. 

Results 
Two independent cohorts of children with mild to severe asthma, CAMP (N=564) and GACRS 
(N=309), were utilized in this study. Table 1 provides a patient summary for both cohorts after 
QC and data processing. Notably, serum total IgE value distributions were similar between the two 
cohorts (Supplementary Figure 2). We note that height, and weight differed significantly by t-
test which was likely driven by the fact that the CAMP population was significantly older at blood 
collection (P-value < 2.2e-16 for all). 
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CAMP  GACRS 

Total with all omics 564  309 
Age, years – mean (sd) 12.7 (2.1) 9.1 (1.7) 
Sex 352 Males, 212 Females 179 Males, 130 Females 
Race/Ethnicity 388 Caucasian 

85 African American 
53 Hispanic 
38 Other 

309 Costa Rican 

Treatment 159 Budesonide 
174 Nedocromil 
231 Placebo 

NA 

Height, cm – mean (sd) 154.8 (13.3) 131.7 (11.4) 
Weight, kg – mean (sd) 52.3 (17.0) 32.4 (11.4) 
Geometric mean (sd) total IgE 
level 

2.5 (0.7) 2.5 (0.7) 

Table 1. Characteristics of the CAMP and GACRS cohort participants. 

 
Figure 1 illustrates our study workflow.  Plasma metabolomic and transcriptomic profiles from 
the same samples were generated in both cohorts, resulting in 22,772 gene and 529 named 
metabolite measurements in each cohort. The measured metabolites consisted primarily of lipids 
and lipid-like molecules, especially glycerophospholipids (GPL), glycerolipids, and fatty acyls; 
however, other represented classes of molecules included organic acids and derivatives and 
organoheterocyclic compounds (Supplementary Figure 3). IgE-dependent gene-metabolite 
associations were elucidated using IntLIM 2.0 17, which returns coefficients that describe the 
statistical interaction of genes and IgE levels (see Methods). A positive coefficient implies that the 
relationship between a gene and metabolite increases as IgE levels increase. Metabolites and genes 
from statistically significant associations were then subject to functional analyses to identify 
enriched pathways and chemical classes.  Further, we evaluated whether significant metabolite-
gene associations were supported by known reactions.   
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Figure 1. Study workflow.  Measurements of 22,772 genes and 529 named metabolites from two 
independent cohorts, GACRS and CAMP, were used to identify total IgE-dependent gene-
metabolite associations (|β3|perc > 0.8, p < 0.05, R2 > 0.1). To help interpret these associations, 
pathway and chemical enrichment analyses were performed on metabolites and genes from these 
associations and reactions that include both the gene and metabolite in an association were 
identified.  
 
Total IgE-Dependent Gene-Metabolite Associations in GACRS and CAMP Highlight Role of 
Guanidinoacetic Acid 
For both GACRS and the follow-up timepoint in CAMP, all possible gene-metabolite pairs 
(12,046,388 total combinations of 529 metabolites and 22,772 genes) were evaluated to identify 
those that were IgE-dependent. After filtering (|β3|perc > 0.8, p < 0.05, R2 > 0.1), 29,885 pairs were 
significant in CAMP, and 1,617 pairs were significant in GACRS after permutation validation 
(Supplementary Tables 1, 2, and 3).  While the overall range of R2 and the distribution of β3 did 
not differ considerably between GACRS and CAMP, CAMP had more significant P-values overall 
(Supplementary Figures 4-7), which may be due to CAMP having a higher sample size than 
GACRS. The similarity in R2 range implies that the learned models fit the data equally well in both 
cohorts.  
From the significant pairs, we identified 136 CAMP and 72 GACRS metabolites involved in 
multiple IgE-dependent gene associations. Metabolite hubs, defined as metabolites associated with 
more than 10 genes in both cohorts, are listed in Table 2. The hubs identified are glycine, 
diacetylspermine, guanidinoacetic acid (GAA), Lysophosphatidylcholine (LPC)(18:1), 
pregnenolone sulfate, and Phosphatidylcholine (PC)(P-34:1)/(O-34:2) and are likely to be 
involved in determining serum total IgE.  
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Metabolite Name Number of Associations in 

CAMP 
Number of Associations in 
GACRS 

Glycine 573 43 
Diacetylspermine 385 100 
Guanidinoacetic acid 
(GAA) 

333 283 

LPC(18:1) 145 19 
Pregnenolone sulfate 75 135 
PC(P-34:1)/PC(O-34:2) 27 32 

Table 2. Number of significant IgE-dependent associations found in the 6 metabolite hubs, defined 
as metabolites associated with > 10 genes in both CAMP and GACRS.  

Further, consistency between the cohorts was observed at the individual gene-metabolite pair level 
and the individual genes and metabolites contained therein. Specifically, 9 gene-metabolite pairs 
had IgE-dependent associations in the same direction in both cohorts (Table 3).   
 
