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Abstract
Models are often employed to integrate knowledge about epidemics across scales
and simulate disease dynamics. While these approaches have played a central role in
studying the mechanics underlying epidemics, we lack ways to reliably predict how
the relationship between virulence (the harm to hosts caused by an infection) and trans-
missionwill evolve in certain virus-host contexts. In this study, we invoke evolutionary
invasion analysis—a method used to identify the evolution of uninvadable strategies
in dynamical systems—to examine how the virulence-transmission dichotomy can
evolve in models of virus infections defined by different natural histories. We reveal
peculiar patterns of virulence evolution between epidemics with different disease
natural histories (SARS-CoV-2 and hepatitis C virus). We discuss the findings with
regards to the public health implications of predicting virus evolution, and in broader
theoretical canon involving virulence evolution in host-parasite systems.
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1 Introduction

Recent events have reinvigorated interest in the evolution and ecology of infectious
disease, specifically, what rules (if any) govern how lethal a given pathogen will
become in a population of hosts. These questions have formed a theoretical canon
defined by hundreds of studies and analytical descriptions of the evolvability and
constraints surrounding how a pathogen evolves increased virulence (Anderson and
May 1982; Ewald 1983, 2004; Bull 1994; Lenski and May 1994; Frank 1996; Ebert
and Weisser 1997. Virulence can be defined in many ways, but mainly relates to some
measure of harm done to hosts by pathogens or the capability of causing disease in host
organisms (Read 1994; Casadevall and Pirofski 2001; Thomas and Elkinton 2004).
These ideas have been applied to pathogens of various kinds-parasitic, helminthic,
bacterial, and viral-infecting a vast number of host types, from plants to nonhuman
animals, and humans (Frank 1996; Alizon et al. 2013; Cressler et al. 2016). Classically,
it is framed in terms of its relationship to transmission, applying to a suite of traits
contributing to a pathogen’s ability to successfully transmit an infection from one host
to another (Lipsitch and Moxon 1997; Bull and Lauring 2014).

One of the goals of the evolution of virulence canon is to predict how virulence
will change in an evolving interaction between pathogen and host. This is especially
relevant in the context of viral pathogens (especially RNA viruses), where the rapid
evolution of viruses renders the ecological and evolutionary scales similar (Steinhauer
and Holland 1987; Pybus and Rambaut 2009; Duffy 2018). These ideas rose to promi-
nence during the COVID-19 pandemic, in which an array of opinions arose regarding
howSARS-CoV-2 populationswould evolvewith respect to their virulence (Grubaugh
et al. 2020; Kissler et al. 2020; van Dorp et al. 2020; Alizon and Sofonea 2021). This
pandemic was just the latest manifestation of a long-standing curiosity surrounding
the predictive potential of epidemiological methods (Morris et al. 2018; Scarpino and
Petri 2019). Several years after the start of the COVID-19 pandemic, questions remain
surrounding what rules governed how virulence evolved from the ancestral strainWu-
Hu-1 (Wu et al. 2020) to Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) (Lauring
and Malani 2021), and Omicron (B.1.1.529) (Fan et al. 2022) variants. Independent
of our success in predicting whether evolved variants of interest (VoI) or variants of
concern (VoC), the related public health anxiety fortified the idea that we are a long
way from formal tools for accurate prediction. Moreover, the reach of these questions
is far beyond any one viral outbreak. Alternatively, all of the questions that surfaced
during the COVID-19 pandemic apply to many other viral diseases, where we also
struggle to make predictions for how pathogens will emerge and how they will evolve
once they are present.

Mathematical modeling was foundational in the historical development of epidemi-
ology (Brauer 2017; Siettos and Russo 2013; Kucharski 2020; Jones and Helmreich
2020) and has continued to serve a critical role in the study of infectious outbreaks
(Lofgren et al. 2014; Cobey 2020), providing insights for clinical interventions and
public health policies (Whitty et al. 2014; Heesterbeek et al. 2015). In addition, models
can serve as instruments to explore theoretical questions or to examine how to predict
the dynamics of epidemics (Scarpino and Petri 2019). Examining the combined epi-
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demiological and evolutionary dynamics of pathogens present numerous theoretical
challenges (Day et al. 2020), and is a frontier of modern epidemiology.

