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Abstract
Purpose Understanding surgical scenes is crucial for computer-assisted surgery systems to provide intelligent assistance
functionality. One way of achieving this is via scene segmentation using machine learning (ML). However, such ML models
require large amounts of annotated training data, containing examples of all relevant object classes, which are rarely available.
In this work, we propose a method to combine multiple partially annotated datasets, providing complementary annotations,
into one model, enabling better scene segmentation and the use of multiple readily available datasets.
Methods Our method aims to combine available data with complementary labels by leveraging mutual exclusive properties
to maximize information. Specifically, we propose to use positive annotations of other classes as negative samples and to
exclude background pixels of these binary annotations, as we cannot tell if a positive prediction by the model is correct.
Results We evaluate our method by training a DeepLabV3 model on the publicly available Dresden Surgical Anatomy
Dataset, which provides multiple subsets of binary segmented anatomical structures. Our approach successfully combines 6
classes into one model, significantly increasing the overall Dice Score by 4.4% compared to an ensemble of models trained on
the classes individually. By including information on multiple classes, we were able to reduce the confusion between classes,
e.g. a 24% drop for stomach and colon.
Conclusion By leveragingmultiple datasets and applyingmutual exclusion constraints, we developed amethod that improves
surgical scene segmentation performance without the need for fully annotated datasets. Our results demonstrate the feasibility
of training a model on multiple complementary datasets. This paves the way for future work further alleviating the need for
one specialized large, fully segmented dataset but instead the use of already existing datasets.

Keywords Full scene segmentation · Multi-class segmentation · Surgical scene understanding · Dataset availability · Surgical
data science · Computer-assisted surgery
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Introduction

The understanding of the visible surgical scene is key for
computer-assisted surgery (CAS) systems to understand the
current situation and provide adapted assistance functions.
One approach of achieving this is via the use of full scene
semantic segmentation models, which are able to classify
every visible part of the scene.Thesemodels provide the basis
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for recognizing the current situation or actions and enable
useful assistance functions.

In recent work, progress has been made in improving sur-
gical semantic scene segmentation by the use of temporal
context [1], stereo vision [2], simulated data [3], or weak
label annotations [4]. Further steps towards solving this task
in the surgical setting have been taken by the Robotic Scene
Segmentation Challenge [5] and the HeiSurF Challenge [6].
Both EndoVis1 sub-challenges provided annotations of 11
and 21 classes, respectively, including surgical tools and
human anatomy, and challenged participants to semantically
segment all of them.

Nevertheless, a major bottleneck for clinical translation of
surgical data science (SDS) applications remains the avail-
ability of such datasets [7], due to the high amount of time
required for experts, to create such segmentation annotations.
This is even more challenging for full scene semantic seg-
mentation,which requires a pixel-wise annotationofmultiple
classes for the complete frame.

This issue was sidestepped in the recently published
Dresden Surgical Anatomy Dataset (DSAD) [8] by sim-
ply providing binary segmentations. The dataset contains 11
classes of anatomical structures, split into multiple subsets
providing one class each. This way, the authors were able
to publish over 13,000 expert-approved semantic segmenta-
tions.

At present, there are a handful of datasets providing dif-
ferent annotations relevant to the field of SDS [7]. These
datasets can differ in the granularity of classes and the classes
annotated in general, depending on the protocol used during
annotation. Recent works have presented different methods
that rely only on partial annotations for training a CT seg-
mentationmodel, improving the usage of existing knowledge
[9–12]. The used approaches range from dataset specific
backbones and pseudolabel generation [12], over merging
unlabelled classes with the background class and adding a
mutual exclusion constraint [9], to simply masking unla-
belled classes during loss calculation [10].

We assume that learning to segment multiple classes
causes a singlemodel to develop a better understanding of the
scene, leading to better segmentation performance.We there-
fore propose the usage of information from mutual exclu-
sivity, which can be applied on top of any state-of-the-art
approach. In this work we apply it in addition to the masking
during loss calculation [10]. We demonstrate the feasibil-
ity of training a model for multi-class organ segmentation
of laparoscopic surgery images on multiple complementary
datasets, thereby overcoming the data bottleneck challenge in
SDS. The code and models are publicly available on https://
gitlab.com/nct_tso_public/dsad-segmentation/.