Metabolite Gene CAMP GACRS 

Interaction β 
(95% CI) 

FDR Interaction β 
(95% CI) 

FDR 

GAA 
 

PTPN12 0.06 (0.03, 0.08) <0.01 0.08 (0.04, 0.11) 0.04 
HNRNPH2 0.06 (0.03, 0.08) <0.01  0.09 (0.05, 0.13) 0.04 
PELI1 0.05 (0.03, 0.07) <0.01 0.08 (0.04, 0.12) 0.03 
CHMP1B 0.05 (0.03, 0.08) <0.01 0.08 (0.04, 0.12) 0.03 
C9orf6 0.06 (0.02, 0.09) 0.04  0.12 (0.07, 0.18) 0.03 
RCHY1 0.07 (0.02, 0.11) 0.05  0.13 (0.07, 0.18) 0.02 
VANGL2 0.08 (0.03, 0.12) 0.05  0.17 (0.10, 0.24) 0.02 

Hydroxyproline MGC52282 0.06 (0.03, 0.09) 0.01  0.08 (0.04, 0.12) 0.04 
Diacetylspermine DNAJC11 -0.09 (-0.15, -0.04) 0.04  -0.27 (-0.39, -0.16) 0.01 

Table 3. Statistically significant gene-metabolite pairs shared between CAMP and GACRS 
cohorts. * β – coefficient of the statistical interaction between gene expression level and serum 
IgE. CI – confidence interval.  

 
Notably, GAA is involved in 7 of these 9 IgE-dependent gene-metabolite associations. The genes 
associated with GAA are involved in Interleukin-1 signaling (PTPN12 and PELI1), mRNA 
processing and splicing (HNRNPH2), and DNA damage bypass (RCHY1). Because all these 
pathways are involved in inflammatory response, the associations suggest possible crosstalk 
between GAA and inflammatory response.  Lastly, we note that a total of 770 genes and 50 
metabolites involved in IgE-dependent associations were shared between both GACRS and 
CAMP. For comparison, 12,221 genes and 172 metabolites were involved in IgE-dependent 
associations in CAMP while 1,283 genes and 123 metabolites were involved in IgE-dependent 
associations in GACRS, respectively.  
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Functional Analysis Reveals Perturbation of Glycine, Serine, and Arginine Metabolism in 
Serum IgE-dependent Gene-Metabolite Pairs 
Significant IgE-dependent pairs in CAMP (29,885) comprise 47 HMBD reactions and 4 Rhea 
reactions, while those significant in GACRS represented a single HMDB reaction, i.e., each 
reaction includes both the gene and the metabolite from a significant gene-metabolite pair 
(Supplementary Tables 4-5). The reaction represented in GACRS pairs (1,617) was the 
conversion of L-Arginine and glycine into ornithine and GAA, catalyzed by glycine 
amidinotransferase (GATM). Notably, this reaction was also significant (|β3|perc > 0.8, p < 0.05, 
R2 > 0.1) in CAMP but was removed after the permutation testing. Other CAMP reactions related 
to this single GACRS reaction included conversion of glycine to serine and two reactions 
belonging to the citric acid cycle, which is downstream of glycine to serine conversion in the 
glycine, serine, and threonine metabolism and of the arginine and proline metabolism pathways. 
These reactions included conversion of Adenosine Triphosphate (ATP) to Adenosine Diphosphate 
(ADP) via creatine and conversion of Acyl Coenzyme A to Coenzyme A. We also note that the 
conversion of glycine to serine was borderline significant in GACRS (FDR = 0.13), suggesting 
that it may also be perturbed with serum IgE level in both cohorts. 
 
Pathways 
Pathways that included the 12,221 genes and 172 metabolites from significant total IgE-dependent 
gene-metabolite pairs in CAMP and the 1,283 genes and 123 metabolites in GACRS in both 
cohorts were also evaluated, with all measured genes and metabolites included as the background. 
While none of the pathways achieved statistical significance (Benjamini-Hochberg-adjusted P-
value < 0.05), we found that the top 50 pathways (sorted by nominal P-value) represented in each 
cohort included 29 shared pathways (Figure 2). Supplementary Tables 6-7 include all pathways. 
Shared pathways included glycine metabolism, creatine pathways, serine metabolism, and amino 
acid metabolism, further supporting the relationship between glycine and serine metabolism and 
serum IgE level. Moreover, shared glutathione, creatine, and proline pathways support the 
relationship between arginine and proline metabolism and serum IgE level. 
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Figure 2. Top 50 pathways, sorted by enrichment P-value rank, represented in the GACRS and 
CAMP IgE-dependent gene-metabolite pairs. 