Studies have examined the evolution of multi-strain dynamics (Makau et al. 2022;
Kucharski et al. 2016), sometimes framed in terms of “interacting contagions” (Hebert-
Dufresne et al. 2020). There have been several large syntheses focused on general
questions around virus evolutionary and ecological dynamics (Nowak and May 2000;
Weitz 2016). And several scientists have utilized game theoretic methods to model
how viruses evolvewithin particular conditions. One suchmethod is the Price equation
approach, employed to reveal various processes influencing evolutionary dynamics
(Day et al. 2020). Another related set of methods is associated with the concept of the
evolutionary stable strategy (ESS), first pioneered in the study of evolutionary game
theory, which describes an optimal, “uninvadable” strategy (Smith and Price 1973;
Otto and Day 2007; Smith 1982; Vincent and Brown 2005; Bukkuri and Brown 2021).
This perspective has since been applied broadly in infectious contexts, including virus
evolution in the setting of different multiplicity of infections (Turner and Chao 1999,
2003) and towards predicting the optimal level of virulence in clinical infections of
Mycobacterium tuberculosis (Basu and Galvani 2009).

“Evolutionary invasion analysis” as described by Otto and Day (2007) assesses the
potential of a population initially fixed for a specific allele to be invaded by a mutant
allele that encodes a distinct trait value. In this context, the allele predominant within
the population is designated as the resident allele, while the emergent allele is denoted
as the mutant allele. In this study, we apply these methods to examine two highly
relevant viral pathogens: SARS-CoV-2 and hepatitis C virus (HCV), each informed
by existing real-world empirical data that inform the parameter spaces.

We chose these two study systems because they represent contemporary epidemic
scenarios defined by widely different disease ecologies and natural histories. SARS-
CoV-2 dynamics are driven by direct transmission between those infected, via both
symptomatic and asymptomatic transmission (Mizumoto et al. 2020; Nishiura et al.
2020; Kronbichler et al. 2020). Hepatitis C virus, on the other hand, is largely trans-
mitted indirectly between persons who inject drugs (PWID) in modern settings via
drug equipment (Alter 2011).

Using evolutionary invasion analysis, our study offers an integrated method for
modeling the evolution of virulence across these two systems. In SARS-CoV-2, we
learn that two different conceptual framings of virulence, one involving virulence as
a function of the transmission from symptomatic individuals and another where it
is a function of both symptomatic and asymptomatic transmission lead to different
evolutionary patterns. Examining a mathematical model of HCV in PWID identifies
an ESS virulence level that depends on treatment rate, progression into late-stage
disease, and self-clearance rate.

Summarizing, we learn that there should be no singular expectation for how vir-
ulence will evolve in a population. More broadly, we reflect on our findings for the
individual outbreak scenarios (COVID-19 and HCV) and how they may inform larger
conversations surrounding how we measure, understand, and prognosticate the evolu-
tion of virulence in epidemics, with implications for mathematical epidemiology and
public health.
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2 Methods

2.1 Introduction to Evolutionary Invasion Analysis of Pathogens

To analyze evolutionary invasion, one can follow these steps, which are extracted from
prior studies on the topic (Otto and Day 2007; Williams and Kamel 2021):

1. Begin with a model outlining the temporal dynamics of a specific population of
interest.

2. Identify the trait under scrutiny and define potential trait values.Additionally, estab-
lish a model elucidating the frequency of mutations within the organism’s trait and
the dissemination of thesemutation variants, either leading to fixation or extinction.

3. Formulate one or more equations delineating the dynamics of a rare mutant allele
emerging within a population predominated by a resident allele, commonly termed
as “invasion fitness.” Given the rarity of mutations, envision the emergence of
mutation-generated phenotypes within an ecological setting near the equilibrium
of the resident type.

4. Employ linear stability analyses to address queries regarding the invasion of a novel
type. Analyze the fate of a mutant allele by assessing its population growth rate,
denoted as invasion fitness, upon its initial introduction as a minor deviation from
the stable equilibrium of the population in the absence of the mutant.

5. Derive the requisite condition for the mutant allele to successfully invade the resi-
dent population.

6. Explore the evolution of the trait concerning the resident trait value.
7. Identify resident trait values impervious to invasion by any mutant allele, recog-

nized as evolutionary stable strategies (ESSs).

In this investigation, we focus on elucidating the evolutionary dynamics of
pathogens within the host population. To achieve this, we employ compartmental epi-
demiological models, widely recognized for their utility in studying disease dynamics.

Our study investigates how differences in mechanistic relationships between viru-
lence and transmission manifest in evolutionary dynamics. The dynamics of mutant
strains can be observed by introducing distinct compartments for infected hosts har-
boring the mutant variant.

Employing stability analyses of the mutant-free equilibrium enables us to probe the
intricacies surrounding the potential invasion of novel pathogen types. These stabil-
ity conditions serve as pivotal metrics, constituting fitness functions for the resident
pathogen strain. This framework identifies evolutionary stable strategies as trait val-
ues that optimize these fitness functions, thus representing configurations resistant to
invasion by mutant strains.

