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Abstract

Purpose—The expanding capabilities of surgical systems bring with them increasing complexity 

in the interfaces that humans use to control them. Robotic C-arm X-ray imaging systems, 

for instance, often require manipulation of independent axes via joysticks, while higher-level 

control options hide inside device-specific menus. The complexity of these interfaces hinder 

“ready-to-hand” use of high-level functions. Natural language offers a flexible, familiar interface 

for surgeons to express their desired outcome rather than remembering the steps necessary to 

achieve it, enabling direct access to task-aware, patient-specific C-arm functionality.

Methods—We present an English language voice interface for controlling a robotic X-ray 

imaging system with task-aware functions for pelvic trauma surgery. Our fully integrated system 

uses a large language model (LLM) to convert natural spoken commands into machine-readable 

instructions, enabling low-level commands like “Tilt back a bit,” to increase the angular tilt or 

patient-specific directions like, “Go to the obturator oblique view of the right ramus,” based on 

automated image analysis.

Results—We evaluate our system with 212 prompts provided by an attending physician, in 

which the system performed satisfactory actions 97% of the time. To test the fully integrated 

system, we conduct a real-time study in which an attending physician placed orthopedic hardware 

along desired trajectories through an anthropomorphic phantom, interacting solely with an X-ray 

system via voice.

Conclusion—Voice interfaces offer a convenient, flexible way for surgeons to manipulate 

C-arms based on desired outcomes rather than device-specific processes. As LLMs grow 

increasingly capable, so too will their applications in supporting higher-level interactions with 

surgical assistance systems.
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Introduction

As surgical assistance systems become more capable, their user interfaces likewise grow 

more complicated. High-level functions may exist, but if the actual steps to use them are 

not obvious, then their availability is merely theoretical, or “present-at-hand.” A hammer, 

by contrast, is “ready-to-hand” in that its function and use are both available at a glance. 

Making complex surgical assistance systems ready-to-hand may encourage adoption and 

use of potentially time- and risk-reducing capabilities. C-arm X-ray imaging devices, 

for instance, provide guidance to many minimally invasive procedures in orthopedics, 

interventional radiology, and angiology. Fully robotic C-arms are capable of precisely 

orienting themselves to achieve desired views, but they often require manipulation of 

independent axes via joysticks. Higher-level functions, such as patient-specific imaging [1, 

2], may reduce radiation or operating time, but they remain hidden to all but dedicated 

power users of specific systems.

Natural language offers a flexible, familiar interface for surgeons to manipulate X-ray 

systems by expressing their desired outcome rather than remembering the device-specific 

steps necessary to achieve it [3]. Unlike graphical user interfaces, which demand users’ 

attention, and foot pedal controls, which can only trigger a small number of functions, 

natural language interfaces enable human–robot collaboration between surgeons and 

imaging systems, so that surgeons can manipulate imaging devices themselves without 

interrupting the procedure [4], as they have been shown to decrease cognitive load for 

human collaborators [5]. One major challenge in the development of such systems is the 

conversion of domain-specific instructions, such as “More inlet” or “Go to the obturator 

oblique view,”—for which there is no large dataset available—into machine-readable 

instructions. Recently, the advent of large language models (LLMs) has accelerated the 

development of natural language interfaces for controlling robotic manipulation systems on 

a range of real-world tasks, such as rearranging blocks, fetching household objects, folding 

laundry, and more [6]. As LLMs become even more capable, they have been shown to be 

effective few-shot learners, able to learn new behaviors without re-training on large datasets 

[7]. This key capability opens the door to rapid development of a natural language interface 

for controlling X-ray systems, as in Fig. 1.

Here, we present a fully integrated English language interface for controlling a robotic 

X-ray system with spoken commands, with additional support for patient-specific imaging 

in X-ray-guided pelvic surgery. Based on observations of X-ray-guided surgery, we generate 

a limited set of episodes indicating how to adjust a robotic X-ray system given certain 

commands. We additionally provide support for patient-specific imaging, which chooses the 

optimal pose to achieve a desired view based on automated image analysis. When provided 

with these episodes and a short set of instructions for standardizing communication, an LLM 
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is able to generate machine-readable commands for positioning a Brainlab Loop-X device, a 

fully robotic X-ray system with six degrees of freedom. In our integrated system, we utilize 

an open-source transcription model [8] to convert spoken commands into text prompts, 

which are relayed to an LLM [9]. The resulting commands are either relayed directly to the 

Loop-X, in the case of a low-level movement, or referred to an image analysis engine for 

determining the patient-specific view. We evaluate the system’s ability to interpret natural 

commands and to achieve standard views of the pelvis. Finally, we conduct a real-time 

study with an attending physician, in which he successfully achieved desired alignment of 

a Kirschner wire (K-wire) with the S2 corridor under image guidance, using only voice 

commands to control with the system.

