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Dynamic changes in mechanical microenvironments, such as cell crowding,

regulate lineage fates as well as cell proliferation. Although regulatory
mechanisms for contact inhibition of proliferation have been extensively
studied, it remains unclear how cell crowding induces lineage specification.
Here we found that awell-known oncogene, ETS variant transcription

factor4 (ETV4), serves as amolecular transducer that links mechanical
microenvironments and gene expression. In agrowing epithelium of human
embryonic stem cells, cell crowding dynamicsis translated into ETV4
expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4
inactivation by cell crowding derepresses the potential for neuroectoderm
differentiation in human embryonic stem cell epithelia. Mechanistically,

cell crowding inactivates the integrin-actomyosin pathway and blocks the
endocyetosis of fibroblast growth factor receptors (FGFRs). The disrupted
FGFR endocytosisinduces amarked decrease in ETV4 protein stability through
ERKinactivation. Mathematical modelling demonstrates that the dynamics

of cell density in agrowing human embryonic stem cell epithelium precisely
determines the spatiotemporal ETV4 expression pattern and, consequently,
the timing and geometry of lineage development. Our findings suggest that
cell crowding dynamicsin astem cell epithelium drives spatiotemporal lineage
specification using ETV4 as a key mechanical transducer.

Gastrulation is an early developmental event to derive the three
embryonic germ layers. Inamniotes, the pre-gastrulation embryo goes
through an evolutionarily conserved morphogenetic process where
it forms a single-layered epithelial sheet known as the epiblast’. The
evolutionary conservation of the single-layered epithelium suggests
that this morphological structure is the prerequisite for forming the
three embryonic germ layers’. This epithelium stably persists for about
one weekin primate post-implantation embryos, during whichit under-
goes 10-to20-fold size expansion and acquires mature differentiation
potential*’. However, the direct contribution of epithelial expansion
to lineage determination remains uncertain.

Self-organization is a cellular process that spontaneously cre-
ates complex structures with no particular pre-pattern®’. In human
embryonic stem cell (hESC)-derived gastruloid models based on
micropatterning technology, a differentiating hESC colony forms an
ordered structure of germ layers along the radial axis with ectoderm
in the centre and mesendoderm in the periphery®’. In past decades, a
significant emphasis has been placed on diffusible signalling factors
to explainself-organization®. Accordingly, the gradients of BMP4 and
Activin—Nodal signalling were suggested to drive the spatial deriva-
tion of multiple germ layers within an hESC colony®’. Nonetheless,
considering the evolutionary conservation of epithelial structures in
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pre-gastrulating epiblasts, we hypothesized that unique morphological
features related to the epitheliumareinvolved in lineage specification.

In a single-layered epithelium, active proliferation in a confined
environmentinduceslocal cell crowding that inhibits epithelial cell pro-
liferationand induces cell extrusion’. YAP/TAZ and PIEZO1were identi-
fied as crucial mediators linking cell crowding to cellular responses'® ™.
Furthermore, growing evidence suggests that cell crowding plays an
essential rolein cellular differentiation in the epidermis and develop-
ing zebrafish hearts'®"”. Together with the critical roles of YAP/TAZ and
PIEZO1instem cell differentiation’®?, these findings suggest local cell
crowding as a key cellular mechanism through which a new cell fate
is generated within a seemingly homogeneous stem cell population.
Nonetheless, given the diversity of mechanical stimuli encountered
by stem cells during embryonic development, it remains crucial to
identify additional factors that transduce mechanical signals to gene
expression.

Inthis work, we identified an ultrasensitive mechanical transducer,
ETV4, andits upstream mechanotransduction pathway in hESCs. This
discovery unveils the mechanism by which epithelial crowding regu-
lates spatiotemporal lineage derivation.

Results

Regulation of ETV4 expression by mechanical cues

To identify transcriptional regulators that link cell crowding to tran-
scriptional responses in hESCs, we manipulated local cell crowding
by limiting the cell adhesive area and performed RNA sequencing
(RNA-seq) (Fig.1a, Extended DataFig.1b, and Supplementary Table1).
Cell crowding was verified by measuring the average area of cells cov-
ering the substrate (hereafter referred to as cell area; Extended Data
Fig.1a). Gene ontology (GO) analysis with total differentially expressed
genes (DEGs) (llog,(fold change)| > 0.5, adjP < 0.05) revealed the top
10 GO terms related to embryonic development and differentiation
(Extended Data Fig.1c)*, supporting the relevance of cell crowdingin
developmental processes. Contractile actomyosinbundles representa
reliableindicator of cellular mechanical stress levels. Gene set enrich-
ment analysis (GSEA) revealed asignificant reductionin genes related
toactomyosinin crowded hESCs (Extended DataFig.1d)*, confirming
decreased mechanical stress. These results were validated by immu-
nostaining for phosphorylated myosin light chain (pMLC) that marks
contractile actomyosin bundles (Extended Data Fig. 1e).

To infer transcriptional regulators, we applied a recently devel-
oped analytic tool called Lisa (Landscape In Silico Deletion Analysis)
that uses chromatic profile data®. Lisa analysis with top 200 down-
regulated DEGsin crowded hESCs (ordered by fold change) revealed 40
transcriptional regulators with significant Pvalues (P < 0.01) and high
expression in hESCs (fragments per kilobase of transcript per million
mapped reads (FPKM) >10; Fig. 1b and Supplementary Table 2). TEAD2
and SRF, previously known to be related to mechanotransduction, are
includedin thelist. Protein function annotation with the selected tran-
scription factors (TFs) using InterPro revealed seven protein domains
with significant P values (adjP < 0.05). Among those identified, we
found two terms related to PEA3-type ETS-domain TFs (Fig. 1b).

The PEA3 family consists of ETVI1 (also known as ER81), ETV4
(also known as PEA3) and ETVS (also known as ERM)?. Immu-
nostaining validated the high expression of all PEA3 family TFs in
hESCs and cell-crowding-induced reduction in protein expression
(Fig. 1c-e). Among the PEA3 family TFs, we focused on ETV4 for its
highest expression level in hESCs (Extended Data Fig. 1f). To test if
cell-crowding-induced ETV4 downregulationis areversible phenotype,
we used a scratch assay, where rapid reactivation of ETV4 expres-
sion was observed in the cells adjacent to the scratches along with
increased cell area (Fig. 1f). The cell-density-mediated regulation of
ETV4 expression was also confirmed in other epithelial cell lines (Fig. 1g
and Extended Data Fig. 1g). Direct manipulation of cell area by a cell
stretching systemrevealed that a15% decreasein cell area was sufficient

to diminish the nuclear expression of ETV4 (Fig. 1h,i and Extended
DataFig.1h-j).

Substrate stiffness is another physiologically relevant stimulus
thatregulates cellular mechanical stress**, Reduced mechanical stress
by soft substrates was confirmed by immunostaining for pMLC and
YAP/TAZ (Extended Data Fig. 1k,I). Compared with plastic (-1 Gpa), the
nuclear expression of ETV4 proteins was significantly reduced when
cellswere placed onsoft substrates (Fig. 1j,k). Replating hESCs to plastic
resumed with high ETV4 expression (Fig. 11). Overall, we have identified
ETV4asaTFwhose expressionis regulated by various mechanical cues.

Regulation of ETV4 expression by cell crowding dynamics

Like the in vivo epiblast, hESCs intrinsically grow, forming a
single-layered epithelial colony in a culture dish (Fig. 2a). As hESC
colonies expanded, we observed dynamic spatiotemporal changes
in cell density. In small colonies (<0.5 mm?), individual cells exhib-
ited arelatively large cell area, indicating a lesser degree of crowding
(Fig. 2b). Conversely, in larger colonies (>2 mm?), cells located in the
centre were smaller, while those at the periphery retained alarger cell
area (Fig.2b and Extended DataFig.2a). Agradual decreasein cell area
was observed from the periphery to the centre of large hESC colonies
(Fig. 2c). Because cell area exhibited a strong correlation with nucleus
size (Extended Data Fig. 2b), we conducted real-time measurements
of single nucleus sizes in an hESC line expressing a nuclear reporter,
H2B-GFP. As the hESC colony expanded, anincrease in single-cell vari-
ationin nucleus size was observed, with cells in the centre becoming
smaller (Fig. 2d). These results collectively underscore the dynamic
regulation of local cell crowding during epithelial expansion.

Given the mechanosensitive regulation of ETV4 expression, we
investigated the ETV4 expression patterns in H9 and H1 hESC colo-
nies. ETV4 was homogeneously expressed in the nucleus of cells from
small hESC colonies (<0.5 mm? Fig. 2e and Extended Data Fig. 2c).
Strikingly, large hESC colonies (>2 mm?) showed zonation of ETV4
expressionwith areductioninthe crowded centre (Fig.2e and Extended
Data Fig. 2c). However, the expression of core pluripotency genes
(OCT4, NANOG and SOX2) remained high across the whole colony
(Fig. 2e and Extended Data Fig. 2c,d). These results were confirmed in
hESCs cultured either in a different medium or on a different coating
extracellular matrix (ECM; Extended Data Fig. 2e,f). Clonal colonies
derived from single hESCs also showed the zonation of ETV4 expres-
sion (Extended Data Fig. 2g). Consistent with the zonation pattern,
sharp reduction in ETV4 expression was observed with increased
cell density (Fig. 2f). The zonation pattern of ETV4 predominantly
emerged when the colony diameter exceeded 1,000 pum, and the size
ofthe ETV4-lowareaincreased proportionally to the whole colony size
(Fig. 2g). Reversible ETV4 activationinthe centre of large colonies was
confirmed by a scratch assay (Fig. 2h).

Because cell density influences various cellular processes, we
first measured the cell shape index (CSI) to evaluate cell circularity
at the boundary where ETV4 expression sharply transitions. High
ETV4-expressing cells exhibited significantly larger cell areas than
low ETV4-expressing cells, while both types of cells had similar CSIs
(Extended DataFig.3a). Theseresults suggest that ETV4 expressionis
associated with cell area rather than cell geometry. Next, we studied
the potential effect of cell density on cellular metabolism. GSEA, based
on the RNA-seq data from crowded hESCs, revealed no significant
difference in the expression of glycolysis- and hypoxia-related genes
(Extended Data Fig. 3b). To directly measure hypoxia, we used the
hypoxyprobe system, in which pimonidazole hydrochloride forms
protein adducts in hypoxic cells (Extended Data Fig. 3¢)*. Consistent
with the GSEA results, there was no evident induction of hypoxia in
the crowded centre of large hESC colonies (Extended Data Fig. 3c).
Furthermore, glucose uptake measurements demonstrated similar
uptake rates between the periphery and the centre of large hESC
colonies (Extended Data Fig. 3d,e). Although we cannot completely
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Fig.1|Mechanical microenvironments regulate ETV4 expression. a, Schematic
representation of high-density culture. Cell adhesive areas were reduced by
matrigel-coated islands. b, Significant terms from InterPro protein domain analysis
of 40 predicted upstream regulators of top 200 downregulated DEGs in crowded
hESCs with high expression (>10 FPKM). A full list of the 40 proteins can be found
inSupplementary Table 2. B-H, Benjamini-Hochberg. c,d, Representative images
(c) and quantifications (d) of immunofluorescence assay for ETV1,4,5and OCT4
indifferent densities of H9 hESCs. n =40 cells for ETV1, n=55cells for ETV4,n =45
cellsfor ETVS, n="77 cells for OCT4. e, Western blots of ETV4 in different densities of
H9 hESCs. n=3independent experiments. f,Immunofluorescence assay for ETV4
inscratched H9 hESCs.n =40 cellsfor 0 h,n=50 cellsfor 3, 6 and 12 h. Cell area was
measured by dividing the total surface area by the number of cells. n = 9 regions for
relative cell area. g, Immunofluorescence assay for ETV4 in MCF-7 cells.n =30 cells

for low density and n = 41 cells for high density. h, Immunofluorescence

assay for ETV4in H9 colonies on the cell stretching system.n =60 cells.

i, Immunofluorescence assay for ETV4 in MCF-7 cells on the cell stretching system.
n=59 cellsfor controland n =46 reduced cells. j, Immunofluorescence assay for
ETV4 and OCT4in H9 hESCs on PDMS layers with different stiffnesses. ETV4:n =80
cellsfor plasticand 15 kPa, n = 70 cells for 1.5 kPa; OCT4: n = 50 cells for plastic, n = 40
cells for15 kPaand1.5 kPa. k, Immunofluorescence assay for ETV4 in MCF-7 cells

on PDMS layers with different stiffnesses. n =45 cells. I, Immunofluorescence assay
for ETV4in hESCs after replating.n =50 cells. nis number of cells (d,f,g,h,ij k1) or
regions (f) pooled from three independent experiments. Two-sided Student’s ¢-test,
**p<0.001,*P<0.01,*P< 0.05; ns, not significant. Exact Pvalues are presented
inSupplementary Table 9.Scale bars: 25 um (¢,g,h,ij k1), 50 pm (f), 100 um (a).
Numerical source dataand unprocessed gels are available as Source data.

rule out the potential effect of cellular metabolism, these data indi-
cate that cell-density-mediated ETV4 expression primarily depends
oncellarea.