Before delving into the detailed discussions, we provide a comprehensive overview
of our approach, some of the terminologies employed, and the rationale behind our
choice of disease models. We then explain the concept of evolutionary invasion anal-
ysis of pathogens, using an elementary susceptible-infected (SI) model. Within the
remaining sections of Sect. 2, we construct a generalized framework to analyze the
invasion dynamics of mutant strains within host populations existing in equilibrium
states with resident strains.
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In the next section (Sect. 3), we embark on the development of two distinct epidemi-
ological models tailored for understanding the dynamics of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and Hepatitis C virus (HCV). These mod-
els are engineered to capture the interplay between resident and mutant strains of the
pathogens within the intricate dynamics of host populations. Leveraging thesemodels,
we undertake an analysis of our compartmental epidemiological framework to discern
evolutionary stable strategies for the aforementioned pathogens. Through these efforts,
we endeavor to examine the evolutionary dynamics in pathogen populations, thereby
enriching our understanding of disease transmission dynamics. Before delving into
the detailed analysis, we will make a few general notes about this study.
Notes on the approach In this study, we examine the impact of pathogen evolution on
the parameters of a disease, such as virulence and transmissibility, through a mathe-
matical model with two strains. We utilize a system of ordinary differential equation
(ODEs) of the compartmental model to determine the fitness function of the strains.
The analysis identifies the fitness function as the R0, which depends on the evalu-
ation parameters. By establishing the fitness function, we can gain insight into the
pathogen’s ESSs and analyze its sensitivity to other parameters. We present an algo-
rithm for these calculations and apply it to evaluating SARS-CoV-2 and HCV using
ODE models.
Notes on terminology “Strain” is sometimes used in applications of the evolutionary
stable strategy in pathogen evolution. In our study, we use the term “strain” to mean
different phenotypic variants of a viral pathogen still belonging to the same type.
We recognize the dubiousness associated with how viruses are grouped (e.g., clone,
population, quasispecies), but are using language that is consistent with others in
related fields.

Similarly, “virulence” is a famously complicated term, often used to describe differ-
ent phenotypic impacts of pathogen infection. For our study, one might use a standard
definition related to the harm caused to the host on behalf of a pathogen’s infection.
However, because our study utilizes mathematical models, we try to be explicit and
consistent about its definitions. We translate virulence as the rate of death from infec-
tion (“infected death rate”), as this captures the ultimate sort of harm caused by a
pathogen.

The term “fitness function” is utilized with varying contextual meanings. In this
instance, we employ it to denote the stability condition for the mutant-free equilibrium
within the dynamic system.
On the choices of disease models This study focuses on viral pathogens, as under-
standing and predicting how virulence evolves in these systems have been especially
dubious.Dozens of examples could be used to examine this, butwe chose two—SARS-
CoV-2 and hepatitis C virus (HCV)—both contemporary public health concerns. In
addition, they represent diseases with different natural histories, allowing us to exam-
ine ESS virulence evolution in many different settings. We emphasize that our goal is
not to offer any particular argument or intervention but to examine virulence evolution
in varied disease systems.
Notes on the assumptions There are a few significant assumptions we will impose to
reduce complexity. First, we assume that there are no superinfections with pathogen
strains. This means that a host infected with the resident pathogen cannot simulta-
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neously be infected with the invading mutant and that a host immune to the resident
pathogen is also immune to the mutant pathogen. Next, we assume that the resi-
dent strain is in its endemic equilibrium of the epidemiological compartmental model
before the rare mutant appears in the system. Additionally, we assume that general
epidemiological compartmental models have infected subsystems with transmission
and transition matrices that satisfy the Next-generation matrix theory, as described in
Hurford et al. (2010).

Furthermore, we assume that virulence changes due to pathogen mutation, and that
the rate of transmission is a function of virulence. This assumption reflects our interest
in the evolution of pathogen virulence, and its epidemiological consequences. We
should note that, one can readily relax these assumptions and introduce newparameters
of interest for their study without altering the analysis steps. That is, the methods
applied in this study aren’t specific to any one definition of virulence, or mechanistic
relationship between it and other traits.

2.1.1 Susceptible-Infected (SI) Model in Evolutionary Invasion Analysis

In this section, we apply evolutionary invasion analysis of pathogens, wherein host
population dynamics can be represented using the simple SI modeling approach (Otto
and Day 2007, chapter 12.4). This will explain relevant concepts such as the mutant-
free equilibrium (MFE), evolutionarily stable strategies (ESSs), the “fitness function”,
and the mathematical aspects involved in understanding the fixation or extinction of
rare mutant strains. In later sections, we will generalize these concepts for broader
applications in pathogen evolution. The results section will discuss the evolutionary
invasion analysis of specific pathogen-related diseases.