1 http://endovis.org.

Methods

In this section, we introduce our proposed method and define
an upper and lower baseline to compare the performance of
the proposed method to. A visualization of the architectures
is shown in Fig. 1. Further, we provide a definition of how
the average dice scores are calculated in this work.

Baselines

A naive approach to combine multiple datasets is to train one
model per dataset and subsequently building an ensemble
to merge their predictions into one final multi-class predic-
tion. In case of one binary segmenting model per class, this
kind of ensemble prediction can be achieved by applying the
argmax over the different sigmoid outputs per pixel. This is
followed by a threshold to determine whether the most likely
class is predicted positive; otherwise, the background class
is assigned. In this work, this approach will be used as the
lower baseline and is referred to as ensemble (EN).

Alternatively, a single model can be trained on a single
fully labelled dataset. As this requires a large fully labelled
dataset, which is hard to obtain but provides the maximum
amount of information, this approach will be used as the
upper baseline in this work and is referred to as fully super-
vised (FS).

Implication-based labelling

To overcome the ambiguity inherent to merging multiple
models and lost information between classes, while sidestep-
ping the need for a single large fully annotated dataset, we
propose to combine the classes provided bymultiple datasets
into one model. This reduces computational costs during
inference as only one output from one model is required and
lowers the requirements we pose against the dataset, as not
all classes need to be included in every dataset. In addition,
the model could benefit from the shared knowledge among
the different classes.

The model takes single images of the datasets as input and
outputs a class probability for every pixel and every class. For
every pixel, the final class is selected based on the highest
predicted class probability. The outputs are normalized by a
sigmoid, and therefore each value is independent of the out-
puts of other classes. On one hand, this setup does not prevent
themodel from predictingmultiple classes per pixel; instead,
this has to be enforced by the loss during training. On the
other hand, this setup allows us to access the predicted prob-
ability of every class separately, which is required for dealing
with the problem of training from incomplete knowledge in
the datasets, as each dataset provides only information on
its contained class and not the classes introduced by other
datasets.
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Fig. 1 A flowchart describing the flow of annotation data through the three architectures used in this work. The proposed implicit label generation
is shown in the blue box

Assuming every pixel in the target semantic scene seg-
mentation problem is exactly part of one class (mutually
exclusivity of classes), this can be used tomaximize the infor-
mation provided by a partially annotated dataset by applying
the following rules:

1. A positive annotation of one class implies a negative
annotation of all other classes.

2. A negative annotation of a class (in a binary annotation
the background) provides no information if this region
contains other classes. As no implication to other classes
can be made, the annotation stays unknown.

The application of these rules is visualized in the blue box of
Fig. 1.

In this work, we use these implication rules to obtain
additional negative samples from datasets not containing the
examined class. Cases inwhich the annotation stays unknown
are excluded from the loss calculation bymasking, as no deci-
sion on the correctness of the prediction can be made. This
method is called implicit labelling (IL) in the following.

The loss per class c can be formulated as:

Lc = 1

B

1

P̂

∑

b,p

BCE(ŷ(c)
b,p, y

(c)
b,p) ∗ λb,p,c (1)

λb,p,c =
{
1, if b is annotated for c or y(ĉ)

b,p = 1, ĉ ∈ C \ c
0, else

(2)

where B is the number of images, b ∈ [1, B], in the batch,
and P̂ is the number of Pixels, p ∈ P , where λ = 1, ŷ(c)

b,p

is the prediction of class c for pixel p of image b and y(c)
b,p

the respective ground truth. A pixel p is included in the loss
calculation if either the image b is annotated for class c or if
y(ĉ)
b,p = 1 for any other class ĉ ∈ C \ c; otherwise, the pixel is

excluded by λb,p,c being set to zero. In the second case the

ground truth for class c is false, y(c)
b,p = 0, due to the mutual

exclusivity of classes.