Related work

The promise of natural language interfaces has always been to distill complex systems 

into ready-at-hand tools for humans to use. As such, much work has explored language 

control for general-purpose robotics [6, 10–13]. In [10, 12], for example, the user expresses 

high-level goals like, “Move the red block left of the blue shoe,” which is embedded 

using a language model to be combined with RGB-D observations. These latent-space 

embeddings are then converted into machine-readable instructions in the form of pick-and-

place instructions in the field of view. More recently, LLMs have enabled even more 

powerful language interfaces for real-world tasks in everyday life. PaLM-E [6], for instance, 

is a multi-modal, embodied model capable of interpreting images and natural language, 

breaking down complex goals into achievable sub-goals, corresponding to policies in 

[14]. In medicine, similar models may be capable of assisting physicians interfacing with 

electronic medical records [15] and planning treatments [16], although significant challenges 

remain to validate such models given the increased risk [17, 18]. As of yet, however, the 

potential for LLMs to interpret the domain-specific language necessary to control medical 

robots has yet to be explored.

As image models have enabled complex tasks in general robotics, they have also yielded 

promising advances toward patient-specific and task-aware interventional X-ray imaging 

systems [19]. Notable successes in this area demonstrate the effectiveness of deep 

neural networks (DNNs) at recognizing anatomical landmarks [20–22], localizing surgical 

instruments [22, 23], anticipating complications [24], analyzing surgical workflows [25, 26], 

and planning X-ray system movements [1, 2, 27]. [2, 27] in particular train a DNN to regress 

the pose change necessary for a mobile C-arm system to achieve standard views of the 

pelvis and spine, given the current X-ray image, while [1] plan optimal image acquisitions 

for assisting percutaneous pelvic fracture fixation. Here, we implement a similar system for 

achieving standard views, relying on DNNs to triangulate anatomical landmarks as surgery 

progresses.

Interpreting domain-specific language in X-ray-guided surgery

Our approach consists of a minimal protocol enabling an LLM to control a robotic X-ray 

system, namely the Brainlab Loop-X device. Although our protocol is specialized to control 

the degrees of freedom in this system, it can be easily adapted to similar systems due to 
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the brevity of the instructions, which are less than 250 lines including examples. Messages 

consist of single-line strings delimited by semicolons, with the first element indicating 

the topic or message_type. After transcribing a spoken command from the surgeon, our 

system obtains the patient orientation and current X-ray system pose to provide additional 

context along with the user input. These are sent to the LLM in an initial command message, 

to which the LLM can respond with an action or a question, in case the LLM is 

unsure how to proceed. Actions may consist of an axis movement (pose), patient-specific 

view (view), image acquisition (shot), or no-op action (none). In the case of a question, 

the user may respond with a clarification that is stored for future reference. Messages and 

instructions are concise in order to minimize token usage, a common bottleneck in existing 

LLMs.

In our case, the Loop-X X-ray system consists of six independent axes, as shown in Fig. 2a. 

Unlike conventional C-arm systems, the Loop-X is an O-arm-like device with independently 

moving X-ray source and detector arms (source_angle and detector_angle). It 

moves on the floor in any direction, in a coordinate system specified by the lateral (x) 

and longitudinal (y) position. It can also rotate freely (yaw). Finally, the gantry tilts from 

−30° to 60° about x. Communication with the Loop-X is achieved via a Remote Function 

Call Protocol (RFCP) that enables queries and commands based on these axes. The RFCP 

also provides functionality to achieve precise views specified by an orientation vector in 

coordinate frame of the ring fring, with which to align the principle ray r, and acquire 

navigated 2D images semi-automatically. For safety reasons, the Loop-X requires the user 

to confirm these actions with a physical button, but at no time in our experiments did the 

user initiate actions from the Brainlab user interface itself. This physical confirmation is a 

requirement for the Loop-X device, but future systems may avoid additional confirmation by 

building sufficient trust with the surgeon.