Interestingly, crowded cells in the centre of large hESC colonies
maintained active nuclear expression of YAP proteins despite the
sharp inactivation of ETV4 (Fig. 2i and Extended Data Fig. 3f,g). We
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Fig.2|ETV4 expression is spatiotemporally regulated by cell crowding in
agrowing hESC epithelium. a, Schematic representation of in vivo epiblast
formation and in vitro hESC expansion. b,c, Average cell area measured by
dividing the total surface area by the number of cells. n = 20 regions (b) and
n=12colonies (c).d, Time-course tracking assay for H2B-GFP in H9 colonies.
n=232cells from threeindependent colony-tracking assays for H2B-GFP.

e, Immunofluorescence assay for ETV4 and OCT4 in small and large H9 colonies.
n =80 cells. f, Immunofluorescence assay for ETV4 in different densities of
hESCs. n =52 cells. g, Quantitative analysis of the relationship between the
diameters of ETV4-low areas and whole colonies in H9 hESCs. n =168 colonies.
h, Immunofluorescence assay for ETV4 in scratched H9 colonies. n = 50 cells.

Distance from periphery (um)

i, Immunofluorescence assay for ETV4 and YAP in large H9 colonies. Nuclear
intensities for ETV4 and YAP signals were measured in single cells. n =7 colonies.
j, Cell density measurements in ETV4"&"/YAP"&" ETV4'°"/YAP"&" and ETV4'"*"/
YAP"" regions of hESC colonies. n =12 regions for ETV4"&h/YAP"" and ETV4'"/
YAP"e": n =7 regions for ETV4'"/YAP"*, nis number of cells (d,e,f,h), colonies
(c,g,i) or regions (b) pooled from three independent experiments; or number

of regions (j) pooled from four independent experiments. Two-sided Student’s
t-test, **P < 0.001, **P < 0.01, *P < 0.05; ns, not significant. Exact Pvalues are
presented in Supplementary Table 9. Scale bars: 25 um (b,c,d,f,j), 50 pm (h),

100 pm (e) and 200 pm (i). Numerical source data are available as Source data.

employed two shRNAs to target YAP (Extended Data Fig. 3h) and sub-
sequently validated the accuracy of the YAP immunostaining results
(Extended Data Fig. 3i). To gain deeper insights, we seeded hESCs at
varying densities. Although nuclear expression of both ETV4 and YAP
proteins was seenin alow density (-2,000 cells mm), inactivation of
ETV4,but not YAP, took place in amedium density (-5,000 cells mm%;

Fig. 2j). At a high density (-7,500 cells mm2), nuclear expression of
both ETV4 and YAP proteins was reduced (Fig. 2j). The density ranges
we used in this study are equivalent to those from other studies based
on 2D gastruloid models®. These findings confirm that ETV4 and YAP
respond differently to changes in cell density in hESCs. Given the
crucial role of YAP/TAZ in epithelial proliferation'®, a uniformly high
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YAP/TAZ level (Fig. 2i and Extended Data Fig. 3f,g) conforms to active
cell division and high levels of the proliferation marker Ki67 and
5-ethynyl-2’-deoxyuridine (EdU) incorporationin the crowded centre
(Extended DataFig. 3j-1). YAP inhibition significantly diminished hESC
colony growth (Extended Data Fig.3m). Overall, these results demon-
strate spatiotemporal regulation of ETV4 expression by cell crowding
dynamics ina growing hESC epithelium.

Derepression of the neuroectoderm fate by ETV4 inactivation

Pluripotent epiblasts undergo dynamic changes in differentiation
potential as the epithelial disc undergoes size expansion before gastru-
lation**°. Consistently, growing evidence shows that the size of in vitro
hESC colonies influences the differentiation propensity”**, suggesting
adirect role of epithelial expansion in lineage specification. Indeed,
hESCs showed a biased differentiation toward mesendoderm (ME)
when they were differentiated in a small colony. Under a robust neu-
roectoderm (NE)-directed differentiation condition called dual SMAD
inhibition®, small colonies of hRESCs were unable to produce NE cells
expressing PAX6, whichis anecessary and sufficient NE marker genein
humans (Fig. 3a and Extended DataFig. 4a)**. However, ME-directed dif-
ferentiation by BMP4 and FGF2 efficiently turned small hESC colonies
into Brachyury” ME cells (Fig. 3a and Extended Data Fig. 4a)**°. Instark
contrast, large hESC colonies produced both NE and ME lineage cells
with clear spatial separation. PAX6" NE cells predominantly emergedin
the centre under dual SMAD inhibition, whereas ME cells were derived in
the periphery region in the presence of BMP4 and FGF2 (Fig. 3a and
Extended Data Fig. 4a). These results follow previous findings based
on micropatterning technology®’. The NE differentiation potential
of large colonies was confirmed when hESCs were spontaneously dif-
ferentiated by FGF2 and TGF-B deprivation (Extended Data Fig. 4b).

Based on the above results, we hypothesized that the NE fate,
initially repressed in small colonies, can be derepressed in the centre
as cell crowding occurs during colony expansion. Indeed, high cell
density dramatically promoted NE differentiation at the expense of ME
derivation (Fig. 3b), consistent with the findings of a previous report™.
Because ETV4 expression is downregulated in the crowded centre of
large colonies, ETV4 could play a key role in suppressing the NE fate.
The pre-patterns of ETV4 inactivation in undifferentiated hESC colo-
nies precisely matched the size of the PAX6" NE area in differentiated
colonies (Fig. 3c). ETV4 expression was decreased in NE cells but not
in ME cells, supporting the suppressive role of ETV4 in NE derivation
(Extended DataFig.4c). Accordingly, ETV4 overexpression completely
blocked the emergence of PAX6" NE cellsinlarge colonies (Fig. 3d and
Extended DataFig.4d). Furthermore, ETV4 knockdown (KD) enabled
small colonies to differentiate into NE cells (Fig. 3e and Extended Data
Fig. 4e,f), which was blocked by ectopic ETV4 expression (Extended
DataFig.4g). By contrast, ETV4 depletionimpeded Brachyury* ME cell
differentiation (Extended DataFig. 4h). Finally, cell crowding-mediated
NE promotion was blocked by ETV4 overexpression (Extended Data
Fig. 4i). These results demonstrate that ETV4 downregulation by cell
crowding underlies NE lineage derepression.

Toinvestigate the transcriptome-wide effect of ETV4 in hESCs, we
performed RNA-seq after ETV4 KD (Fig. 3f and Supplementary Table 3).
GO analysis of total DEGs (|log,(fold change)| > 0.5, adjP < 0.05) showed
significant enrichmentin embryonic development and morphogenesis
intop 10 GO terms (Extended Data Fig. 5a), supporting the key role of
ETV4inearly lineage determination. Moreover, DEGs upregulated by
ETV4 KD included genes related to neural differentiation with nerv-
ous system development in TOP10 GO terms (Fig. 3f and Extended
DataFig. 5b), confirming the repressive role of ETV4 in the NE deriva-
tion. To pinpoint the molecular mechanisms of ETV4, we focused on
downregulated DEGs because ETV4 primarily acts asatranscriptional
activator’”**, Downregulated DEGs included many genes related to ECM
remodelling, such as matrix metalloproteinases (MMPs; Fig. 3f), with
ECM organizationintop10 GO terms (Extended Data Fig. 5c). Recently,

it was reported that N-cadherin marks cells in the periphery of hESC
colonies®. Are-analysis of published single-cell RNA-seq (scRNA-seq)
datafromsorted peripheral N-cadherin® cells confirmed the elevated
expression of a well-established ETV4 target gene, DUSP6 (Extended
DataFig.5d,e)*°. Furthermore, genesrelated to ECM remodelling, such
as MMPs, were significantly upregulated in N-cadherin® peripheral
cells with ECM in top 10 GO terms (Extended Data Fig. 5e,f and Sup-
plementary Table 4). These results support the role of ETV4 in ECM
remodellingin the periphery region of hESC colonies.
ETV4isaknowndirect upstreamregulator of MMPs in cancer
ETV4 KD or overexpression altered the expression of MMPs in hESCs
(Extended Data Fig. 5g-i). The treatment of pan MMP inhibitors
(GM6001 and BB94) was sufficient to derepress the NE fate in small
hESC colonies (Fig. 3g). By contrast, MMP inhibition disrupted ME dif-
ferentiation (Fig. 3g). Interestingly, membrane-type MMPs (MT-MMPs)
such as MMP14 showed higher expression in hESCs than other MMPs
(Extended Data Fig. 5j). The overexpression of MMP14 phenocopied
ETV4 overexpression (Extended Data Fig. 5k,1) and blocked NE dere-
pressionby ETV4 KD (Fig.3h). Overall, these results suggest that ETV4 is
anNErepressor linking cell crowding dynamics to lineage specification.

3741-43

Spatiotemporal ETV4 expression regulated by ERK

The MAPK signalling pathway is awell-known regulator of PEA3 family
TFsin cancer**. To investigate this molecular link, we took advantage
of the kinase translocation reporter (KTR) system*. When the kinase
of interest is active, fluorescently-tagged substrates are phosphoryl-
ated and localized in the cytoplasm (Fig. 4a). The KTRs for ERK, p38
and JNK were validated by specific inhibitors (Extended Data Fig. 6a).
For p38, individual cells displayed highly variable kinase activities
with no discernible difference between the centre and periphery of
large colonies (Extended Data Fig. 6b), whereasJNK activities were low
in most cells (Extended Data Fig. 6¢). However, the ERK-KTR showed
clear cytoplasmiclocalizationin most cells of small colonies (Fig. 4a).
Asacolonygrew, asharpreductionin ERK activity was observedinthe
crowded centre (Fig. 4b and Extended Data Fig. 6d,e). Induction of
cell crowding was sufficient toinactivate ERK (Extended Data Fig. 6f).
Live cellimaging of ERK activity revealed that the ERK activity pattern
closely resembled the expression pattern of ETV4 (Fig. 4¢).