In this scenario, the ecological model is defined by the dynamics of the susceptible
population (S) and the infected population (I ). It is important to note that we are not
directly modeling the dynamics of individual pathogens themselves. Instead, we focus
on tracking the number of hosts infected by a specific pathogen. We postulate that, in
the absence of the mutant strain, the dynamics of the resident pathogen adhere to the
SI epidemiological model, with the infected population due to the resident pathogen
represented as Ir . This is described by Eq. (1), which excludes recovery. Specifically,
the fluctuations in the numbers of susceptible and infected individuals are governed
by a system of ordinary differential equations (ODEs), expressed as follows:

dS

dt
= b − βr S Ir − dS,

d Ir
dt

= βr S Ir − (d + μr )Ir .
(1)

The parameter b represents the birth/immigration rate of susceptible hosts, while
d denotes the per capita background mortality rate of hosts. Furthermore, μr signifies
the heightened mortality rate induced by the resident strain, which we designate as
virulence, and βr denotes the transmission rate. Our focus lies in understanding how
virulence and transmission impact the fixation or extinction of a mutant strain. We
prioritize virulence (μ) as the determining factor, recognizing that the transmission
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rate is likely contingent upon virulence, represented as an arbitrary function β(μ).
Therefore, the parameter value βr = β(μr ), where βr is the function value evaluated
atμr . The precise nature of this functionmay remain elusive or subject to further inves-
tigation. This system exhibits two fixed points (Ŝ, Îr ): one representing the absence of
the pathogen in the population, commonly referred to as the disease-free equilibrium
(DFE), denoted as ( bd , 0), and the other signifying the pathogen’s endemic presence,

denoted as (
d+μr

βr
, b
d+μr

− d
βr

). Moreover, the criteria for local stability at the endemic
equilibrium can be expressed using the basic reproduction number. This value for the
resident strain is denoted by R0r , and its specific value for this model is given by
R0r = bβr

d(d+μr )
. It’s noteworthy that ifR0r > 1, then the endemic equilibrium for the

resident strain achieves local stability.
The next phase in the evolutionary invasion analysis involves the introduction of a

rare mutant allele into a population predominantly characterized by the resident allele.
In the context of pathogen evolution, this is achieved by incorporating an infected host
population Im harboring the rare mutant strain. As previously stipulated, we operate
under the assumption of no superinfection within the host population. Moreover, we
consider the dynamics of the Im population to mirror those of the Ir population, albeit
with distinct parameter values to encapsulate the influence of the mutant pathogen.
Specifically, in our case, differing parameter values are allocated for virulence (des-
ignated as μm for the mutant strain), consequently affecting the transmission rate βm .
Here, βm represents the transmission function value at μm , denoted as βm = β(μm).
Presently, both the resident and rare mutant strains within the host population adhere
to the SI epidemiological model and can be depicted through a system of ODEs, as
outlined in Eq. (2):

dS

dt
= b − βr S Ir − βmSIm − dS,

d Ir
dt

= βr S Ir − (d + μr )Ir ,

d Im
dt

= βmSIm − (d + μm)Im .

(2)

Mutant-free equilibrium, fitness function, and evolutionary stable strategies It is note-
worthy that the system of ODEs presented in Eq. (2) exhibits several equilibrium
points, namely the disease-free equilibrium (Ir = Im = 0), mutant-strain free equilib-
rium (Im = 0), resident-strain-free equilibrium (Ir = 0), or the endemic equilibrium
with both strains coexisting (Ir , Im �= 0). In evolutionary invasion analysis, our pri-
mary concern is to discern the fate of the mutant allele when introduced as a minor
deviation from the stable equilibrium of the population in the absence of the mutant.

We translate this concept to pathogen evolution, utilizing an epidemiological mod-
eling approach, represented as the stability analysis of theMFE.Here,we scrutinize the
system’s dynamics around the fixed point wherein only the resident strain is present,
with nomutant strain in the host population.Wemust additionally assume that theODE
model devoid of any host compartment for the mutant strain resides in the endemic
equilibrium. In the case of the SI example, this corresponds to the model represented
by Eq. (1), with the condition that R0r > 1. If the mutant-free fixed point of the full
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model (in the case of the SI example, Eq. (2)) is locally stable; even a minor introduc-
tion of the infected population carrying the mutant strain will tend to converge towards
the mutant-free fixed point. Consequently, this leads to the eventual extinction of the
mutant variant. Therefore, the local stability criteria at the MFE can be rearranged
to articulate the evolutionary stable strategies for our pertinent decision parameter. In
our study of pathogen evolution, we designate this parameter to be virulence.