After the full text of the instructions specifying this protocol (see Appendix), we append 35 

example interactions. These consist of the initial command, followed by the anticipated 

response from the LLM, and finally a summary of the interaction. For example, the 

following episode details the “Push in” command, which should move the Loop-X laterally 

toward the surgeon. (The patient_side provided at start-time here, but could be inferred 

from imaging or external camera sources.)

command; True; supine; patient_right; 180.0;0.0;0.0;0.0;0.0;0.0; Push in.

action; pose; 180.0;0.0;0.0;10.0;0.0;0.0 

summary;“Push in ” means moving along X toward the surgeon . Since the 

surgeon is on patient right, head_first = True, and patient_pose = supine, 

you should increase X by 10.

Determining patient-specific views

To determine patient-specific views, we align 2D images with a 3D statistical shape 

model, in which standard views are known. First, we identify a suitable set of recent 

acquisitions from which to triangulate points. For percutaneous pelvic fracture fixation, 
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surgeons generally alternate between two nearly orthogonal views, making it convenient to 

obtain suitable acquisitions in a passive manner. Given a set of suitable images, then, we 

obtain 2D positions for anatomical landmarks present ui, l ∈ ℝ2 | l ∈ ℒi , where ℒi is the 

set of landmarks present in image i. These anatomical landmarks are well defined in the 

literature [20, 22, 25, 28], consisting of identifiable points on the surface of the pelvis, such 

as bony protrusions. This is accomplished using automated anatomical landmark detection 

with a U-Net like architecture from [25]. For each landmark present in at least two images, 

we estimate its 3D position using triangulation. That is, we find the 3D point xi, l ∈ ℝ3 that 

minimize the reprojection error back onto each image,

xl = argmin
x

∑
i

Pix − u 2

(1)

where Pi is the projection matrix of image i relative to an optical marker body fixed to 

the patient, and ~ indicates the point in homogeneous coordinates. The transformation from 

the marker body coordinates to fring is provided by the RFCP. Once anatomical landmarks 

have been obtained in 3D, we fit an SSM of the pelvis to the triangulated points using 

deformable iterative closest point [29]. This is essential to ensure that the anterior superior 

iliac spine (ASIS) landmarks can be estimated, from which the anterior pelvic plane (APP) 

frame is determined. Following [25], the principle ray for each standard view, including the 

AP, lateral, inlet, outlet, and obturator oblique views, is defined in this coordinate frame. 

Figure 2b shows the image projections, detected landmarks, and standard views for three 

acquisitions sampled randomly, such as might be acquired in the course of fluoro-hunting. 

Once these views have been defined, they can be achieved through the inverse kinematic 

solver of a robotic X-ray system. In our experiments, the Brainlab Loop-X is able to achieve 

all the defined views given a reasonable table height and patient pose. It avoids any potential 

gimbal lock by approaching trajectories from a standard upright starting position.

Results

We evaluate our system in three ways. First, we evaluate the language interface by showing 

that satisfactory actions are chosen based on 212 prompts commonly occurring in pelvic 

trauma surgery. Second, for actions which requested a patient specific view, we evaluate the 

system’s ability to attain this view based on 1, 2, and 3 random prior images, using a rating 

system of 1 (wrong view) to 5 (no adjustment needed), as rated by an attending physician. 

Finally, we evaluate the fully integrated system in a phantom study with spoken commands 

carried out by a commercial robotic X-ray device.

To generate prompts in our test set, we begin with the base prompts listed in Table 1. These 

are paraphrased from conversations with an attending orthopedic surgeon and professional 

C-arm technologists. Additional variations on the base prompts are then generated by asking 

a LLM for more ways to say the same phrase, being sure to inject alternate phrases and 

synonyms. For example, the simplest command to achieve more inlet tilt is “More inlet,” 

based on which we introduce variations such as “Provide a downward tilt away from the 
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patient’s head,” and “Adjust the C-Arm for a lower view, away from the head.” We then 

cull the resulting list of 100 commands to ensure they still align with sensible outputs 

for controlling the Loop-X system, resulting in 53 prompts not seen during the example 

episodes. For each prompt, we test the LLM supplied with our instructions on four randomly 

sampled Loop-X poses as the input pose. We evaluate a response as “correct” if it chooses 

the intended action according to an attending physician. The system performs quite well, 

choosing the correct response for (206 / 212) 97% commands. In general, failures resulted 

from extreme Loop-X pose inputs dissimilar to those supplied in the example episode.

We also evaluate real images obtained with no feedback from a physician, relying solely on 

the patient-specific imaging system described here. This assesses the ability of our system 

to align with physicians’ expectations in terms of the quality of the performed command. 