ERK inhibition by chemical inhibitors (PD0325901 and U0126)
induced a rapid decrease in ETV4 protein abundance without affect-
ingthe mRNA level (Fig. 4d and Extended Data Fig. 6g,h). Proteasome
inhibition blocked the decrease, suggesting that ERK regulates ETV4
protein stability (Fig. 4d). ERK inhibition dramatically reduced the
half-life of ETV4 proteins from 4.15 h to 0.35 h (Fig. 4e). COPlis acriti-
cal E3 ligase for the degradation of PEA3 family TFs*®*. In large hESC
colonies, COP1was primarily localized inthe nucleus with homogenous
expression (Extended DataFig.7a). COP1KDsslightly increased the basal
level of ETV4 protein (Extended Data Fig. 7b-d) and nullified the effect
of ERK inhibition on ETV4 expression (Extended Data Fig. 7d). COP1
depletion also blocked ETV4 downregulation in the crowded centre
of large hESC colonies and suppressed NE differentiation (Extended
DataFig.7e,f).

Finally, ERK inhibition derepressed the NE fate and inhibited ME
differentiation in small hESC colonies (Fig. 4f). NE derepression by ERK
inhibition was completely blocked by ETV4 overexpression (Fig. 4g).
ERK activation by constitutively active KRAS®® increased ETV4 protein
levels and suppressed NE differentiation (Extended Data Fig. 7g-i).
While ERK signalling is known to have a broad impact on numerous
regulatory factors, our findings suggest ETV4 as a primary target of
ERKin the context of lineage specification.

Cell-crowding-mediated regulation of receptor endocytosis

The FGF and TGF-f signalling pathways play crucial roles in maintain-
ing pluripotency**~'. Short-term treatment of A83-01 (TGF-p inhibi-
tor) showed no effect on ERK activity (Fig. 5a); however, SU-5402 (FGF
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relationship between the diameters of ETV4-low areas in undifferentiated
H9 hESC colonies and the diameters of PAX6+ areas in NE-differentiated
colonies. n =168 colonies for ETV4 and n = 92 colonies for PAX6.

d, Immunofluorescence assay for PAX6 in large H9 colonies transduced with
lentiviral vectors expressing ETV4-HA and differentiated to NE cells for 5 days.
n=15regions. e, Immunofluorescence assay for PAX6 in small H9 colonies
transduced with lentiviral vectors expressing ETV4 shRNAs together with
GFP and differentiated to NE cells for 5 days. n =10 regions. f, Volcano plot
showing DEGs in H9 hESCs after ETV4 KD. The red and blue dots indicate
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upregulated and downregulated genes, respectively, with cutoff values for
DEGs: log,(fold change) <-0.5or > 0.5, adjP < 0.05. Full list of DEGs can be
found in Supplementary Table 3. g, Imnmunofluorescence assay for PAX6 and
Brachyury in small H9 colonies differentiated to either NE or ME cells with pan
MMP inhibitors, GM6001 (5 puM) and BB94 (2 pM). NE differentiation: n =21
regions for GM6001, n =20 regions for BB94; ME differentiation: n =38 regions
for GM6001, n = 52 regions for BB94. h, Immunofluorescence assay for PAX6
inshETV4-expressing H9 hESCs transduced with lentiviral vectors expressing
MMP14 together with GFP and differentiated to NE cells for 5 days.n=9
regions. nis number of colonies (a,c) or regions (b,d,e,g,h) pooled from three
independent experiments. Two-sided Student’s ¢-test, ***P < 0.001, **P< 0.01,
*P < 0.05; ns, not significant. Exact Pvalues are presented in Supplementary
Table 9. Scale bars: 10 pum (e), 25 pm (h), 50 pm (a,d,g), 100 pm (b). Numerical
source data are available in Source data.

inhibitor) reduced ERK activity and the level of ETV4 proteins with-
out altering mRNA expression (Fig. 5b,c). We used shRNAs targeting
FGFR1owing to the high expressionin hESCs (Extended Data Fig. 8a-c).
FGFR1KD decreased ERK activity and ETV4 expression (Extended Data

Fig.8d,e), suggesting FGFR1-mediated signalling as an upstream path-
way of ERK and ETV4.

An emerging body of evidence shows that receptor localization
contributes to regulating downstream signalling®*>. For example,
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Fig. 4 | ERK regulates the spatiotemporal ETV4 expression. a,b, ERK activity
measured by the ratio of the cytoplasmic over nuclear intensities of ERK-KTR
(C/Nratio) insingle cells within small (a) and large (b) H9 colonies. n =95 cells
for small; n =85 cells for periphery and centre; n = 90 cells for boundary-P
(peripheral side near the boundary where ERK acivity transitions) and
boundary-C (central side near the boundary). ¢, Representative time-course
images from three independent colony-tracking assays for ERK-KTR in H9
colonies, followed by immunofluorescence assay for ETV4.

d, Immunofluorescence assay for ETV4 in H9 hESCs treated with PD0325901

(1 pM) and MG132 (10 pM). n = 60 cells. e, Quantification of ETV4 protein stability
inH9 hESCs in the presence of PD0325901 (1 pM). For CHX,n=3 (0 h),3 (3 h) and
2 (6 h)independent experiments. For PD + CHX, n = 3independent experiments.

PD, PD0325901; CHX, cycloheximide. f, Immunofluorescence assay for PAX6
and Brachyury insmall H9 colonies differentiated to either NE or ME cells with
PD0325901 (1 uM). NE differentiation: n = 75 regions for NC, n = 69 regions for
PD0325901; ME differentiation: n = 42 regions. g, Immunofluorescence assay
for PAX6 in H9 hESCs transduced with lentiviral vectors expressing ETV4-HA
and differentiated to NE cells for 5 days with PD0325901 (1 uM). n =11 regions.
nisnumber of cells (a,b,d) or regions (f,g) pooled from three independent
experiments. Two-sided Student’s ¢-test, ***P < 0.001, **P < 0.01, *P < 0.05; ns, not
significant. Exact Pvalues are presented in Supplementary Table 9. Scale bars:
25um (d), 50 um (a,b,f,g), 100 um (c). Numerical source data, unprocessed gels
and additional microscope images are available as Source data.

it was recently reported that lateral localization of TGF-3 receptors
impeded cellular responses to apically applied ligands®**. However,
we observed that cell-crowding-induced ETV4 inactivation occurred
in hESC culture on atranswell system, where ligands are accessible to
bothapical and basolateral sides of cells (Extended Data Fig. 8f). In the
case of receptor tyrosine kinases, endocytosis is functionally related
to the downstream signalling activation®. Activated EGFR and FGFR
accumulate in endosomes that serve as a signalling platform®, and
blocking receptor endocytosis inhibits the downstream signalling®® %,
Recently, it was reported that membrane tension influenced FGFR
endocytosis and downstream ERK activity inmouse ESCs, implicating
mechanical regulation of receptor endocytosis®**°. To test this idea,

we generated stable hESC lines expressing GFP reporters for various
endosomes and lysosomes®. In small hESC colonies, a significant
number of FGFR1-containing vesicles colocalized with RAB5A" early
endosomes (Fig. 5d), afinding that was confirmed using another early
endosome marker, EEA1 (Fig. 5e). FGFR1-containing vesicles were also
observedinlateendosomes (RAB7A), recycling endosomes (RAB11B)
and lysosomes (LAMP1; Fig. 5d). These results suggest that FGFR1
proteins are under active endocytosis, followed by recycling or deg-
radation. Strikingly, cells in large hESC colonies showed distinct sub-
cellularlocalizations of FGFR1 proteins depending on their positions.
These proteins were predominantly present in endosome vesicles in
the periphery of large colonies (Fig. 5e and Extended Data Fig. 9a). In
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stark contrast, membrane localization of FGFR1 proteins was observed
in the crowded centre, suggesting impaired endocytosis (Fig. 5e and
Extended Data Fig. 9a, b). FGFR1 proteins were localized in both api-
caland basolateralmembranesin the crowded centre (Extended Data
Fig.9a). The transition of FGFR1localization occurred abruptly along
theradial axis of large hESC colonies (Fig. 5e). To further validate these

results, we applied a DNA aptamer (TDO) previously developed as
an agonist of FGFR1 (Extended Data Fig. 9¢)®’. Fluorophore-tagged
aptamers were found in FGFR1-containing early endosomes in the
periphery of large hESC colonies (Extended Data Fig. 9d). By contrast,
few aptamer-containing early endosomes were detected in the centre
(Extended DataFig. 9d). Furthermore, induction of cell crowding was
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sufficient toimpair FGFR1 endocytosis with loss of EEA1 colocalization
(Fig. 5f). These results show that FGFR1 endocytosis is tightly regulated
by cell crowding.

Next, we used Pitstop2 (a clathrin inhibitor) and Dynasore
(a dynamin inhibitor) to suppress endocytosis (Extended Data
Fig. 9e)°***. Endocytosis inhibition dramatically decreased the num-
ber of FGFR1-containing endosomes, ERK activity and ETV4 expression
(Fig.5g-iand Extended Data Fig. 9f-h), which phenocopied the effects
of FGFR inhibition (Fig. 5b,c). Constitutively active KRAS®?' blocked
the effect of endocytosis inhibition on ETV4 expression (Extended
DataFig. 9i), suggesting that endocytosis regulates ETV4 through the
FGFR-RAS signalling.

Consistent with previous research®**®, we found that FGFR inhibi-
tionwas sufficient to derepress the NE fate within small hESC colonies
(Fig.5jand Extended Data Fig. 9j), while suppressing the ME derivation
(Fig. 5j). Notably, we observed a similar phenotypic outcome uponthe
inhibition of endocytosis (Fig. 5j). Furthermore, ectopic ETV4 expres-
sionentirely counteracted the NE-promoting effectsinduced by FGFR
and endocytosisinhibitors (Fig. 5k,1). Overall, our findings suggest that
cell-crowding-mediated blockade of FGFR1 endocytosis leads to the
inactivation of both ERK and ETV4.

Regulation of receptor endocytosis by integrin-actomyosin
To figure out molecular mechanisms bridging cell crowding to FGFR1
endocytosis, we revisited the RNA-seq data performed in crowded
hESCs. Downregulated DEGs in crowded hESCs showed significant
enrichment of genesrelated to cell-ECMinteractions such as integrins
(Fig. 6aand Extended DataFigs.1band 10a). Published scRNA-seq data
from N-cadherin® peripheral cells also showed focal adhesion in top
10 KEGG pathways (Extended Data Fig. 10b)*. These results concord
with the fact that cell crowding leads to asmaller surface area through
which cellsinteract with the ECM.

Consistent with the transcriptomic results, a high level of integrin
B1was observed in paxillin® focal adhesions in small colonies and the
periphery of large colonies (Fig. 6b). By contrast, crowded cells in
the centre showed perinuclear localization of integrin 1 with loss of
paxillin colocalization (Fig. 6b). Focal adhesion kinase (FAK) is a critical
componentofintegrin signalling”. Immunostaining of phosphorylated
FAK (pFAK, active FAK) revealed the sharp downregulationin response
to increased cell density in hESCs (Fig. 6¢). Furthermore, FAK inhibi-
tionsuppressed FGFR1 endocytosis, ERK activity and ETV4 expression
(Extended DataFig.10c-f). These findings suggest that integrin signal-
ling bridges cell crowding to FGFR1 endocytosis.