In the SI epidemiological model, the MFE is given by V̂2 = (Ŝ, Îr , Îm) =
(
d+μr

βr
, b
d+μr

− d
βr

, 0). Additionally, we assume that R0r = bβr
d(d+μr )

> 1 to ensure
that the resident strain attains an endemic equilibrium within the model described by
Eq. (1). Furthermore, the linearized systems of Eq. (2) near the MFE can be repre-
sented in matrix form as dV

dt = J (V̂2)V , where V = (S Ir Im)T and the symbol ‘T ’

denotes the transpose of the matrix. Here, J (V̂2) represents the Jacobian matrix of the
system at the MFE V̂2, and it is defined as:

J (V̂2) =
⎛
⎝

−d − Îrβr −Ŝβr −Ŝβm

Îrβr Ŝβr − d − μr 0
0 0 Ŝβm − d − μm

⎞
⎠ . (3)

This matrix can be represented as a block diagonal matrix and can be generalized
to incorporate additional host population compartments, including multiple infected
stages or hosts/reservoirs. In the next section, we will delve deeper into generalizing
these concepts. To maintain consistency with these computations, particularly regard-
ing the block form of the matrix, we will employ a more compact matrix notation in
the next section.

We have already assumed that bβr
d(d+μr )

> 1 guarantees the local stability of the
endemic equilibrium prior to the emergence of the mutant. Consequently, the MFE is
locally asymptotically stable if Ŝβm −d−μm < 0, and unstable if Ŝβm −d−μm > 0.
In the latter scenario, the mutant strain with virulence μm invades the resident strain
with virulence μr . By substituting the value of Ŝ, the expressionR0(V̂2) = φ(μm )

φ(μr )
can

be comparedwith unity to establish a stability criterion for theMutant-freeEquilibrium
(MFE). Here, φ : μ �→ β(μ)

d+μ
represents a function of virulence, where μ denotes the

virulence level. IfR0(V̂2) > 1, the MFE is locally unstable, while ifR0(V̂2) < 1, it is
locally stable. Thus, the function φ denotes the fitness of the strain at a given virulence
level. Consequently, φ can be regarded as the “fitness function" for the pathogen.

Now, it is noteworthy that if μ∗ = argmaxμ φ(μ) and μr = μ∗, then no value of

μm can satisfy the condition φ(μm )
φ(μr )

> 1. Therefore, the values ofμ∗ = argmaxμ φ are
termed as Evolutionary Stable Strategies (ESSs). The analysis of how the parameters
in the function φ affect the ESSs can be further explored. A detailed discussion of
this topic, encompassing general epidemiological models and more specific exam-
ples involving pathogens such as SARS-CoV-2 and HCV, will be presented in the
subsequent sections.
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2.2 Model of Disease Dynamics with the Evolution of Pathogen

The evolution of communicable disease pathogens can be simulated using a host com-
partmental ODEmodel. This section will delve deeper into the ecological modeling of
pathogen dynamics. As discussed in the previous section, this can be accomplished by
employing epidemiological compartmentalmodels to capture the dynamics of infected
hosts. Here, we extend the modeling concepts elucidated in the susceptible-infected
(SI) epidemiological models encompass more generalized host compartments, includ-
ing multiple infected stages or different types of hosts. Here, we analyze a model that
involves two viral strains and assumes that a host infected with the resident pathogen
(characterized by r ) cannot simultaneously be infectedwith the invadingmutant (char-
acterized by m) and that a host immune to the resident pathogen is also immune to
the mutant pathogen (no super-infections). Either strain can contaminate the suscepti-
ble compartment (S) and then proceed through k infected compartments ({Xi

j }kj=1 for
i ∈ {r ,m}) before reaching the recovery compartment (R) (as depicted in Fig. 1). Note
that if there are multiple susceptible or recovered compartments, the notations S and R
can be employed to represent the column vectors of those compartments. Furthermore,
we will utilize the column vector of infected compartments Xi = (Xi

1 Xi
2 . . . Xi

k)
T to

denote the infected population with strain i = r ,m. Similar to the discussion on the
Susceptible-Infected (SI) model, we first consider the model with the resident strain,
and then introduce the mutant strain by incorporating infected host compartments
with mutant strains. To streamline the model notations, we adopt matrix notation in
the model equations. Additionally, to facilitate stability analysis using next-generation
matrix computations (Diekmann et al. 1990, 2010), we employ specific notations to
animate the linearized infected subsystems of the form dX

dt = (SF − D)X, where
X represents the infected compartments, SF denotes the transmission matrix (repre-
senting all flows from uninfected to infected), and D signifies the transition matrix
(representing all other flows) (Castillo-Garsow and Castillo-Chavez 2020; Diekmann
et al. 2010).