After two random acquisitions 30° apart, we prompt the system to acquire patient-specific 

views of a radiopaque anthropomorphic pelvic phantom by saying, for example, “Go to an 

AP view.” An attending physician then rated each image in terms of its alignment with 

the standard view as evaluated on a 10-point scale, where 10 is a perfect acquisition and 1 

indicates the wrong view (see Table 2). The AP, lateral, and inlet views were successfully 

or very nearly achieved based on voice commands, with an average rating of 8.8 / 10. The 

outlet and obturator oblique views received a rating of 6.7, which indicates that some fine 

adjustment is needed to achieve the ideal view. This is in part due to the fact that the Loop-X 

is limited to a 30° tilt in the outlet direction, although the outlet view is typically closer to 

40° away from AP.

Phantom study with an attending physician

Combining all the components of our system, we conduct a study emulating percutaneous 

fracture fixation in the pelvis. A pair of Shokz OpenRun wireless headphones streamed 

audio to a 2019 MacBook Pro laptop, which transcribed commands in real time using the 

Whisper ASR model [8]. For this study, the investigators maintained silence in the OR 

except for the surgeon’s commands, although this could be avoided by the use of a wake 

word or task-aware wake-up [30]. The laptop also relayed commands to the LLM, in this 

case GPT-4 [9]. A Linux server with an RTX 3090 GPU was responsible for automated 

landmark detection and triangulation, as well as communication with the Loop-X via the 

RFCP. Images acquired on the Loop-X were relayed in DICOM format, including navigation 

information, to the server directly. To sum-up, the power-on steps for our integrated system 

were (1) turn on the Loop-X and set-up the patient, (2) start the Linux server providing 

AI-based patient-specific imaging and communication with the Loop-X, (3) connect the 

microphone to the MacBook laptop, and (4) start the laptop server, which runs the Whisper 

ASR model and communicates with GPT-4. From there the system is ready to relay 

commands to the Loop-X.

During the study, an attending orthopedic surgeon interfaced with the system solely via 

voice. While interfacing with the Loop-X, the surgeon aimed to align a surgical pointer 

with the S2 corridor, a narrow bony corridor often used for stabilize sacroiliac fractures. 

Alternating between inlet and outlet views, he positioned the pointer, which was held in 

place with a passive positioning arm to allow for trajectory verification. In total, 33 X-ray 
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images were acquired during the study, and successful placement along the S2 corridor was 

evaluated with a CT scan by the Loop-X.

Figure 3 shows our system in action, moving from an inlet view to a patient-specific AP 

view. Note that because the Loop-X source and detector move independently, it is possible 

to take non-isocentric images that are post-processed to correct for skew, accounting for 

the angled detector. In this study, the system requested clarifications for commands it did 

not understand, which could be avoided by specifying the amount of movement desired for 

fine-grained adjustments. The LLM also responded with question messages in the case 

of a transcription error, such as confusing “Inlet” for “In that.” Once the user provided a 

clarification, the LLM was able to compensate for similar errors.

Discussion

Despite their complexity, higher-level capabilities of surgical assistance systems promise 

real benefits that are worth using. They can streamline procedures, reduce risk, and improve 

patient outcomes. Patient-specific imaging, for example, can reduce the number of images 

acquired in the process of fluoro-hunting [2, 27], reducing the radiation exposure for patients 

and staff as well as the time under general anesthesia. Currently, high-level functions can 

only be accessed through graphical user interfaces (GUIs), which are complicated and differ 

among manufacturers. Although further investment in GUI development can improve these 

interfaces, they can never be simpler than the functions they control, so that in practice, 

device-specific power users arise who are familiar with each device’s quirks and higher-level 

capabilities. In effect, these users already provide a natural language interface to higher-level 
functions, albeit an indirect one through regular conversation, which LLMs have begun 

to emulate. With the recent advances in language models’ capabilities, natural language 

interfaces are being proposed at a rapid pace for human–robot collaboration in complex 

tasks [4, 5], because they enable individuals to access sophisticated capabilities quickly and 

while focusing on performing tasks themselves.