Although integrin signalling has the potential to impact a wide
array of cellular processes, we focused on its role in regulating cyto-
plasmic actin filaments, given the significance of actin dynamics in
receptor endocytosis®®*7°. Consistent with the patterns of integrin f1*
focal adhesions, small hESC colonies showed well-established pMLC*
bundles, while the zonation of pMLC staining appeared in large hESC
colonies with a sharp reduction in the centre (Fig. 6d,e). Disassembly

of pMLC*bundles was observed by integrininhibition (RGDS peptide),
FAK inhibition or cell crowding (Extended Data Figs. 1e and 10g,h).
We used either blebbistatin (myosin inhibitor) or YM (Y-27632, RhoA
kinase inhibitor; ML-7, myosin light chain kinase inhibitor) to inhibit
actomyosin (Extended Data Fig. 10i,j)”". Transient inhibition of acto-
myosin activity decreased the number of FGFR1-containing endosome
vesicles and inactivated ERK and ETV4 (Fig. 6f-h and Extended Data
Fig.10d k,I). Importantly, the transient activation of actomyosin by
doxycycline-inducible expression of constitutively active RhoA%*"
partially re-activated FGFR1 endocytosis in the crowded centre of
large hESC colonies (Fig. 6i and Extended Data Fig. 10m). These find-
ings suggest that actomyosin, in addition to serving as a marker of
cellular mechanical stress, plays a crucial role in regulating receptor
endocytosis in response to mechanical stimuli. However, it is essential
toacknowledge that other cellular changesinduced by cell crowding,
suchas the reduction in apical surface area for ligand interaction and
alterations in cell geometry, may also contribute to regulating recep-
tor endocytosis.

Finally, actomyosin inhibition derepressed the NE fate in small
hESC colonies while preventing ME differentiation (Fig. 6j). The NE
derepression by actomyosin inhibition was blocked by ETV4 over-
expression (Fig. 6k). Overall, these results suggest that the integrin-
actomyosin pathway serves as a crucial link connecting cell crowding
to FGFR1endocytosis, ETV4 expression and NE specification (Fig. 61).

Dynamic ETV4 expression captured by mathematical
modelling
A critical question that remains tobe answered in this study is how the
gradient of cell crowding from the periphery to the centre produces a
sharpboundary in ETV4 expression. To address this question, we pro-
pose amathematical framework that describes a cell crowding model.
Based on real-time imaging data of H2B-GFP hESC colony growth, we
obtained an analytical solution to the governing reaction-diffusion
partial differential equation describing cell crowding dynamics (Meth-
ods). This equation assumes a cell population density varying in time
and space due to the flow of cells (diffusion) from high- to low-density
regions (outward flow) as well as cell division (reaction). A similar
approach has been used to describe bacterial colony growth’. Our
model accurately predicted the colony population and colony size
(diameter; Fig. 7a). Moreover, the model predicted an increase in cell
density over time and higher cell crowding at the colony centre (Fig. 7b).
Cell crowding inversely correlates with ECM-accessible area,
linking ECM ligand availability to cell density. Moreover, it is well
established that integrin-ECM binding kinetics follow a cooperative
interaction””*. Such an interaction enforces a system with an on/off
switch-like behaviour. We used the Hill equation to model integrin-
ECMinteractions”. The equation captures the biomolecularinteraction
that exhibits the cooperativity between two binding molecules. Our
model predictsaswitch forintegrinactivity that occurs at different dis-
tances fromthe colony’s centre as the colony grows over time (Fig. 7c).

Fig. 6| The integrin-actomyosin pathway regulates FGFR endocytosis. a, GSEA
withthe RNA-seq data from H9 hESCs in low- and high-density cultures. GSEA was
performed with three different gene sets: cell-substrate junction (left), cell-ECM
interaction (middle) and integrin adhesome (right). b, Immunofluorescence assay
for Integrin 1and Paxillin in small and large H9 colonies. n = 9 regions for small,
n=13regions for periphery, and n =10 regions for centre. ¢, Immunofluorescence
assay for pFAK and OCT4 in different densities of H9 hESCs. n = 69 regions.

d,e, Immunofluorescence assay for pMLC in small (d) and large (e) H9 colonies.
n=30regions. f,Immunofluorescence assay for FGFR1and EEAlin small H9
colonies treated with Blebbistatin (50 pM, 30 min).n =10regions. g, Time-course
images for ERK-KTRin H9 hESCs treated with Blebbistatin (S0 pM). ERK activity
was measured by the ratio of the cytoplasmic over nuclear intensities (C/N ratio).
n=30cells. h,Immunofluorescence assay for ETV4 in H9 hESCs treated with
Blebbistatin (50 puM, 1 h). n =241 cells for NC and n = 230 cells for Blebbistatin.

i, Immunofluorescence assay for FGFR1and EEAlin large H9 colonies transduced
with lentiviral vectors expressing constitutively active RhoA%*-GFPina
doxycycline-dependent manner. n =25 regions. j, Immunofluorescence assay for
PAX6 and Brachyury in small H9 colonies differentiated to either NE or ME cells
with Blebbistatin (1 uM). NE differentiation: n = 37 regions, ME differentiation:
n=45regions for NC and n = 38 regions for Blebbistatin. k, Inmunofluorescence
assay for PAX6 in H9 hESCs transduced with lentiviral vectors expressing ETV4-HA
and differentiated to NE cells for 5 days with Blebbistatin (1 uM). n =9 regions.

1, Graphic summary of the mechanotransduction pathway regulating ETV4
expression and lineage fates. nis number of cells (g,h) or regions (b,c,e f,i,j k)
pooled from three independent experiments. Two-sided Student’s ¢-test,
***P<0.001,*P<0.01,*P<0.05; ns, not significant. Exact Pvalues are presented
inSupplementary Table 9. Scale bars: 10 pum (b,i), 25 pm (c,d, e f,g), 50 pm (h,j k).
Numerical source data are available as Source data.
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The ultrasensitive transition of integrin activity appears when the core
celldensity reachesacritical density of 5,000 cells mm (Fig. 7d), which
matches well with the pFAK and ETV4 experimental data (Figs. 2f, 6¢
and 7e).Furthermore, our model recapitulated the experimental data
with the ETV4 low-expression region appearingin the centre when the
colonysizereaches1,000-1,500 pmin diameter (Fig. 7f,g). The critical
cell density can only be observed after ¢ > ¢, (Where t represents time
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andt,representsthe critical time when the ETV4 transitionboundary
appearsforthefirst time), and the radius at which the ETV4 transition
occurs varies as a function of time (Fig. 7h). Although our model suc-
cessfully demonstrated the ultrasensitive transition of integrin activity
and ETV4 expression based on the ECM availability and the cooperativ-
ityinintegrin~-ECM interaction, itis essential to acknowledge that cell
shapeitself may also contribute to regulating integrin signalling or the
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downstream pathways independently of ECM availability”. Overall, our
model bridges the simple growth of stem cell epithelium to the timing
and location of ETV4 inactivation and NE derepression.

Discussion

An outstanding question in developmental biology is how multiple
lineages arise from a single-layered epithelium of seemingly homo-
geneous stem cells. During the expansion of hESCs, active prolifera-
tion prompts local cell crowding in the centre of epithelial colonies.
A gradual change in cell crowding induces the abrupt inactivation of
integrin signalling based on the cooperativity of the integrin-ECM
interaction. The blunted integrin-actomyosin pathway impedes FGF
receptor endocytosis, thereby derepressing the NE fate from ETV4
(Fig. 61). Importantly, ETV4, formerly known as an oncogene, serves
as amechanotransducer linking cell crowding dynamics to lineage
specification in a stem cell epithelium.

Previous studies have employed hESC-derived gastruloid models
grown on micropatterned plates to study molecular mechanisms for
embryonic germ layer derivation®”””’%, Although a differentiation sig-
nal, BMP4, affects all cells in a culture plate, distinct lineages emerge
inadefined position along the radial axis of hESC colonies. Reaction-
diffusion models have been used to explain lineage patterning, where
asymmetric gradients of signal activators and inhibitors determine the
positionalidentity of differentiating cells’**°. InhESCs, BMP4 directly
stimulates the expression of NOGGIN, a BMP antagonist, providing a
reaction-diffusion mechanism for pattern formation®’. In addition,
cell-density-dependent relocalization of TGF-3 receptorsto the baso-
lateral side restricts signalling activation, contributing to gastruloid
formation®. In this study, we identified ETV4 as amechanotransducer
for lineage determination. ETV4 responds to cell crowding dynamics
evoked by epithelial expansion, generating a pre-pattern with asharp
boundary for future lineage fates. Our findings offer an independent
patterning mechanism, directly connecting mechanical microenviron-
ments to lineage specification.

Inanin vitro ESC differentiation, NE derivation is deemed the
default pathway because minimal medium conditions without addi-
tional signalling molecules are sufficient to direct ESCs toward the NE
lineage®. However, we found that derepression from ETV4 is essential
for successful NE derivation. This finding suggests that, at first, hESCs
are not inclined towards NE differentiation. The withdrawal of sig-
nalling molecules such as FGF acts as a signal to inactivate ETV4 and
thereby induces derepression of the NE fate in hESCs. These results
provide anew perspectivein understandinglineage fate determination
during early hESC differentiation.

Core pluripotency genes are essential for the self-renewal of
hESCs. At the same time, these genes play critical roles in regulat-
ing lineage specification®. Upon differentiation, OCT4 and NANOG
promote the ME lineage, while SOX2 drives NE derivation®***, These
findings suggest that the core pluripotency genes act as the uppermost
regulators of stem cell self-renewal and differentiation. In this study,
however, we propose that ETV4 impacts lineage fate determination
earlier than core pluripotency genes. In large hESC colonies, ETV4
protein expressionsharply decreases in the crowded centre before the
expression of any core pluripotency genes alters, highlighting ETV4 as
the earliest determinant of lineage fates in hESCs.

Epithelial cell crowding activates contact inhibition, mediated
by YAP/TAZ and PIEZO1, to suppress proliferation and maintain tissue
homeostasis'**'>*%¢_ However, the mechanism by which cell crowd-
ing decouples lineage fate determination from contact inhibition of
proliferation is unclear. Here, we identified that ETV4 acts as an on/
off switch with ultrasensitive dependence on cell crowding. Sharp
ETV4 inactivation by cell crowding derepresses the NE fate. At the
same time, sustained YAP activity safeguards stem cell proliferation
inahigh-density environment. Insuchasetting, hESCs can utilize spa-
tiotemporal heterogeneity in cell density to derive multiple lineages

while maintaining active proliferation. Beyond stem cell differentia-
tion, ETV4 is a critical oncogene with elevated expression in multiple
cancers***. Therefore, our discovery of ETV4 as a mechanical trans-
ducer provides new insights into the mechanisms underlying tumour
progression and suppression.
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Methods

Maintenance of cell lines

H9 (WA09) and H1 (WAO1) hESCs were purchased from WiCelland cul-
tured on Matrigel (Corning) eitherin mTeSR1(Stem Cell Technologies)
or TeSR-E8 (Stem Cell Technologies) medium. H9 and H1 hESCs were
authenticated by short tandemrepeat analysis. hESCs were maintained
at 37 °C with 5% CO, and were passaged every 3-4 days by ReLeSR
(Stem Cell Technologies). This work was approved by the Human Stem
Cell Research Oversight Committee at Pohang University of Science
and Technology (PIRB-2021-R035). HEK293T cells (CRL-11268, ATCC)
and MCF-7 cells (HTB-22, ATCC) were cultured in DMEM supplemented
with10% fetal bovine serum (FBS). ARPE19 cells (CRL-2302, ATCC) were
cultured in DMEM/F12 with 10% FBS. Cells were maintained at 37 °C
with 5% CO,and were passaged every 2-3 days by trypsin (Welgene). To
manipulate substrate stiffness, H9 hESCs and MCF7 cells were plated
and cultured on 35 mm imaging dishes with 15 and 1.5 kPa PDMS lay-
ers (ibidi). To facilitate cell attachment, we applied the dishes to a thin
Matrigel coating (1% Matrigel diluted in basal media). The stiffness
valuesreportedinour study represent the properties of the underlying
plastic and hydrogel substrates.