More specifically, themajor matrix notations used in the ODEmodels are explained
as follows, with other parameters detailed in Table 1:

• S: This term refers to a diagonal matrix of susceptibles, adjusted to facilitate the
calculation of the transformation from susceptible individuals (S) to the infected
compartments. This matrix resolves the isolated susceptible population from the
transmission matrix SF, where F represents the transmission parameters in a lin-
earized system.

• SF j : Represents the transmission matrix, whose elements correspond to trans-
mission events resulting in the acquisition of an epidemiological infection (X j ).
This matrix captures the dynamics of disease transmission within the population
(Diekmann et al. 2010).

• D j : Denotes a transition matrix capturing all other changes in the disease compart-
ments X j . This matrix encapsulates various processes affecting disease dynamics,
such as recovery, mortality, and movement between compartments (Diekmann
et al. 2010).
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Table 1 This table provides a description of major parameters in generalized epidimiological models
(Eqs. (4) and (7))

Notation Description

b(N ) A birth function with respect to a population of size N and exclusively contributes
to the susceptible compartment

d(.) A natural death function

f j Transmission rates of the disease with strain j for j = r , m

g j Recovery rates of the disease with strain j for j = r , m

Fig. 1 The general compartment model with the assumption of no super-infections. It demonstrates the
dynamics of disease with two pathogen strains. Pathogen evolution can impact virulence μk and transmis-
sibility. The transmission rate, represented by β, is presumed to be a function of the virulence, μk

• S: This diagonal matrix with susceptible populations is utilized when multiple
host compartments are present in the model. If there is only one susceptible com-
partment, then S = S.

2.2.1 Epidemiological Model for the Resident Strain in the Absence of Mutant Strain

First, we will model the dynamics of the pathogen using the host compartments in the
absence of themutant strain. The dynamics of the resident pathogen adhere to epidemi-
ological models, with the infected population due to the resident pathogen represented
as Xr . This is described by Eq. (4), incorporating the variables and parameters dis-
cussed above. The dynamics of the numbers of susceptible and infected individuals
with a resident pathogen are governed by a system of ODEs, expressed as follows:

dS

dt
= b(N ) − S frXr − d(S)

dR

dt
= grXr − d(R)

dXr

dt
= SFrXr − DrXr .

(4)
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Similar to the discussion on the susceptible-infected (SI)model, this generalizedmodel
also possesses two equilibrium points: the DFE and the endemic equilibrium. We
utilize the notations S∗, F̄r , D̄r to denote the values of those corresponding matrices
at the DFE of Eq. (4). The linearized subsystem of the infection compartments of the
model described in Eq. (4) is given by dXr

dt = (
SFr −Dr

)
Xr , and the next-generation

matrix can be employed to compute the basic reproduction numberR0r . This concept
is summarized in Remark 1.

Remark 1 (Basic reproduction number for resident-strain model) Suppose a single-
strain model is described by Eq. (4). Then, the basic reproduction number for the
resident strain, denoted R0r , is given by:

R0r = ρ(S∗F̄r , D̄−1
r ) (5)

where ρ(.) represents the spectral radius of a given matrix. Furthermore, the DFE of
Eq. (4) is locally asymptotically stable ifR0r < 1, but unstable ifR0r > 1. Note that,
the eigenvalues of a block upper triangular matrix of the form,

J (S∗) =
(
J∗ Mr

0 S∗F̄r − D̄r

)
(6)

determine the stability condition for the DFE of Eq. (4). Here, J∗, Mr are some
matrices corresponding to the ODEs of susceptibles and recovered compartments.
Therefore, the invasionof the pathogendepends on the signof themaximumeigenvalue
of S∗F̄r − D̄r . This can be expressed in terms of the condition of R0r (a detailed
explanation can be found in van den Driessche and Watmough (2002) and Hurford
et al. (2010)).

As discussed in Sect. 2.1, we assume that the endemic equilibrium for the resident
strain is locally stable in evolutionary invasion analysis. Hence, the maximum eigen-
value of the Jacobian matrix J2 at the endemic equilibrium of the system described in
Eq. (4) is negative.