Metrics

In this work, the model performance is evaluated using the
dice score [13]. For the average dice score per class, the dice
is calculated per image and averaged subsequently over all
images. If a class does not occur in either the target or the
prediction, the F1 is not defined; we therefore set the score to
one in those cases as the model performed as expected. The
average dice score over all classes is calculated by averaging
all average dice scores per class.

Statistical significance is calculated using a two-sided
Wilcoxon signed-rank test on the image-wise and class-wise
dice scores of our approach against the lower baseline. The
significance is calculated per class. The significance of the
mean dice score is calculated by evaluating all image-wise
and class-wise dice scores over all classes.

Evaluation

Dataset

We evaluate our proposed approach using the publicly avail-
able DSAD dataset [8]. This dataset consists of 13,195
laparoscopic images split into 11 subsets with a minimum
of 1000 frames from a minimum of 20 surgeries each. In
each subset, binary segmentations for one of the 11 classes
(abdominal wall, colon, inferior mesenteric artery, intestinal
veins, liver, pancreas, small intestine, spleen, stomach, ureter,
vesicular glands) are provided. For the stomach subset, addi-
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tionalmasks are available, annotating six of the remaining ten
classes (abdominal wall, colon, liver, pancreas, small intes-
tine, spleen) visible in this subset, resulting in onemulti-class
subset. This work uses the proposed split [14] into training,
validation, and test set. To be able to compare to the multi-
class subset, only the binary subsets of the contained classes
are used, with the exception of the spleen. The spleen class
was excluded in this work due to the lack of positive exam-
ples in the validation and test split in the multi-class subset.
To examine the ability of IL and EN to join datasets, they
were trained by splitting themulti-class subset into six binary
sets, one for each class. Themethods trained on these subsets
are comparable to the FS approach trained on the combined
annotations of the multi-class subset. As the binary subsets
have no overlapping classes, we interpret them as separate
datasets in this work, which we aim to join into one model.
All classes fulfil the required mutual exclusiveness.

Trials

To validate our approach, we conducted five trials to compare
our proposed implicit labelling approach to the ensem-
ble approach and the fully supervised approach. In all
experiments, the DeepLabV3 architecture with a ResNet50
backbone [15] is used.Models are initializedusing the default
PyTorch pretraining on COCO [16]. All models were trained
using PyTorch [17] v1.12 on Ubuntu 18.04 and Nvidia Tesla
V100 GPUs; evaluation was done on Ubuntu 20.04 with
Nvidia RTX A5000 GPUs. The images were downscaled to
a size of 640x512 pixels for memory and time reasons. For
all trials an initial learning rate of 3 × 10−4 was used with
a scheduler reducing the learn rate by a gamma of 0.9 every
10 epochs. Further, all models were trained for 100 epochs
using an AdamW optimizer with weight decay of 0.1 and a
cross-entropy loss with a positive weight factor for balanc-
ing positive and negative pixels. The best model per trial was
selected according to the dice score on the validation set.

The ensemble approach evaluates an ensemble of sixmod-
els, each trained on one of the classes, serving as the lower
baseline. The prediction of the ensemble was obtained by
selecting the class with the highest value over all models per
pixel. The positiveweight for the backgroundwas set to 1 and
the remaining classes to the negative to positive pixel ratio
per class. This approach was used in two trials, once trained
on the binary subset and once on the binary sets extracted
from the multi-class subset.

The fully supervised approach examines the fully super-
visedmethod, serving as the upper baseline. For this, a single
DeepLabV3 was trained on the multi-class subset. The pos-
itive weight was calculated by the share of positive pixels
of the class, negating the share, and normalizing all negated
shares with the softmax function. As this approach requires

a fully annotated dataset, this method is only trained once on
the multi-class subset.

In the implicit labelling approach, our proposed method
was used to train a single DeepLabV3 on the six binary sub-
sets, which represent the same classes that are available in
the multi-class subset. The positive weight was set to the
negative-to-positive pixel ratio while including the positive
pixels of other classes as negatives, as described before. The
output of the loss function was masked before aggregation
to ignore pixels as required by our approach. This approach
was used in two trials, once trained on the binary subset, and
once on the binary sets extracted from the multi-class subset.