Differentiation of hESCs

For spontaneous differentiation, hESCs on Matrigel were induced to
differentiate with basal hESC culture media (DMEM/F12, 15% knock-
out serum replacement, MEM nonessential amino acid solution, and
0.1 mM 2-mercaptoethanol) without FGF2 and TGF-3. For neuroecto-
derm differentiation, hESCs were differentiated on Matrigel with hESC
culture media (DMEM/F12, 5% knockout serum replacement, MEM
nonessential amino acid solution, and 0.1 mM 2-mercaptoethanol)
containing SB431542 (PeproTech, 10 pM) and Dorsomorphin (Tocris,
2 uM). For mesendoderm differentiation, hESCs were differentiatedin
mTeSR1 medium (containing FGF2) supplemented with recombinant
human BMP4 (R&D Systems, 5 ng ml™).

High-density culture of hESCs

Small drops of Matrigel (2 ul) were deposited on achamber slide glass
(Thermo) to create a controlled pattern of the adhesive surface. The
prepared micropattern chamber slides were sealed with parafilm and
incubated for 1h at room temperature before use. hESCs were dis-
sociated by ReLeSR (Stem Cell Technologies) and resuspended in1 ml
of mTeSR1 or TeSR-E8 medium. The entire resuspended solution was
seeded on a micropattern chamber slide. After cell adhesion, excess
cells were removed by washing, and adherent cells were left to grow
for ~2-3 days to cover the whole patterned area. The cell densities
used in this study, ranging from 2,000 to 10,000 cells mm™?, match
the parameters established in prior research utilizing 2D gastruloid
models®.

Assessment of hypoxic cells

Hypoxic cells were detected using a Hypoxyprobe kit (Hypoxyprobe)
according tothe manufacturer’sinstructions. hESCs cultured undera
hypoxic condition (5% O,, 5% CO,and 90% N,) were used for validation.
Cultured cells were treated with pimonidazole to a final concentra-
tion of 400 pM at 37 °C for 2 h. Hypoxic cells were then detected by
fluorescence imaging.

Glucose uptake assay

Glucose uptake was assessed using a glucose uptake assay kit (Dojindo)
following the manufacturer’sinstructions. To validate the assay, hESCs
were incubated at 4 °C for 15 min to inhibit glucose uptake. Cultured
cellswere treated with the Glucose Uptake Probe to afinal concentra-
tionof 5 uM at 37 °Cfor 15 min. The cells were washed three times with
cold washing solution and replenished with cold washing solution at
4 °C. Glucose uptake was subsequently visualized by fluorescence
imaging.

Lentiviral preparation and concentration

Lentiviral vector plasmids were transfected into HEK293T cells with
second-generation packaging vectors psPAX2 (Addgene, 12260)
and pMD2.G (Addgene, 12259; Supplementary Table 6). Transfected
HEK293T cells were cultured at 37 °C with 5% CO, for 2 days. Superna-
tants were filtered using 0.45 pm filters (Corning) and concentrated
overnight at 4 °C using Lenti-X Concentrator (Takara Bio). Concen-
trated lentiviruses were resuspended in PBS and stored at -80 °C.

Generation of hESCreporter lines

Concentrated lentiviral particles for KTRs and endosome/lysosome
reporters were transduced to H9 hESCs grown on Matrigel with
TeSR-E8. Two days after transduction, 2 pug ml™ puromycin (Gibco)
was added to culture medium. Puromycin selection was performed
for atleast 4 days to generate stable hESC reporter lines.

Immunofluorescence staining

All samples were fixed using 3.7% methanol-free formaldehyde
(Thermo) for 15 min at room temperature. After fixation, samples were
washed 3 times with PBS and permeabilized with 0.25% Triton X-100
(SIGMA)-supplemented PBS for 10 min at room temperature. Samples
were blocked with10% FBSin PBS for 1 hatroom temperature. The pri-
mary antibodies diluted inthe blocking solution were treated overnight
at 4 °C (Supplementary Table 5). After washing three times with PBS,
an appropriate Alexa Fluor dye-conjugated secondary antibody was
used to treat samples for1hatroomtemperature. Nuclear staining was
performed onsamples for 2 min with Hoechst 33342 (Thermo).Images
were captured by afluorescence microscope (Leica DMi8) or confocal
microscope (ZEISSLSM800). Sample images were prepared inimage)
1.53 software (Fiji), and statistical analysis was performed using the
GraphPad Prism 9.1.0 software (GraphPad Software).

Cell shape analysis

The CSlis calculated based on measurements obtained from ZO1 stain-
ing images, where each cell’s boundary is outlined, and its area and
perimeter are measured. To calculate the CSI, we used the following
formula: CSI = 41t x area/perimeter2.

EdU incorporation assay

To label actively proliferating cells, we used the Click-iT EdU Imag-
ing Kit (Thermo) following the manufacturer’s instructions. hESCs
were treated with EdU to a final concentration of 5 uM at 37°C for 6 h.
After EdU labelling, hESCs were washed with PBS and fixed using 3.7%
methanol-free formaldehyde (Thermo) for 15 min at room tempera-
ture. EdU was detected by the Click-iT reaction protocol.

Crystal violet staining
Cells were washed once with PBS and stained at room temperature
for 1 min with 1 ml of crystal violet staining solution (SIGMA). After
staining, samples were washed three times with PBS, and dried atroom
temperature for 15 min.

Quantitativereal-time PCR

Total RNA was isolated using QIAzol Lysis Reagent (QIAGEN) and
reversely transcribed with SuperiorScript Ill Master Mix (Enzynom-
ics). Quantitative RT-PCR analysis was performed on the CFX Connect
Real-Time PCR Detection System (BIO-RAD) with TOPreal qPCR 2X
PreMIX (Enzynomics) (Supplementary Table 7). GAPDH was used as a
normalization control. Results were plotted using the GraphPad Prism
9.1.0 software (GraphPad Software).

Westernblot

Cells were lysed with RIPA lysis buffer supplemented with Protease
Inhibitor Cocktail Kit5 (Quartett). Protein concentration was meas-
ured using the BSA Protein Assay kit (Thermo). The same amount of
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protein sample was separated on SDS-PAGE and then transferred to a
nitrocellulose membrane (BIO-RAD). Membranes were blocked with
PBST (0.1% Tween 20 in PBS) containing 5% skim milk; thenimmunob-
lotting was performed overnight at 4 °C with primary antibodies (Sup-
plementary Table 5). The membranes were stained with an appropriate
HRP-conjugated secondary antibody for 1 h at room temperature.
Signals were detected with Amersham imager 680 (Amersham), and
relative signal intensity was quantified by Multi gauge 3.0 (FUJIFILM).

Cell stretching experiment

A manual cell stretching system STB-100 (Togetherbio) was used to
control cellareadirectly. Stretch chambers (STB-CH-4W) were coated
with Matrigel. Cells were seeded in a chamber that was stretched by
20% for 2 days. The chamber was then gently released to reduce cell
areaand incubated for 24 h before further experiments.

Cell scratch experiment

Cells were scraped using P10 pipet tips, washed with 1 ml of culture
medium to get rid of the debris, and then fed with 2 ml of culture
medium.

RNA sequencing analysis

Using the lllumina TruSeq Stranded mRNA Sample Preparation Kit
(Illumina), 1 pg of the total RNA of the sample was prepared to create
alibrary. The poly-A-containing mRNA molecules were purified using
poly-T-attached magnetic beads. The mRNAs were copied into the
cDNA library using SuperScript Il reverse transcriptase (Invitrogen).
Following the qPCR Quantification Protocol Guide (KAPA BIOSYS-
TEMS), thelibrary was quantified using the KAPA Library Quantification
Kit for lllumina Sequencing Platform and qualified using TapeStation
D1000 ScreenTape (Agilent Technologies). Then, the indexed library
was submitted to IlluminaNovaSeq (Illumina), and pair-end (2 x 100 bp)
sequencing was performed. The raw reads from the lllumina NovaSeq
were trimmed using TRIMMOMATIC and mapped to the Homo sapiens
transcriptreference (GRCh37) using HISAT v2.1.0. Transcript assembly
of known transcripts was processed by StringTie v2.1.3b. The expres-
sionabundance of genes was calculated as read counts or FPKM values
persample and filtered through statistical hypothesis testing for addi-
tional analysis such as DEGs.

Differential gene expression analysis

We used DESeq2® (https://bioconductor.org/packages/DESeq2/)
to perform differential gene expression analysis using bulk RNA-seq
data. Toidentify DEGs from scRNA-seq data, we used DEsingle®” imple-
mentation in R/Bioconductor (https://bioconductor.org/packages/
DEsingle). Pvalues were adjusted for multiple comparisons using the
FDR approach.

Cellular crowding model
Areaction-diffusion equationis used to model colony growth dynam-
icsas

acr, b
or

ac(r,t)
ot

< 2C(r, )

1
or? r

) +aC(r,t) 1)

by capturing spatial variationin colony cell population density through
diffusion as well as cell proliferation (first and second term in equa-
tion (1)) where C defines cell population density and r is defined as
the radial distance from the centre of the colony. D and a represent
diffusion coefficient and cellular division rate and can be measured
experimentally. Forexample, hESC division rate was inferred fromthe
range of experimentally observed cellular doubling rate using a = In(2)/
(doubling rate) from previous reports®. Diffusion coefficient was also
estimated using a least squares fit to Fig. 7a. Spatially homogenous
solution to equation (1) represents colony population exponential

growth (thatis the number of cellsin the colony) with the division rate
a.With the following initial and boundary conditions

C, r<ry
cr,t=0)= 2)
0,r>ry
Cr=0,6)<0,C(r=1,6=0 3)

solution to equation (1) can be found as

crt)= i Age OV Jo )

k=1

_ 2Coroh(Akro)

whereA, = a Jo (A¢) = 0,keNt*and r*arescaled timeandradius.

With /() %skthe Bessel function of the first kind and A, zeros of
Jo(r), equation (4) predicts cellular crowding at any location in time.
Since equation (4) predicts a smooth radial distribution of cell popu-
lation density, we defined the colony radius as the radius where cell
population density reaches a constant as estimated experimentally
based on Fig. 7b. To simplify the governing equation describing cell
colony growth, we neglected active cell-cellinteractionand cell surface
adhesion, which couldintroduce several additional parameters to our
model. Moreover, the diffusion equation assumes a continuous C(r,t),
anassumption thatis nolonger valid around the boundary where cell
population distribution becomes discrete and, therefore, we applied
theboundary conditionin equation (3) to ensure that below a thresh-
old, cell population density is set to 0. Both assumptions have been
used in studies modelling colonial bacterial growth’.

Based on cooperativity of an integrin-ECM interaction, we used
Hill equation to model integrin-ligand interaction as

LI!