 
Chemical Classes 
We further performed class enrichment analysis to provide an overview of the chemical classes of 
metabolites represented in total IgE-specific gene-metabolite pairs. We found that the significant 
associations in CAMP were enriched for glycerophospholipids and glycerolipids with Benjamini-
Hochberg adjusted P-value < 0.05 (Supplementary Table 8). The significant associations in 
GACRS were enriched for lipids and lipid-like molecules, with glycerolipids significant prior to 
adjustment (Supplementary Table 9). Notably, glycerophospholipid metabolism is a downstream 
pathway of glycine, serine, and threonine metabolism that also overlaps with glycerolipid 
metabolism, suggesting dysregulation of the glycerophospholipid and glycerolipid pathways via 
glycine, serine, and threonine metabolism could be involved in modulation of total IgE levels. 

Discussion 
Through integration of metabolomic and transcriptomic profiles, we uncovered associations that 
implicate a potential role of GAA and glycine in modulating serum total IgE levels of children 
with asthma. Prior literature shows that with increased GAA (supported by the positive β3 values), 
the levels of arginine needed for creatine synthesis decrease, freeing arginine for other functions 
(such as its role in reducing inflammation) 35. This presents a possible indirect mechanism by 
which GAA influences total IgE levels. Additionally, mitochondrial, inflammatory and DNA 
damage pathways were represented in our uncovered IgE-dependent gene-metabolite pairs, which 
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may reflect activity of creatine (derived from GAA) in inflammatory response via mitochondrial 
dysfunction and DNA damage. The role of creatine in these processes has previously been studied 
outside of the context of asthma 36-40. 
Associations shared between the two cohorts reflected reactions participating in or downstream of 
pathways in which GAA and glycine are integral: namely, (1) amino acid metabolism, (2) glycine, 
serine, and threonine metabolism, and (3) arginine and proline metabolism. Specifically, the 
conversion of L-arginine and glycine into ornithine and GAA as represented in GACRS is central 
to glycine, serine, and threonine metabolism as well as arginine and proline metabolism, and the 
conversion of glycine to serine as represented in CAMP is central to glycine, serine, and threonine 
metabolism. The Tricarboxylic Acid (TCA) cycle reactions represented in CAMP are downstream 
of all three pathways. Moreover, amino acid, glycine, serine, creatine, glutathione, and proline 
pathways were shared between both cohorts, and the glycerophospholipid class was enriched in 
CAMP. These findings uncover a possible mechanistic basis for the total IgE levels observed in 
children with asthma via GAA and its pathways, and thus provide opportunities for targeting these 
mechanisms. 
The relationship between these relevant pathways and total IgE level is consistent with previous 
work showing that that glycine and serine reduce inflammation 41 and that levels of creatine and 
glycine in plasma decrease after inhalation of budesonide and salbutamol by children with asthma 
42, indicating increased glycine and serine metabolism. Further, amino acids have previously been 
implicated in asthma status and lung function 43,44, and serine protease inhibitors have been shown 
to mitigate inflammatory cytokine production and to suppress pro-inflammatory genes in a mouse 
model of asthma 45. Finally, l-Arginine supplementation has been shown to inhibit nitric oxide 
producing enzymes (associated with inflammation) via the NOS and arginase pathways in animal 
and cell culture models 46,47.  L-Arginine supplementation also decreases asthma exacerbations in 
a subset of clinical trial subjects driven by metabolites that include creatine, taurine, linoleic acid, 
and α-Glutamylcysteine (Glu-Cys) 48. 
The strengths of our analyses include the following: (1) we integrated metabolomics and 
transcriptomics data in an IgE-dependent context in pediatric asthma, which have not been 
investigated previously, (2) transcriptomic and metabolomic measurements were performed on the 
same blood samples in GACRS and on samples taken 4 years later in CAMP, (3) we replicated the 
results in two separate cohorts with markedly different clinical and population characteristics, and 
(4) we evaluated relevant biological and chemical pathways, which are complementary and 
circumnavigate the issue of sparse pathway annotations for metabolites in knowledgebases 49. One 
limitation of our analysis is that it is restricted to linear models and thus we are not detecting non-
linear relationships which could be biologically relevant. Further, our analysis is correlative and 
does not reveal causal relationships between metabolites and transcripts or directionality of 
pathway and reaction dysregulation with increasing serum IgE level. We also note the lack of 
statistical significance in pathway enrichment analyses, which is likely due to the high number of 
input metabolites and genes.  Despite these limitations, our identified IgE-dependent gene-
metabolite pairs were supported by observed chemical reactions and highlight key metabolites, 
notably GAA, that could modulate serum IgE levels.  These observations at a population level 
offers support for further mechanistic and validation studies that aim to identify potential therapies 
for asthma exacerbation.  
Our integrative analysis of metabolomic and transcriptomic profiles support the potential 
involvement of GAA, glycine, and related pathways in modulating serum IgE levels of children 
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with asthma.  Notably, our results were consistent across two diverse and independent cohorts, 
CAMP and GACRS, cohorts that have stark differences in population characteristics. 
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