Results

The trials were evaluated twice on the up-to-now unseen test
split of the dataset, once using the binary subset for each
class and once using the multi-class subset. As the multi-
class subset is based on the stomach subset, the frames and,
therefore, the results for this class are identical.

The results on the binary testset are shown in Table 1.
The overall best performance is reached by our proposed IL
approach on the binary trainset with an average dice score of
72% over all classes outperforming EN by 4% On the binary
trainset, all scores of the IL approach are either significantly
higher or not significantly lower than the EN approach. For
the trials trained on the multi-class subset the upper baseline,
FS, reaches the highest score of 46%. For the highest score
per class distributes among the FS and IL approach. On the
multi-class trainset, all scores of the IL approach are signif-
icantly above the EN approach, except for the stomach. The
performance of all methods is significantly lower for Pan-
creas and Liver on the multi-class trainset compared to the
binary trainset, while IL maintains the highest score.

The results on the multi-class testset are shown in Table 2.
The overall best performance is reached by the FS approach
with an average dice score of 78%. On the binary trainset,
IL outperforms EN by 7%. Especially in the classes Colon,
Pancreas, Small Intestine, and Stomach IL performs signif-
icantly better than EN, while EN is better for the Liver. On
the multi-class testset FS has the highest score on all classes.
The second-highest class is distributed among IL and EN.
The average performance of IL outperforms EN by 4%.

Figure2 shows the pixelwise confusion of the classes for
the trials tested on the multi-class testset. For trials trained
on the multi-class trainset IL shows lower confusion with
the background for the pancreas and the small intestine than
EN. This means pixels of both classes are less often missed
to detect. Compared to FS, IL less often confuses the small
intestine with the colon. The liver is more often confused
with the abdominal wall by IL compared to FS and EN. For
the binary trials, IL lowers the confusion of the stomach with

123



International Journal of Computer Assisted Radiology and Surgery (2024) 19:1233–1241 1237

Table 1 Dice score of each class calculated on the testsets of the binary subsets, μ being the mean over all classes

Trainset Trial Abd Col Liv Pan Sma Sto µ

Binary IL (ours) 0.892 0.782 0.741 0.364 0.849 0.709 0.723
EN (lower) 0.895 0.729 0.745 0.373 0.826 0.503 0.679

MultiClass
FS (upper) 0.764 0.451 0.521 0.170 0.122 0.719 0.458
IL (ours) 0.730 0.381 0.520 0.184 0.338 0.578 0.445
EN (lower) 0.673 0.320 0.490 0.139 0.177 0.699 0.416

Every row represents one of the trials, fully supervised (FS), ensemble (EN), and implicit labelling (IL), trained on the binary and multi-class sets.
The highest value per column and trainset is highlighted in bold. The classes Abdominal Wall, Colon, Liver, Pancreas, Small Intestine, and Stomach
are abbreviated by their first three letters. Cells are highlighted in green if the difference between IL and EN is strongly significant (p<.01) or
yellow if significant (p<.05)

Table 2 Dice score of each class calculated on the testset of the multi-class subset, μ being the mean over all classes

Trainset Trial Bac Abd Col Liv Pan Sma Sto µ

Binary IL (ours) 0.932 0.578 0.472 0.222 0.503 0.386 0.709 0.543
EN (lower) 0.955 0.590 0.363 0.375 0.335 0.214 0.503 0.476

MultiClass
FS (upper) 0.970 0.800 0.450 0.862 0.679 0.913 0.719 0.783
IL (ours) 0.905 0.632 0.251 0.650 0.306 0.455 0.578 0.540
EN (lower) 0.931 0.728 0.360 0.387 0.239 0.304 0.699 0.512

Every row represents one of the trials, fully supervised (FS), ensemble (EN), and implicit labelling (IL), trained on the binary and multi-class sets.
The highest value per column and trainset is highlighted in bold. The classes Background, Abdominal Wall, Colon, Liver, Pancreas, Small Intestine,
and Stomach are abbreviated by their first three letters. Cells are highlighted in green if the difference between IL and EN is strongly significant
(p<.01) or yellow if significant (p<.05)