T Ky +Ln ©

where 0, L, K, and nrepresent integrin activity, ligand concentration,
integrin-ligand dissociation constant, and the Hill coefficient, respec-
tively. L is limited by cellular crowding such that in a high population
density, ligand availability reduces due to the smaller contact between
cellsurfaceand ECM. Therefore, L isinversely proportional to cellular
crowding and can be expressed as

__Lo
= Cro

(6)

where L, isaconstant. Using equations (5) and (6), we derived integrin
activity as afunction of cellular crowding as

1

= (7)
1+ (BC(r,0)

where Bis a constant and can be found experimentally. Furthermore,
integrinactivates FAK through tyrosine-phosphorylation (pFAK), which
inturn upregulates ETV4 expression or in other words:

6 — pFAK — ETV4 (8)

The Hill coefficient determines the degree of cooperativity and deter-
mines ETV4 transition width (that is, the sharpness of the sigmoid
shape of 6) such that n > e converges to a step function. However, the
location of the transition (that is, ETV4/integrin transition diameter)
isindependent of n. At equilibrium, pFAK and ETV4 expression levels
aredirectly correlated with @with reaction equilibrium constantas the
correlation coefficient. Normalization of pFAK and ETV4 expression
was done using min-max normalization (min =0, max =1.2) to scale
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pFAK/ETV4 expression to be compared to model predictionin Fig. 7d.
Together, this mathematical model can accurately predict both cell
population dynamic and the spatiotemporal dynamic of ETV4 expres-
sion. Model parameters are measured experimentally and presentedin
Supplementary Table 8. Sis obtained by least square fitting equation (7)
into experimental measurement of cell population density and ETV4
expression profile. The estimate and the permutation error for  are
reported in Supplementary Table 8.

Statistics and reproducibility

Statistical analyses were performed using GraphPad Prism 9.1.0 soft-
ware (GraphPad Software) and Image) 1.53 software (Fiji). No statistical
method was used to pre-determine sample size, but our sample sizes
aresimilar to those reported in previous publications”% No datawere
excluded from the analyses. The experiments were not randomized,
and the investigators were not blinded to allocation during experi-
ments and outcome assessment. Data distribution was assumed to be
normal, but this was not formally tested. All differences were compared
using atwo-tailed Student’s t-test. Error bars represent mean + s.d. For
image quantifications, precise numbers of quantified cells or colonies
are provided in the figures or legends. Exact P values are available in
Supplementary Table 9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The RNA-seq datagenerated from this study have been depositedinthe
Gene Expression Omnibus (GSE183702). Published bulk and single cell
RNA-seqthat werere-analysed here are available from the Gene Expres-
sion Omnibus (GSE69982 and GSE126022). Source data are provided
with this study. All other data supporting the findings of this study
areavailable from the corresponding author on reasonable request.
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Extended Data Fig.1| The expression of ETV4 is regulated by mechanical
microenvironments. a, Relative cell area of H9 hESCs in low and high density
cultures. n=10 regions pooled from two independent experiments. b, Volcano
plot showing DEGs from H9 hESCs in high density culture. The red and blue dots
indicate up- and down-regulated genes, respectively, with cutoff values for DEGs:
log,FC<-0.50r>0.5,adjP <0.05. Full list of DEGs can be found in Supplementary
Table 1. c, The top 10 biological pathways ranked by p-values from GO analysis
with total DEGs d, Gene set enrichment analysis (GSEA) with the RNA-seq data
fromH9 hESCsin low and high density cultures. GSEA was performed with 3
different gene sets: Actomyosin, Actin filament bundle, Contractile fiber from
Molecular Signatures Database (MSigDB). e, Immunofluorescence assay for
pMLCin H9 hESCs under low and high density cultures. n=25 regions. f, FPKM of
PEA3 family transcription factorsin H9 hESCs (GSE183702). n=2 samples pooled
fromtwo independent experiments. g, Immunofluorescence assay for ETV4in

ARPE19 cells under low and high density cultures. n=30 cells for low density, n=41
cells for high density. h, Schematic representation of the cell stretching system.
i, Colony size measurementsin H9 hESCs on the cell stretching system. n=12
colonies. j, Cell areameasurements in MCF-7 cells on the cell stretching system.
n=12 colonies. k, Immunofluorescence assay for pMLC and OCT4 in H9 hESCs on
PDMS layers with different stiffnesses. n=25 colonies for plastic, n=20 colonies
for 15 kPaand 1.5 kPa pooled from two independent experiments.

1, Immunofluorescence assay for YAP/TAZ and OCT4 in H9 hESCs on PDMS layers
with different stiffnesses. n=40 cells for YAP/TAZ pooled from two independent
experiments. n=number of cells (g), regions (e), or colonies (i and j) pooled
from three independent experiments. Two-sided Student’s t-test, ***P < 0.001,
**P <0.01,*P < 0.05. Exact P values are presented in Supplementary Table 9.
Scalebars:10 pm (e,j), 25 pm (g and1), 50 pm (i and k). Numerical source data are
available in Source data.
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Extended DataFig. 2| Cell crowding regulates ETV4 expressionin agrowing
hESC colony. a, Immunofluorescence assay for ZOlin large H9 colonies. n=30
regions. b, Correlation of nucleus size with cell areain H9 hESCs. n=15 cells.

¢,d, Immunofluorescence assay for OCT4, NANOG, SOX2,and ETV4 in Hland H9
colonies. n=30 cells for (c), n=60 cells for (d). e,f, Inmunofluorescence assay for
OCT4 and ETV4 inlarge H9 colonies in mTeSR1 on Matrigel-coated plates (e) or
in TeSR-E8 on vitronectin-coated plates (f). n=30 cells. g, Inmunofluorescence

Cc
< 400 .
ONE o
3= 300 8
Cw
o 2 200
3: <
= 100 R?=0.8992 :
o
0 > ETV4 > OCT4
S S SSS £ ns £ e
§ [ &
Average nucleus size (um?) £ 1.5 £15
510 =5 '{_ 510 - e o
3] [¥]
205 % 205
.gon .goc T T T
- NP R
[) N () Q & ()
g & 2 &F
<° <
ETV4 > OCT4
‘@
*ok K 5 ns
£V ™/
100 F +=
3
- :0-5
[
2 0.0
S & 3 S &
& ) ¢ &
? r &
QQ
E ETV4 ) OCT4
[7] 7]
§ 5 ns
E15) X E16)
F10{ = S0l F F
4 O [¥]
205 £ 2o0s
éo.e — S0l
5 8¢ Eoa
°© & & ko) &
r & e &
z OCT4
[}
g
2is
310 F= F
s
205
2
2 0.0
o} )
) & &
RNy N
X & &

assay for OCT4 and ETV4 inlarge H9 colonies derived from single cells. n=30
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independent experiments. Two-sided Student’s t-test, ***P < 0.001, **P < 0.01,
*P < 0.05. Exact P values are presented in Supplementary Table 9. Scale bars:
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data.
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Extended Data Fig. 3| ETV4 and YAP exhibit distinct sensitivities to changes
in cell density in hESCs. a, The statistical analysis of cell shape index and relative
cellarea of ETV4-high and ETV4-low cellsin large H9 colonies. n=90 cells.

b, Gene set enrichment analysis (GSEA) with the RNA-seq data from H9 hESCsin
low and high density cultures. GSEA was performed with 2 different gene sets:
Hallmark_Glycolysis, Hallmark_Hypoxia from Molecular Signatures Database
(MSigDB). ¢, Immunofluorescence assay for Hypoxyprobe in small and large H9
colonies. n=9 regions. d,e, Glucose uptake assay in small and large H9 colonies.
n=25regions for 37°C (d), n=31regions for 4°C (d), and n=30 regions for (e).
f,Immunofluorescence assay for YAP in large H9 colonies. YAP activity was
measured by the ratio of the nuclear over cytoplasmic intensities (N/C ratio).
n=5 colonies. g, Immunofluorescence assay for YAP/TAZ and OCT4 in large H9

Small Large(Nor)

colonies. n=80 cells pooled from two independent experiments. h,i, Validation
of lentiviral vectors expressing YAP shRNAs in H9 hESCs by qPCR (h) and
immunostaining (i). n=3 samples for qPCR (h) and n=50 cells forimmunostaining
(i).j, Quantification of cells in M phase in large H9 colonies. n=20 regions.

k, Immunofluorescence assay for Ki67 in large H9 colonies. n=40 cells pooled
from two independent experiments. I, Immunofluorescence assay for ETV4 and
EdUinlarge H9 colonies. n=6 regions. m, Crystal violet stainingin H9 hESCs
transduced with lentiviral vectors expressing YAP shRNAs. n=number of cells
(aandi), colonies (f), or regions (c,d,e,j, and I) pooled from three independent
experiments. Two-sided Student’s t-test, ***P < 0.001, **P < 0.01, *P < 0.05. Exact
Pvalues are presented in Supplementary Table 9. Scale bars: 25 pm (a,c,d,e,g, and i),
50 pm (1), 100 pm (k). Numerical source data are available in Source data.
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Extended Data Fig. 4 | ETV4 links cell crowding to NE derepression.

a, Immunofluorescence assay for PAX6 and Brachyury in differentiated H1
colonies. n=6 colonies. b, qPCR analysis for lineage markers in H9 hESCs
differentiated by FGF2 and TGF-f deprivation. n=3 samples pooled from three
independent experiments. ¢, RPKM of ETV4 in undifferentiated H9 hESCs, and
H9-derived NE and ME cells (GSE69982). n=3 samples. d, Validation of lentiviral
vectors expressing ETV4-HA in H9 hESCs by immunostaining. n=15 cells.

e,f, Validation of lentiviral vectors expressing ETV4 shRNAs together with GFP
in H9 hESCs by qPCR (e) and immunostaining (f). n=3 samples for qPCR (e) from
three independent experiments, n=75 cells for shCtrl, n=55 cells for ETV4 sh1, and
n=50 cells for ETV4 sh2 for immunostaining (f) pooled from two independent
experiments. g, Inmunofluorescence assay for PAX6 in shETV4-expressing H9

hESCs transduced with lentiviral vectors expressing ETV4-HA together with GFP
and differentiated to NE cells for 5 days. n=4 regions. h, Immunofluorescence
assay for Brachyuryin H9 hESCs transduced with lentiviral vectors expressing
ETV4 shRNA and differentiated to ME cells for 3 days. n=11regions.

i, Immunofluorescence assay for PAX6 in high density H9 hESCs transduced with
lentiviral vectors expressing ETV4-HA and differentiated to NE cells for 5 days.
n=11regions. n=number of cells (d), colonies (a), or regions (g,h, and i) pooled
from three independent experiments. Two-sided Student’s t-test, ***P < 0.001,
**P <0.01,*P < 0.05. Exact P values are presented in Supplementary Table 9. Scale
bars:10 pm (d), 25 pm (f, and g), 50 pm (a), 100 um (h and i). Source numerical
dataareavailablein Source data.
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Extended Data Fig. 5| ETV4 inhibits NE differentiation by MMPs. a,b,c The
top 10 biological pathways ranked by p-values from GO analysis with total DEGs
(a), upregulated DEGs (b), and downregulated DEGs (c) after ETV4 KD. d, qPCR
analysis for DUSP6 in H9 hESCs transduced with lentiviral vectors expressing
ETV4 shRNA or ETV4-HA. n=3 samples pooled from three independent
experiments. e, Volcano plot showing DEGs in HL hESCs sorted by N-cadherin
expression. The red and blue dots indicate up- and down-regulated genes,
respectively, with cutoff values for DEGs: log,FC <-0.50or>0.5, adjP <0.05
(GSE126022). Full list of DEGs can be found in Supplementary Table 4. f, The top
10 biological pathways ranked by p-values from GO analysis with upregulated
DEGsin N-cadherin® H1hESCs. g,h, qPCR analysis for MMP2, MMP9, MMP14, and
MMP15in H9 hESCs transduced with lentiviral vectors expressing ETV4 shRNA