2.2.2 Introduction of a Rare Mutant to the Epidemiological Model with Resident
Strain

Like Sect. 2.1.1, the next stage of evolutionary invasion analysis involves introducing
a rare mutant allele into a population primarily characterized by the resident allele.
This is accomplished by integrating an infected host population Xm containing the
rare mutant strain. As previously stated, we assume no superinfection within the host
population. Additionally, we model the dynamics of the Xm population to resemble
those of the Xr population, albeit with distinct parameter values to account for the
influence of the mutant pathogen. Specifically, this study assumes that the pathogen’s
evolution influences the disease’s virulence and transmission. Additionally, we assume
that the transmission rate β of fully infected hosts depends on virulence (as shown in
Fig. 1) to derive a fitness function for the strains. Now, both the resident and mutant
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strains within the host population adhere to the general epidemiological model can be
expressed as follows (Eq. (7)):

dS

dt
= b(N ) − S frXr − S fmXm − d(S)

dR

dt
= grXr + gmXm − d(R)

dXr

dt
= SFrXr − DrXr

dXm

dt
= SFmXm − DmXm

(7)

where the notation is explained in Fig. 1, Table 1, and previous sections.
The principle that a disease-free equilibrium must be established as a require-

ment for disease models is widely recognized. This is because the transmission of
the pathogen cannot occur without any initial cases of infection. Hence, the right-
hand side of the infection groups in the general model, as outlined in Eq. (7), has
the form AX , where A is a matrix (whose entries may depend on the infection vari-
ables) and X is the vector of infection groups. Furthermore, A can be decomposed
into the SF−D form. To achieve the basic reproduction number,R0, biologically rel-
evant values for SSF j andD j are chosen, satisfying the hypothesis of next-generation
theory (SSF j , D j

−1 > 0 and the spectral bound of −D j being less than zero) (Hur-
ford et al. 2010). The premise of “no superinfections” implies that there is no direct
interaction between competing strains, which can be further described as each strain’s
derivatives (Eq. (7)) being determined exclusively by its own parameters and infection
variables, along with the presence of susceptible variables. With these assumptions
and explanations presented in Table 1, the system has the potential to exhibit four dis-
tinct equilibrium solutions, denoted as V̂l = (Ŝl , , R̂l , X̂r ,l , X̂m,l) for l = 1, . . . , 4 (as
outlined in Table 2). The stability criteria for the equilibrium points can be expressed
using a form of basic reproduction number. The Remark 1 and Remark 2 explain the
basic reproduction number for the single-strain and two-strain ODE models (Eqs. (7)
and (4)), respectively. We utilize the notations S∗, F̄ j , D̄ j for j = r ,m to denote the
values of those matrices at the DFE (denoted by V̂1).

Remark 2 (R0 for Two-Strain Model) Suppose a two-strain model is explained by the
Eq. (7). Then, theR0 for two-strain model is given by:

R0 = max
i=r ,m

ρ(S∗F̄i D̄
−1
i ). (8)

In this case, the stability of the DFE can be determined by the following Jacobian
matrix (block upper triangular form):

J (S∗) =
⎛
⎝
J∗ Mr Mm

0 S∗F̄r − D̄r 0
0 0 S∗F̄m − D̄m

⎞
⎠ . (9)
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Table 2 A list of equilibrium points in the mathematical model represented by the system of ODEs shown
in Eq. (7)

Fixed point Description Existence condition

V̂1 = (S∗, 0, 0, 0) No infections Always present in the model

V̂2 = (Ŝr , R̂r , X̂r , 0) Infected only with resident strain. We
define this as MFE

|SFr − Dr |V̂2 = 0

V̂3 = (Ŝm , R̂m , 0, X̂m ) Infected only with mutant strain |SFm − Dm |V̂3 = 0

V̂4 = (Ŝ, R̂,X∗
r ,X∗

m ) Infected with resident or mutant
strain (Co-infected)

|SFr − Dr |V̂ 4 = 0 and |SFm − Dm |V̂4 = 0

Understanding the properties of fixed points is essential for understanding the system’s long-term behavior.
In this computation, we leverage the fundamental mathematical theorem that states that if x is a non-zero
vector and Ax = 0, then the matrix A is singular, meaning that its determinant is zero (|A| = 0)

where J∗, Mr , Mm are some matrices corresponding to the ODEs of susceptibles and
recovered compartments. Therefore, DFE is locally asymptotically stable if R0 < 1,
but unstable ifR0 > 1.