Fig. 2 Pixelwise confusion matrix per approach and trainset tested on the multi-class testset
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Fig. 3 Segmentation results for
4 example images. The columns
show the original frame, the
ground truth, and the predicted
segmentations of the fully
supervised (FS), implicit
labelling (IL), and ensemble
(EN) approaches. Rows (a) and
(b) show examples of good IL
performance; (c) and (d) show
more difficult cases

Table 3 Dice score of each
class calculated on the testsets
of the binary subsets, μ being
the mean over all classes

Trial Abd Col Liv Pan Sma Sto μ

Separate models of EN 0.894 0.790 0.786 0.400 0.866 0.701 0.740

IL (ours) 0.892 0.782 0.741 0.364 0.849 0.709 0.723

IL w/o additional neg. labels 0.897 0.766 0.783 0.326 0.832 0.633 0.706

The first row shows the performance of each separate model in the ensemble before applying the argmax.
The last row shows a variant of the IL approach if no additional negative samples are inferred. The classes
Abdominal Wall, Colon, Liver, Pancreas, Small Intestine, and Stomach are abbreviated by their first three
letters

the colon and small intestine. The confusion of the liver with
the abdominal wall and background slightly increases.

Figure3 shows four examples of segmentation results. In
the rows (a) and (b), FS and IL are able to segment a single
structure with one class, while the EN approach is mixing
multiple classes. In rows (c) and (d) all three approaches pro-
duce patched results per organ and detect classes not present.

Table 3 shows the results of our ablation studies trained
and evaluated on the binary subset. The first row shows the
dice score of the separate models in the ensemble before
applying the argmax. All classes except the abdominal wall
reach higher scores compared to the merged ensemble. IL is
outperformed on all classes except the stomach. The second
row shows the results of our IL approach if no additional
negative samples are inferred due to mutual exclusion and
only the loss masking is applied. While this model is better
than our proposed IL approach for the classes abdominal wall
and liver, the remaining classes and the average performance
are below IL.

The trials were evaluated with respect to the inference
time by inferring 1000 random inputs on an Nvidia RTX
A5000. The time needed from loading the image to the GPU

to downloading the prediction back to theCPUwas averaged.
All models were already prepared on theGPU. The ensemble
approach required 136 ± 5.8 ms per frame; the fully super-
vised and implicit labelling approaches both required 23±0.1
ms per frame, resulting in 7fps and 43fps, respectively, and
therefore a 6x speed up. Memory consumption on the GPU
stayed below 3.2 GB for the ensemble and 2.3 GB for the
fully supervised and implicit labelling approaches.

Discussion

In summary, thisworkdemonstrates that the implicit labelling
approach is able to leveragemultiple complementary datasets
into one model. We find that models benefit from a better
scene understanding through more learned classes and reach
better performance. Further, we point out limitations due to
the lack of data diversity we came across in the different data
subsets.

As Table 3 shows, the performance on EN merged by
argmax drops compared to the performance of its separate
models. This again proves the importance of being able to
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train a single model being able to understand and segment all
classes. Best results are reached by fully annotated datasets,
as shown by FS in Tables 1 and 2. But as these are rarely
available, our proposed method is a valid alternative in cases
where multiple datasets need to be merged.

Tables 1 and 2 clearly show that IL significantly outper-
forms EN in all four combinations of test and trainset of the
binary andmulti-class subsets. On the binary train and binary
test combination our proposed approach is either within 1%
difference on the dice score or significantly better than the
lower baseline. This supports our initial assumption that the
models benefit from better scene understanding due to com-
plementary information. As shown in Fig. 3(a) and (b) the
knowledge of multiple classes, as in the FS and IL approach,
helps the model to select one class. This missing information
in the EN approach leads to segmentations being patched
together of multiple classes. IL is able to solve this issue
without the need for fully segmented annotations.