(g) or ETV4-HA (h). n=3 samples pooled from three independent experiments.

i, Immunofluorescence assay for MMP14 in H9 hESCs transduced with lentiviral
vectors expressing ETV4-HA. n=25 cells. j, FPKM of MMPs in undifferentiated H9
hESCs (GSE183702). n=4 samples pooled from four independent experiments.
k, Immunofluorescence assay for MMP14 in H9 hESCs transduced with lentiviral
vectors expressing MMP14 together with GFP. n=50 cells. I, Immunofluorescence
assay for PAX6 in H9 hESCs transduced with lentiviral vectors expressing
MMP14 together with GFP and differentiated to NE cells for 5 days. n=10 regions.
n=number of cells (iand k) or regions (I) pooled from three independent
experiments. Two-sided Student’s t-test, ***P < 0.001, **P < 0.01, *P < 0.05. Exact
Pvalues are presented in Supplementary Table 9. Scale bars: 10 pm (i,k, and I).
Numerical source data are available in Source data.
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Extended DataFig. 6 | ERK regulates the proteinstability of ETV4.

a, Validation of KTRs treated with specific inhibitors. n=13 cells for ERK-KTR and
JNK-KTR, n=8 cells for p38-KTR pooled from two independent experiments.

b,c, Representative time-course images from three independent colony-tracking
assays for p38-KTR (b) and JNK-KTR (c) in H9 colonies. d, Inmunofluorescence
assay for pERK in H9 cells treated with PD0325901 (1 uM, 1h). n=30 cells.

e, Immunofluorescence assay for pERK in large H9 colonies. Mitotic activation
of ERK was seen in brightly stained cells. n=40 cells. f, ERK activity measured

by the ratio of the cytoplasmic over nuclear intensities (C/N ratio) in single
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after seeding). n=26 cells. g, qPCR analysis for ETV4 in H9 hESCs treated with
PD0325901 (1 uM). n=3 samples pooled from three independent experiments.

h, Immunofluorescence assay for ETV4in H9 hESCs treated with U0126 (10 pM,
1h).n=70 cells pooled from two independent experiments. n=number of cells
(d,e,f) pooled from three independent experiments. Two-sided Student’s t-test,
***P <0.001,*P < 0.01, *P < 0.05. Exact P values are presented in Supplementary
Table 9. Scale bars: 10 um (a), 25 pm (b,c,d,f, and h), 100 pum (e). Numerical source
dataand additional microscope images are available in Source data.
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Extended Data Fig.7 | COPlisinvolvedin the regulation of ETV4 protein
stability. a, Immunofluorescence assay for COP1in large H9 colonies. n=40 cells.
b,c, Validation of lentiviral vectors expressing COP1shRNA in H9 hESCs by qPCR
(b) and immunostaining (c). n=3 samples for qPCR (b) from threeindependent
experiments, n=60 cells forimmunostaining (c) pooled from two independent
experiments. d, Immunofluorescence assay for ETV4in H9 hESCs transduced
with lentiviral vectors expressing COP1shRNA and treated with PD0325901 (1 uM,
30 min). n=64 cells. e, Immunofluorescence assay for ETV4 in large H9 colonies
transduced with lentiviral vectors expressing COP1shRNA together with GFP.
n=6 regions pooled from two independent experiments. f, Immunofluorescence
assay for PAX6 in H9 hESCs transduced with lentiviral vectors expressing COP1
shRNA together with GFP and differentiated to NE cells for 5 days. n=9 regions.
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g, Immunofluorescence assay for pERK in H9 hESCs transduced with lentiviral
vectors expressing KRAS®?Y together with GFP. n=30 cells pooled from two
independent experiments. h, Immunofluorescence assay for ETV4in H9 hESCs
transduced with lentiviral vectors expressing KRAS? together with GFP.

n=63 cells pooled from two independent experiments. i, Immunofluorescence
assay for PAX6 in H9 hESCs transduced with lentiviral vectors expressing
constitutively-active KRAS®'? together with GFP and differentiated to NE cells
for 5 days. n=12 regions. n=number of cells (aand d) or regions (fand i) pooled
from three independent experiments. Two-sided Student’s t-test, ***P < 0.001,
**P <0.01,*P <0.05. Exact P values are presented in Supplementary Table 9. Scale
bars:10 pm(g), 25 um (c,d,e, and h), 50 pm (fand i), 100 pm (a). Numerical source
dataareavailablein Source data.
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Extended Data Fig. 8 | FGF signalling regulates ERK and ETV4. a, FPKM of EGFR
and FGFRsin undifferentiated H9 hESCs (GSE183702). n=4 samples pooled from
fourindependent experiments. b,c, Validation of lentiviral vectors expressing
FGFR1shRNAs in H9 hESCs by qPCR (b) and immunostaining (c). n=3 samples for
gPCR (b) and n=33 cells forimmunostaining (c). d, Inmunofluorescence assay for
pERKin H9 hESCs transduced with lentiviral vectors expressing FGFR1 shRNAs

together with GFP. n=50 cells pooled from two independent experiments.
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vectors expressing FGFR1shRNAs together with GFP. n=37 cells pooled from two
independent experiments. f, Immunofluorescence assay for ETV4 in small and
large H9 colonies cultured in a transwell system. n=30 cells. n=number of cells
(candf) pooled from three independent experiments. Two-sided Student’s t-test,
***P <0.001,*P < 0.01, *P < 0.05. Exact P values are presented in Supplementary
Table 9. Scale bars: 25 um (c,d,e, and f). Numerical source data are available in
Source data.
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Extended DataFig. 9| Cell crowding blocks FGFR endocytosis.

a, Immunofluorescence assay for FGFR1and EEA1in small and large H9 colonies.
Arrow headsindicate apical localization of FGFR1 proteins. n=6 regions for
Small, n=8 regions for Large. b, Immunofluorescence assay for FGFR1and
E-cadherinin the centre of large H9 colonies. n=8 regions. ¢, Validation of

TDO (500 nM) in human dermal fibroblasts expressing ERK-KTR. n=22 cells
pooled from two independent experiments. d, Immunofluorescence assay

for FGFR1and EEAlinlarge H9 colonies treated with TDO (500 nM, 1h). n=9
regions pooled from two independent experiments. e, Immunofluorescence
assay for EEA1in H9 hESCs treated with Pitstop2 (50 uM, 1h) or Dynasore

(100 pM, 1h). n=28 regions for NC, n=12 regions for Pitstop2, n=16 regions for
Dynasore pooled from two independent experiments. f, Inmunofluorescence
assay for FGFR1and EEALin H9 hESCs treated with Dynasore (100 pM, 1h).

n=8 regions pooled from two independent experiments. g, Time-course
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images for ERK-KTRin H9 hESCs treated with Dynasore (100 pM). ERK activity
measured by the ratio of the cytoplasmic over nuclear intensities (C/N ratio).
n=46 cells. h,Immunofluorescence assay for ETV4 in H9 hESCs treated with
Dynasore (100 uM, 1h). n=140 cells pooled from two independent experiments.
i, Immunofluorescence assay for ETV4 in H9 hESCs transduced with lentiviral
vectors expressing KRAS®? together with GFP and treated with Pitstop2 (50
1M, 30 min). n=45 cells.j, Immunofluorescence assay for PAX6 in H9 hESCs
transduced with lentiviral vectors expressing FGFR1 shRNAs together with GFP
and differentiated to NE cells for 5 days. n=10 regions. n=number of cells (g and
i) orregions (a,b, andj) pooled from three independent experiments. Two-sided
Student’s t-test, ***P < 0.001, **P < 0.01, *P < 0.05. Exact P values are presented in
Supplementary Table 9. Scale bars: 10 pm (e,f, andj), 15 um (a), 25 pm (d,g,h, and
i), 50 pum (b), 100 pm (c). Numerical source data are available in Source data.
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Extended Data Fig.10 | Cell crowding inhibits the integrin-actomyosin
pathway. a, The top 10 cellular components ranked by p-values from GO analysis
with downregulated DEGsin high density H9 hESCs. b, The top 10 KEGG pathways
ranked by p-values from GO analysis with upregulated DEGs in N-cadherin* H1
hESCs. ¢, Immunofluorescence assay for pFAK and OCT4 in H9 hESCs treated
with PND1186 (2 uM, 1h). n=35 cells for pFAK, n=60 cells for OCT4 pooled from
twoindependent experiments. d, Immunofluorescence assay for FGFR1and EEA1
in H9 hESCs treated with PND1186 (2 uM, 1h) or YM (10 uM, 1h). n=8 regions for
NCand YM, n=9 regions for PND1186. e, Time-course images for ERK-KTRin H9
hESCs treated with PND1186 (2 pM). n=40 cells. f, Immunofluorescence assay

for ETV4 and OCT4 in H9 hESCs treated with PND1186 (2 uM, 1h). n=60 cells.

g, Immunofluorescence assay for pMLC in H9 hESCs treated with RGDS

(500 pM, 24h). n=15regions pooled from two independent experiments.

h, Immunofluorescence assay for pMLC in H9 hESCs treated with PND1186

(2uM, 1h). n=40 regions pooled from two independent experiments.
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i, Immunofluorescence assay for pMLC in H9 hESCs treated with Blebbistatin

(50 pM, 30 min). n=13 regions for NC and n=10 regions for Blebbistatin pooled
from two independent experiments. j, Immunofluorescence assay for pMLC in H9
hESCs treated with YM (10 pM, 1h). n=35 regions pooled from two independent
experiments. k, Time-course images for ERK-KTRin H9 hESCs treated withYM
(10 pM). n=39 cells. I, Immunofluorescence assay for ETV4 and OCT4 in H9 hESCs
treated with YM (10 pM, 1h). n=60 cells. m, Immunofluorescence assay for pMLC
and OCT4 in the centre of large H9 colonies transduced with lentiviral vectors
expressing constitutively-active RhoA%*"-GFP in a doxycycline-dependent
manner. n=9 regions. n=number of cells (e,f,k, and ) or regions (d and m) pooled
from three independent experiments. Two-sided Student’s t-test, ***P < 0.001,
**P <0.01,*P < 0.05. Exact P values are presented in Supplementary Table 9.
Scalebars:10 pm (g, and i), 20 um (h andj), 25 pm(c,d,e,f,k, and 1), 50 pm (m).
Numerical source data are available in Source data.
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Data collection  Confocal images were taken by ZEISS LSM800 confocal microscope (ZEISS). Realtime PCR result were collected by CFX Connect Real-Time PCR
Detection System (BIO-RAD). Western blot results were visualized with Amersham imager 680 (Amersham).

Data analysis Sequencing data sets were processed and analyzed using the following tools:
HISAT v2.1.0
StringTie v2.1.3b
gProfiler ve109_eg56 pl17_773ec798
GSEAV4.3.2
Rv3.6.3
R package DESeq2 v1.38.3
R package DEsingle v1.18.1
Images were processed and analyzed using the following tools:
Imagel) v1.53
Statistical analysis was performed using the following tools:
GraphPad Prism v9.1.0
gel analysis was performed using the following tools:
Multiguage v3.0
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Reporting on sex and gender H1 (male) and H9 (female) hESCs cell lines were used to cover all sex in this study.