There are immediate opportunities for improving the specific system presented here. For 

instance, although we have demonstrated that few-shot learning is capable of supporting a 

usable system, fine-tuning an LLM to adhere to our protocol would avoid long message 

exchanges. In our current system, the full instruction set including examples is included 

in every exchange with the LLM, increasing cost and limiting memory. A fine-tuned 

LLM would support exchanges that persist throughout the surgery and would enable more 

sophisticated protocols with longer instruction sets, improving the robustness of low-level 

control by relegating pose changes to an underlying, verifiable function. At the same time, 

a specialized language model would not need the same computational resources. The 

resources required to run general-purpose LLMs, such as GPT-4, translate to significant 

environmental impact where carbon-free energy sources are unavailable [31]. Utilizing 

smaller models with augmented capabilities, such as access to code environments or real-

world information, may be sufficient for many specialized tasks, reducing their energy 

consumption [32].
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At a higher level, there are significant challenges remaining before an LLM-based interface 

can be incorporated into the healthcare setting [18]. The protection of patient privacy is 

paramount, and steps must be taken to ensure that recorded conversations in the OR, 

which very often include patient data, are processed in a secure, transparent manner. 

Furthermore, open questions persist regarding the quality and ethical use of data used 

to train state-of-the-art LLMs, which tend to ingest as much of the internet as possible 

[31]. The entire Wikipedia corpus, for example, arose because of the committed effort 

of volunteers and charitable donations, but it has proven to be an invaluable resource for 

preventing hallucination in many domains [33]. How to honor the efforts of millions of 

content creators whose efforts have enabled LLMs to exist at all has yet to be determined, 

but it is no less relevant in this context than in any other.

Another challenge is the classification of commands from cluttered audio streams. Like 

voice interfaces on smart-phones and speakers, an X-ray language interface must be able 

to distinguish between intentional commands and unrelated speech, including essential 

communication among the surgical team. The idea of an OR which is silent except for the 

surgeon’s commands to an automated system is not practical nor desirable. Wake words 

like “Alexa” confront this problem by making the distinction explicit, but current standard 

practice in the OR, in which surgeons do interface with X-ray technologists, residents, and 

other support staff via natural language, suggests that more seamless solutions are possible. 

Technologists regularly distinguish commands which are intended for the X-ray system 

without being addressed by name, and recent work shows LLMs are capable of the same 

task-aware extraction [30].

Incorporating advances in human–robot interaction (HRI) can ensure that such an intelligent 

assistance system integrates smoothly into the operational workflow. For instance, biases in 

available training data can lead to inaccurate transcriptions for non-native English speakers 

or other under-represented populations [34], and it is well known that LLMs are prone to 

hallucination, which in this context may produce content that adheres to protocol but results 

in incorrect or unsafe actions [31, 35]. Intelligent systems that acknowledge mistakes and 

double-check safety-critical operations can maintain trust with their human collaborators [5, 

36, 37]. In the future OR, an X-ray language interface may be one component of a broader 

human–robot collaborative system.

Conclusion

We have presented a natural language interface for controlling robotic X-ray systems, 

embodied in a fully integrated system. We include an interface to high-level functionality 

in the form of patient-specific imaging of the pelvis as well as enabling low-level control 

of a fully robotic X-ray system, the Brainlab Loop-X device. We rely on a commercially 

available LLM to perform few-shot interpretation of spoken commands according to a 

specified protocol. We demonstrate the effectiveness of our system for supporting pelvic 

trauma surgery in a user study with an attending physician, interacting with the system 

solely through spoken commands. As these technologies continue to develop, we envision 

natural language interfaces will serve as a unified entry point into complex capabilities for 

robotic assistance systems in the OR.
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Appendix: Full instructions

The following instructions are provided to the LLM in every interaction.

Please only receive and respond to messages in the following single-line 

format with no additional text. Do not explain your reasoning except in a 

summary message when requested. 

Messages are a single line with the following structure:

“‘ 

message_type;… 

“‘ 

where message_type={ command | question | action | clarification | accepted 

| summary } 

The ‘command ‘ message type has this structure:

“‘ 

command; patient_head_first; patient_pose; surgeon_side; source_angle; 

detector_angle;tilt;x;y;yaw;user_input 

“‘ 

where patient_head_first={ True, False }, patient_pose={ supine | prone }, 

and surgeon_side={ left | right }. source_angle, detector_angle, tilt, x, y, 

and yaw are all floats giving the loopx pose. user_input is a string.

You have two options for a response. Please always reply with one of the 

following: 

1. If you are confused, send a ‘ question ‘ message:

“‘ 

question; question_text 

“‘ 

where question_text is a string. 