This is demonstrated further in Fig. 2 by comparing the
class confusion of IL to EN. For all classes except the liver
the confusion drops. In particular, the confusion of colon,
small intestine, and stomach on the binary trainset, where
those classes do look similar in many cases, is reduced by the
knowledge of all classes. Interestingly the fully supervised
model is not able to prevent confusion of the small intestine
and the colon, which might be caused by rare occurrence of
those classes due to the stomach-centric multi-class subset.
Interestingly, the large increase of negative samples in the IL
approach compared to the FS approach does not lead to the
model to prefer the background class; rather, the opposite is
the case. This might be due to the higher weighting factors of
positive pixels used in the loss. This proves our assumption
that models benefit from better scene understanding through
more learned classes.

As shown in Tables 1 and 2, the models perform worse
when tested on the subset they are not trained on. Especially
on the Pancreas and Small Intestine, the FS approach drops
in performance. This is explained by the fact that the multi-
class subset is based on the stomach. Therefore, all frames
contain this structure, limiting the possible viewing angle and
distances of other annotated classes. IL is able tomaintain the
highest cross-domain performance in both directions. This
cross-domain capability can further be seen in the first row
of Table 2 where IL is trained on the multi-class trainset and
tested on the binary subset without any performance drop on
the average dice score compared to the third rowwhich shows
the performance of IL tested on the multi-class testset. EN,
in rows two and four, is dropping by 5% due to the different
appearance in the subsets.

The second row of Table 3 shows the importance of the
implicit labels, as the model’s performance drops without
them. This ablation is comparable to the approach presented
by Ulrich et al. [10], which further proves the benefit of our

method, as by simply adding the implicit knowledge we out-
perform related work.

When looking at the situation given by the dataset we
are limited to a small fully annotated dataset and have more
binary data on hand. While it is possible to train the FS
approach on the small dataset and achieve a good perfor-
mance when testing on similar data, as shown in Table 2, we
do see the performance drop when the model is applied to
different data, as shown in Table 1. The classes Pancreas and
Small Intestine drop by 51% and 79%, respectively, resulting
in dice scores below 20%.Considering that the binary dataset
is focused around the organ it is tested for, these misclassi-
fications can be considered critical, as the central organ is
not recognized. When training our IL approach, on the other
hand, not only more data are available, but also the perfor-
mance drop in changing data is less severe. While we do see
dropping performance on classes, if they are no longer in the
focus of the frame, no class drops below a dice score of 25%,
as shown in Table 2. This proves our IL approach is more
applicable in a realistic setting with limited data availability,
producing more robust results without the need for compli-
cated preprocessing or much higher computational costs.

Finally, as the inference time results show, the implicit
labelling approach combines fast inference with the ability
to learn on not fully annotated datasets. The ensemble is 6
times slower, as it needs to infer 6 models instead of one,
setting a limit to the scalability. The runtime of the ensem-
ble increases linearly with the number of classes, while our
implicit labelling approach allows addingmore segmentation
data with a negligible effect on runtime.

Conclusion

In this paper, we presented, to the best of our knowledge,
the first approach for laparoscopic organ segmentation that
combinesmultiple datasets into onemodel.Weaccomplished
this by applying a combination of masking during loss and
mutual exclusion constraints. We were able to show that seg-
mentation models benefit from a better understanding of the
scene in the sense of knowing more classes, improving the
overall dice score, reducing confusion between classes, and
improving generalization to changes in the appearance of the
classes. Further, we were able to show that we do not require
all classes to be annotated in a single dataset but rather can
combine complementary ones. The resulting model was able
to achieve real-time capable inference speeds of 43fps on
an Nvidia RTX A5000 GPU, and additional classes can be
added without linearly increasing the runtime.