Population characteristics N/A
Recruitment N/A
Ethics oversight This work was approved by the Human Stem Cell Research Oversight Committee at Pohang University of Science and

Technology (PIRB-2021-R035)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size Preliminary experiments were performed when possible to determine requirements for sample size. Sample size sufficiency was determined
by preliminary data or discussion. For statistical significance, the sample size was always independently performed three or more
times(except for a few supplementary data with two independent experiments).

Data exclusions  No data were excluded from the analysis.

Replication All experiments were replicated or performed independently for at least three times(except for a few supplementary data with two
independent experiments).

Randomization  Randomization is not applicable to our study since all experiments were conducted on cultured cells. Any variations observed between
treatment groups are not attributed to sampling bias.

Blinding In general, all investigators were blind when they execute and gain data. During the experiments the investigators needed to know the media
composition to maintain or induce differentiation of embryonic/pluripotent stem cells. Data analysis steps were blinded when available.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies

Antibodies used Primary antibodies:
Mouse anti-Pax-6, Santa Cruz, SC-81649 (PAX6, monoclonal)
Mouse anti-Oct-3/4 (C-10), Santa Cruz, SC-5279 (€10, monoclonal)
Rabbit anti-SOX2, Millipore, AB5603 (Polyclonal)
Rat anti-betal integrin (CD29), BD, 553715 (9EG7, monoclonal)
Rabbit anti-ETV1, NOVUSBIO, NBP2-57731 (Polyclonal)
Rabbit anti-ETV4, Proteintech, 10684-1-AP (Polyclonal)
Rabbit anti-ETVS5, Proteintech, 13011-1-AP (Polyclonal)
Rabbit anti-Ki-67 (D3B5), Cell Signaling Technology, 9129S (D3B5, monoclonal)
Rabbit anti-pFAK (D20B1), Cell Signaling Technology, 8556S (D20B1, monoclonal)
Rabbit anti-pERK [P-p44/42 MAPK(T202/Y204)], Cell Signaling Technology, 4370S (D13.14.4E, monoclonal)
Rabbit anti-pAkt, Cell Signaling Technology, 9271T (Polyclonal)
Rabbit anti-FGFR1 (D8E4), Cell Signaling Technology, 9740S (D8E4, monoclonal)
Rabbit anti-HA-Tag (C29F4), Cell Signaling Technology, 3724S (C29F4, monoclonal)
Rat anti-HA-Tag (3F10), Roche, 12158167001 (3F10, monoclonal)
Rabbit anti-pMLC, Cell Signaling Technology, 3674S (Polyclonal)
Goat anti-Nanog, R&D, AF1997 (Polyclonal)
Goat anti-Brachyury, R&D, AF2085 (Polyclonal)
Mouse anti-EEA1, BD, 610456 (14, monoclonal)
Rabbit anti-COP1, BETHYL, A300-894A (Polyclonal)
Rabbit anti-paxillin, NOVUSBIO, NBP2-57097 (Polyclonal)
Mouse anti-ZO1, ThermoFisher Scientific, 33-9100 (1A12, monoclonal)
Mouse anti-E-Cad, Cell Signaling Technology, 14472S (4A2, monoclonal)
Rabbit anti-MMP14, NOVUSBIO, NBP2-67415 (3-F7, monoclonal)
Rabbit anti-GFP, ThermoFisher Scientific, A11122 (Polyclonal)
Mouse anti-YAP, Santa Cruz, SC-101199 (63.7, monoclonal)
Rabbit anti-YAP/TAZ, Cell Signaling Technology, 8418S (D24E4, monoclonal)
mouse anti-B-actin, Santa Cruz, SC-47778 (C4, monoclonal)
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Secondary antibodies:

anti-Rabbit IgG (H+L) Secondary Antibody, HRP, ThermoFisher Scientific, 31460

anti-Mouse IgG (H+L) Secondary Antibody, HRP, ThermoFisher Scientific, 31430

anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488, ThermoFisher Scientific, A-11055

anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 555, ThermoFisher Scientific, A-32773
anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 647, ThermoFisher Scientific, A-31571
anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488, ThermoFisher Scientific, A-21206
anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 555, ThermoFisher Scientific, A-31572
anti-Rat 1gG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555, ThermoFisher Scientific, A-21434

Validation - Mouse anti-Pax-6, Santa Cruz, SC-81649: The antibody guarantee covers the use of the antibody for WB, IP, IHC and IF applications.
Species reactivity: Human, Mouse, Rat, Avian

- Mouse anti-Oct-3/4 (C-10), Santa Cruz, SC-5279: hESCs differentiation led to a reduced fluorescence signal shown by
immunofluorescent staining (Data not included). The antibody guarantee covers the use of the antibody for WB and IF applications.
No cross-reactivity may occur with Oct-3/4 isoform B. Species reactivity: Mouse, Rat and Human

- Rabbit anti-SOX2, Millipore, AB5603: hESCs differentiation led to a reduced fluorescence signal shown by immunofluorescent
staining (Data not included). The antibody guarantee covers the use of the antibody for WB and IF applications. Species reactivity:
Human, Mouse.

- Rat anti-betal integrin (CD29), BD, 553715: The antibody guarantee covers the use of the antibody for WB, IP, IHC and IF
applications. Species reactivity: Mouse
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- Rabbit anti-ETV1, NOVUSBIO, NBP2-57731: The antibody guarantee covers the use of the antibody for ICC and IF applications.
Species reactivity: Mouse, Rat

- Rabbit anti-ETV4, Proteintech, 10684-1-AP: ETV4 Knockdown using two independent shRNAs led to a reduced fluorescence signal
shown by immunofluorescent staining (Extended Data Fig. 4f). The antibody guarantee covers the use of the antibody for WB and IF
applications. Species reactivity: Human, Mouse, Rat




- Rabbit anti-ETV5, Proteintech, 13011-1-AP: The antibody guarantee covers the use of the antibody for WB and IF applications.
Species reactivity: Human, Mouse

- Rabbit anti-Ki-67 (D3B5), Cell Signaling Technology, 9129S: The antibody guarantee covers the use of the antibody for ICC and Flow
cytometry applications. Species reactivity: Human, Mouse, Rat

- Rabbit anti-pFAK (D20B1), Cell Signaling Technology, 8556S: FAK inhibition using chemical(PND1186) led to a reduced fluorescence
signal shown by immunofluorescent staining (Extended Data Fig. 9c).The antibody guarantee covers the use of the antibody for WB
and IP applications. Species reactivity: Human

- Rabbit anti-pERK [P-p44/42 MAPK(T202/Y204)], Cell Signaling Technology, 4370S: The antibody guarantee covers the use of the
antibody for WB, IP, IHC, IF, and Flow cytometry applications. Species reactivity: Human, Mouse, Rat, Hamster, Monkey, Mink, D.
melanogaster, Zebrafish, Bovine, Dog, Pig, S. cerevisiae

- Rabbit anti-pAkt, Cell Signaling Technology, 9271T: The antibody guarantee covers the use of the antibody for WB, IP, IHC, IF, and
Flow cytometry applications. Species reactivity: Human, Mouse, Rat, Hamster, Monkey, D. melanogaster, Bovine, Dog

- Rabbit anti-FGFR1 (D8E4), Cell Signaling Technology, 9740S: FGFR1 Knockdown using two independent shRNAs led to a reduced
fluorescence signal shown by immunofluorescent staining (Extended Data Fig. 8c). The antibody guarantee covers the use of the
antibody for WB, IP, IHC, IF, and Flow cytometry applications. Species reactivity: Human, Mouse, Rat, Monkey

- Rabbit anti-HA-Tag (C29F4), Cell Signaling Technology, 3724S: The antibody guarantee covers the use of the antibody for WB, IP,
IHC, IF, flow cytometry and ChIP applications. Species reactivity: All Species Expected

- Rat anti-HA-Tag (3F10), Roche, 12158167001: The antibody was validated by staining H9 hESCs expressing HA ETV4(Extended Data
Fig. 4d). The antibody guarantee covers the use of the antibody for WB, IF and ELISA applications. Species reactivity: Human

- Rabbit anti-pMLC, Cell Signaling Technology, 3674S: The antibody guarantee covers the use of the antibody for WB applications.
Species reactivity: Human, Mouse

- Goat anti-Nanog, R&D, AF1997: hESCs differetiation led to a reduced fluorescence signal shown by immunofluorescent staining
(Data not included). The antibody guarantee covers the use of the antibody for WB and IF applications. Species reactivity: Human

- Goat anti-Brachyury, R&D, AF2085: The antibody guarantee covers the use of the antibody for WB, IHC, IF and ChIP applications.
Species reactivity: Human, Mouse

- Mouse anti-EEA1, BD, 610456: The antibody guarantee covers the use of the antibody for WB, IHC, IF and IP applications. Species
reactivity: Human, Rat, Chicken, Dog

- Rabbit anti-COP1, BETHYL, A300-894A: COP1 Knockdown using shRNA led to a reduced fluorescence signal shown by
immunofluorescent staining (Extended Data Fig. 7c). The antibody guarantee covers the use of the antibody for WB and IP
applications. Species reactivity: Human, Mouse

- Rabbit anti-paxillin, NOVUSBIO, NBP2-57097: The antibody guarantee covers the use of the antibody for WB, ICC and IF
applications. Species reactivity: Mouse, Rat

-Mouse anti-ZO1, ThermoFisher Scientific, 33-9100 (monoclonal): The antibody guarantee covers the use of the antibody for WB,
IHC, IF, ICC, Flow, ELISA and IP applications. Species reactivity: Human, Mouse, Dog, Rhesus monkey

- Mouse anti-E-Cad, Cell Signaling Technology, 14472S: The antibody guarantee covers the use of the antibody for WB, IP, IHC, IF and
Flow cytometry applications. Species reactivity: Human, Mouse, Rat

- Rabbit anti-MMP14, NOVUSBIO, NBP2-67415: The antibody was validated by staining H9 hESCs expressing MMP14 (Extended Data
Fig. 5k). The antibody guarantee covers the use of the antibody for WB, IF, IHC and IP applications. Species reactivity: Human, Mouse,
Rat

- Rabbit anti-GFP, ThermoFisher Scientific, A11122: The antibody guarantee covers the use of the antibody for WB, IHC, IP and ChIP
applications. Species reactivity: Tag

- Mouse anti-YAP, Santa Cruz, SC-101199: COP1 Knockdown using shRNA led to a reduced fluorescence signal shown by
immunofluorescent staining (Extended Data Fig. 3i). The antibody guarantee covers the use of the antibody for WB, IP, IF, IHC and
ELISA applications. Species reactivity: Human, Mouse, Rat

- Rabbit anti-YAP/TAZ, Cell Signaling Technology, 8418S: The antibody guarantee covers the use of the antibody for WB and IP
applications. Species reactivity: Human, Mouse, Monkey

- mouse anti-B-actin, Santa Cruz, SC-47778: The antibody guarantee covers the use of the antibody for WB, IP, IF and ELISA. Species
reactivity: mouse, rat, human, avian, bovine, canine, porcine, rabbit, Dictyostelium discoideum and Physarum polycephalum. Cross-
reactivity may occur with all six known isoforms of Actin in higher vertebrates (including cytoplasmic B- and y- Actin isoforms,
skeletal, cardiac, and vascular a-Actin isoforms, and enteric y-Actin isoform).
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

H1 and H9 hESCs were purchased from WiCell.

HEK293T, ARPE19 and MCF-7 were purchased from ATCC.

Cell lines were authenticated by short tandem repeat analysis and/or in vitro differentiation.

Mycoplasma contamination was routinely checked and negative results were obtained.

No commonly misidentified cell lines were used in the study.
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