2. If you are ready, reply with an ‘ action ‘ message:

“‘ 

action; action_type;… 

“‘ 

where action_type={ pose | shot | view | none } 

“‘ 

– A ‘pose ‘ action moves the loopx to the given pose: 

“‘ 

action; pose; source_angle; detector_angle; tilt;x;y; yaw 

“‘ 

– A ‘shot ‘ action is has no extra parameters and just takes a shot. 

“‘ 
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action; shot 

“‘ 

– A ‘view ‘ action requests a specific view: 

“‘ 

action; view; view_name; anatomy 

“‘ 

where view_name={ ap | lateral | inlet | outlet | oblique_left | 

oblique_right | teardrop } 

and anatomy={ hip_left | hip_right | femur_left | femur_right | sacrum 

| vertebra_L5 | pelvis | s1_left | s1_right | s1 | s2 | ramus_left | 

ramus_right | teardrop_left | teardrop_right } 

– ‘none ‘ performs no action. 

The user will then send one of the following: 

If a question was sent, the user will send a ‘ clarification ‘ message:

“‘ 

clarification; clarification_text 

“‘

where clarification_text is a string with the explanation. You can then 

reply with an ‘action ‘ message as defined above. 

Otherwise, the user might send a ‘ finished ‘ message:

“‘ 

finished; accepted 

“‘ 

where accepted={ True | False }. You should respond with a ‘summary 

‘ message giving your reasoning 

“‘ 

reasoning; reasoning_text 

“‘ 

where reasoning_text is a string with your reasoning. Only send a ‘ summary 

‘ message when the user sends a ‘ finished ‘ message. Otherwise, no 

explanation is needed. 

Each interaction also includes a set of 35 example episodes, such as:

command; True; supine; patient_right; 180.0;0.0;0.0;0.0;0.0;0.0; move the 

detector clockwise 20 degrees

action; pose; 180.0; −20.0;0.0;0.0;0.0;0.0 

summary; negative rotation corresponds to clockwise direction, so subtract 

20 from the given detector angle 

command; True; supine; patient_right; 180.0;0.0;0.0;0.0;0.0;0.0; go to an AP 

view 

action; view; ap; pelvis 

summary; the surgeon requested a patient – specific AP view. Since they didn 

‘t specify the anatomy, assume they want the pelvis. 
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command; True; supine; patient_right; 180.0;0.0;0.0;0.0;0.0;0.0; go to an AP 

shot of the S2 

action; view; ap; s2 

summary; even though the surgeon said “shot”, they meant “view” in this 

context 
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Fig. 1. 
Our system allows a user to control independent axes of a robotic X-ray system, the Brainlab 

Loop-X, using spoken natural language. Patient-specific views, such as the obturator 

oblique, are supported via automated image analysis
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Fig. 2. 
2a The Brainlab Loop-X X-ray system comprises six independent axes, with independent 

source and detector movement. It is capable of aligning itself to achieve precise views along 

a desired principle ray r specified in fring. 2 To determine patient-specific views, we rely 

on automated landmark detection to determine the patient pose with respect to a statistical 

shape model (SSM). The standard view directions are defined with respect to the SSM 

following [25]
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Fig. 3. 
In a phantom study, an attending orthopedic surgeon was able to emulate X-ray-guided 

percutaneous fixation of the sacroiliac joint by interfacing with the Loop-X X-ray system 

solely through voice commands. For safety reasons, movements and acquisitions require 

physical confirmation on the control tablet, but at no point were any commands initiated 

from the built-in interface
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Table 1

System actions given responses

Base prompt Variations Anticipated response Correct (%)

“More outlet.” 20 Angular rotation toward superior 95

“More inlet.” 24 Angular rotation toward inferior 83.3

“Roll back.” 12 Orbital rotation toward surgeon 100

“Roll over.” 12 Orbital rotation away from surgeon 100

“Go north.” 44 Movement in the superior direction 100

“Go south.” 12 Movement in the inferior direction 91.7

“Push in.” 16 Lateral movement toward surgeon 100

“Push out.” 12 Lateral movement away from surgeon 100

“Rotate clockwise.” 8 Rotation on the floor 100

“Inlet view.” 8 Patient-specific view 100

“Take a shot!” 44 Acquire an image 100

Total 212 97.2
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Table 2

Physician rating for patient-specific views

View Avg. rating

Anteroposterior (AP) 7.7/10

Lateral 8.3/10

Inlet (R. Ramus) 9.3/10

Outlet 6.7/10

OO (L. Ramus) 6.7/10

OO (R. Ramus) 6.7/10
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