Even though the already good results, we see potential to
further improve the approach. For example, the model might
include weak labels during training in the form of binary
presence of classes. Also, the effects of the use of datasets
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with overlapping classes should be investigated, as well as
the possibility to combine non-complementary datasets, like
different levels of detail in the classes. For example, some
datasets only segment instruments in one class, and oth-
ers split them up into different types. Further, the use of
active learning to selectively annotate missing data might
be promising, as it matches very well with the structure of
complementary datasets. Overall, we see great potential in
applying our method in multiple settings of semantic seg-
mentation of surgical data science.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work is funded by the German Federal Ministry of Health
(BMG), on the basis of a decision by the German Bundestag, within the
“Surgomics” project (Grant Number BMG 2520DAT82), the German
Cancer Research Center (CoBot 2.0), the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) as part of Germany’s Excel-
lence Strategy (EXC 2050/1, Project ID 390696704) within the Cluster
of Excellence “Centre for Tactile Internet with Human-in-the-Loop”
(CeTI) of the Dresden University of Technology and by the European
Union through NEARDATA under the grant agreement ID 101092644.
FRK is supported by the JoachimHerz Foundation (Add-On Fellowship
for Interdisciplinary Life Science).

Data availability The used DSAD dataset is available at https://doi.org/
10.6084/m9.figshare.21702600.

Code availability The code is available on https://gitlab.com/nct_tso_
public/dsad-segmentation/.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval For this type of study, formal consent is not required.

Informed consent This article contains patient data frompublicly avail-
able datasets.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Jin Y, Yu Y, Chen C, Zhao Z, Heng P-A, Stoyanov D (2022)
Exploring intra- and inter-video relation for surgical semantic
scene segmentation. IEEE Trans Med Imaging 41(11):2991–3002.
https://doi.org/10.1109/TMI.2022.3177077

2. Mohammed A, Yildirim S, Farup I, Pedersen M, Hovde Ø (2019)
StreoScenNet: surgical stereo robotic scene segmentation. In:Med-
ical imaging2019: image-guidedprocedures, robotic interventions,
andmodeling, vol 10951, p 109510. SPIE. https://doi.org/10.1117/
12.2512518. International Society for Optics and Photonics

3. Yoon J, Hong S, Hong S, Lee J, Shin S, Park B, Sung N, Yu H,
Kim S, Park S, Hyung WJ, Choi M-K (2022) Surgical scene seg-
mentation using semantic image synthesis with a virtual surgery
environment. In: Medical image computing and computer assisted
intervention—MICCAI 2022. Springer, Cham, pp 551–561

4. Fuentes-Hurtado F, Kadkhodamohammadi A, Flouty E, Barbarisi
S, Luengo I, Stoyanov D (2019) Easylabels: weak labels for scene
segmentation in laparoscopic videos. Int J Comput Assist Radiol
Surg 14(7):1247–1257

5. Allan M, Kondo S, Bodenstedt S, Leger S, Kadkhodamohammadi
R, Luengo I, Fuentes F, Flouty E, Mohammed A, Pedersen M,
Kori A, Alex V, Krishnamurthi G, Rauber D, Mendel R, Palm
C, Bano S, Saibro G, Shih C-S, Chiang H-A, Zhuang J, Yang J,
Iglovikov V, Dobrenkii A, Reddiboina M, Reddy A, Liu X, Gao
C, Unberath M, Kim M, Kim C, Kim C, Kim H, Lee G, Ullah I,
Luna M, Park SH, Azizian M, Stoyanov D, Maier-Hein L, Speidel
S (2020) 2018 robotic scene segmentation challenge. https://doi.
org/10.48550/ARXIV.2001.11190

6. HeiChole Surgical Workflow Analysis and Full Scene Segmenta-
tion (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.
org/#!Synapse:syn25101790/wiki/608802. Accessed 14Nov 2022

7. Maier-Hein L, EisenmannM, Sarikaya D, März K, Collins T, Mal-
pani A, Fallert J, Feussner H, Giannarou S, Mascagni P, Nakawala
H, ParkA, PughC, StoyanovD,Vedula SS, ClearyK, FichtingerG,
Forestier G, Gibaud B, Grantcharov T, Hashizume M, Heckmann-
Nötzel D, Kenngott HG, Kikinis R, Mündermann L, Navab N,
Onogur S, Roß T, Sznitman R, Taylor RH, Tizabi MD, Wagner M,
Hager GD, Neumuth T, Padoy N, Collins J, Gockel I, Goedeke J,
Hashimoto DA, Joyeux L, LamK, Leff DR,Madani A,Marcus HJ,
Meireles O, Seitel A, Teber D, Ückert F, Müller-Stich BP, Jannin
P, Speidel S (2022) Surgical data science: from concepts toward
clinical translation. Med Image Anal 76:102306. https://doi.org/
10.1016/j.media.2021.102306

8. Carstens M, Rinner FM, Bodenstedt S, Jenke AC, Weitz J, Distler
M, Speidel S, Kolbinger FR (2023) The Dresden surgical anatomy
dataset for abdominal organ segmentation in surgical data science.
Sci Data 10(1):1–8. https://doi.org/10.1038/s41597-022-01719-2

9. ShiG,XiaoL,ChenY,ZhouSK(2021)Marginal loss and exclusion
loss for partially supervised multi-organ segmentation. Med Image
Anal 70:101979. https://doi.org/10.1016/j.media.2021.101979

10. Ulrich C, Isensee F, Wald T, Zenk M, Baumgartner M, Maier-Hein
KH (2023) Multitalent: a multi-dataset approach to medical image
segmentation. In:Medical image computing and computer assisted
intervention: MICCAI 2023. Springer, Cham, pp 648–658

11. Dmitriev K, Kaufman AE (2019) Learning multi-class segmenta-
tions from single-class datasets. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 9501–
9511

12. Yan K, Cai J, Zheng Y, Harrison AP, Jin D, Tang Y, Tang Y, Huang
L, Xiao J, Lu L (2020) Learning from multiple datasets with het-
erogeneous and partial labels for universal lesion detection in CT.
IEEE Trans Med Imaging 40(10):2759–2770

13. Dice LR (1945) Measures of the amount of ecologic association
between species. Ecology 26(3):297–302. https://doi.org/10.2307/
1932409

14. Kolbinger FR, Rinner FM, Jenke AC, Carstens M, Krell
S, Leger S, Distler M, Weitz J, Speidel S, Bodenstedt S
(2023) Anatomy segmentation in laparoscopic surgery: compar-
ison of machine learning and human expertise-an experimental
study. Int J Surg 109(10):2962–2974. https://doi.org/10.1097/JS9.
0000000000000595

123

https://doi.org/10.6084/m9.figshare.21702600
https://doi.org/10.6084/m9.figshare.21702600
https://gitlab.com/nct_tso_public/dsad-segmentation/
https://gitlab.com/nct_tso_public/dsad-segmentation/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TMI.2022.3177077
https://doi.org/10.1117/12.2512518
https://doi.org/10.1117/12.2512518
https://doi.org/10.48550/ARXIV.2001.11190
https://doi.org/10.48550/ARXIV.2001.11190
https://www.synapse.org/#!Synapse:syn25101790/wiki/608802
https://www.synapse.org/#!Synapse:syn25101790/wiki/608802
https://doi.org/10.1016/j.media.2021.102306
https://doi.org/10.1016/j.media.2021.102306
https://doi.org/10.1038/s41597-022-01719-2
https://doi.org/10.1016/j.media.2021.101979
https://doi.org/10.2307/1932409
https://doi.org/10.2307/1932409
https://doi.org/10.1097/JS9.0000000000000595
https://doi.org/10.1097/JS9.0000000000000595


International Journal of Computer Assisted Radiology and Surgery (2024) 19:1233–1241 1241

15. Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking
atrous convolution for semantic image segmentation. https://doi.
org/10.48550/arXiv.1706.05587

16. Lin T-Y,MaireM, Belongie S, Bourdev L, Girshick R, Hays J, Per-
ona P, Ramanan D, Zitnick CL, Dollár P (2014) Microsoft COCO:
common objects in context. https://doi.org/10.48550/arxiv.1405.
0312

17. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A,
Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner
B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style,
high-performance deep learning library. https://doi.org/10.48550/
arxiv.1912.01703

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.48550/arxiv.1912.01703
https://doi.org/10.48550/arxiv.1912.01703

	One model to use them all: training a segmentation model with complementary datasets
	Abstract
	Introduction
	Methods
	Baselines
	Implication-based labelling
	Metrics

	Evaluation
	Dataset
	Trials
	Results

	Discussion
	Conclusion
	References