Also, note that if a strain labeled as “mutant” is infecting the host population in the
absence of the strain labeled as “resident,” then a model similar to Eq. (4), consisting
of a system of ODEs, can be utilized to depict the dynamics of only the mutant strain.
Furthermore, the basic reproduction number R0m for the mutant strain in this model
is given by:

R0m = ρ(S∗ F̄mD̄−1
m ). (10)

2.3 Mutant-Free Equilibrium and Fitness Function

As outlined in Sect. 2.1, one of the major steps in the evolutionary invasion analysis
involves assessing the “invasion fitness”. As outlined in Sect. 2.1.1, the “invasion
fitness” in pathogen evolution, modeled by epidemiological compartmental models,
can be evaluated using linear stability analysis of the MFE. Therefore, in this section,
we will delve into the stability analysis of the MFE, denoted by V̂2, which can also be
regarded as the endemic equilibrium of the host population infected by the resident
strain in the full model described in Eq. (7). This analysis will be analogous to the
examination of the DFE, considering the mutant as the sole infected compartment
while the resident population is treated as uninfected. Hence, the linear stability of the
system described in Eq. (7) at the MFE can be effectively analyzed by employing the
next-generation matrix theory (Diekmann et al. 1990, 2010) at V̂2. This concept can
be formally summarized as follows in Lemma1.

Lemma 1 (Basic reproduction number for pathogenmutant invasion) Let themodel for
an infectious disease be represented by the system of ODEs in Eq. (7) and the MFE is
given by V̂2 = (Ŝr , R̂r , X̂r , 0). Suppose the endemic equilibrium of the compartmental
model described in Eq. (4), restricted to the resident strain, is a locally asymptotically
stable equilibrium solution of that system. Consider the basic reproduction number
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for mutant invasion:

R0(V̂2) = ρ(Ŝr F̄mD̄−1
m ). (11)

Then the MFE, denoted as V̂2 = (Ŝr , R̂r , X̂r , 0) in Eq. (7), is locally asymptotically
stable ifR0(V̂2) < 1, and unstable ifR0(V̂2) > 1.

Proof (Outline of the proof) Notice that, Jacobin matrix of the system (Eq. (7)) at V̂2
is given by the form:

J (V̂2) =
(
J2 M2

0 Jm = Ŝr F̄m − D̄m

)
(12)

where Ŝr is the value of S at MFE and J2, M2 are some matrices corresponding to
the ODEs for compartments of susceptibles, recovered and infected with the resident
strain. Accordingly, it is established that the matrix J (V̂2) has a block upper trian-
gular form, consisting of sub-matrices J2 and Jm . The eigenvalues of J (V̂2) are the
same as those of J2 and Jm (for example, see Eq. (3)). Now, notice that (Ŝr , R̂r , X̂r )

represents the endemic equilibrium of the resident pathogen in Eq. (4). Furthermore,
J2 denotes the Jacobian matrix for Eq. (4) at this fixed point. Assuming the endemic
equilibrium for Eq. (4) is asymptotically stable, real parts of all the eigenvalues of
J2 are negative. Therefore, the eigenvalues of Jm determine the stability of the MFE,
V̂2, for Eq. (7). If all the eigenvalues of Jm have a negative real part, then the MFE,
V̂2, is locally asymptotically stable, and if at least one eigenvalue is positive, then
V̂2 is an unstable fixed point. According to the next-generation theorem ( (van den
Driessche and Watmough 2002; Hurford et al. 2010)), the maximum real part of all
the eigenvalues of Jm = Ŝr F̄m − D̄m is negative if and only if ρ(Ŝr F̄mD̄−1

m ) < 1.
Similarly, the maximum real part of all the eigenvalues of Jm is positive if and only if
ρ(Ŝr F̄mD̄−1

m ) < 1. Therefore, the MFE, denoted as V̂2 = (Ŝr , R̂r , X̂r , 0) in Eq. (7),
is locally asymptotically stable ifR0(V̂2) < 1, and unstable ifR0(V̂2) > 1. ��

Consequently, the calculation of R0(V̂2) constitutes the initial step in the process
of determining a fitness function for the resident strain. In this process, we aim to
demonstrate R0(V̂2) as a ratio of fitness functions of strains. This can be formalized
as Proposition 1.

Proposition 1 (fitness function) Suppose the infectious disease model is described by
the system of differential equations (ODEs) in Eq. (7), and the mutant-free equilibrium
(MFE) is represented by V̂2 = (Ŝr , R̂r , X̂r , 0). Let’s assume that the endemic equi-
librium of the compartmental model defined in Eq. (4), focused on the resident strain,
is a locally asymptotically stable equilibrium solution. Then, the basic reproduction
number for mutant invasion, denoted by R0(V̂2) and utilized in the stability criteria
outlined in Lemma 1, can be evaluated as follows:

R0(V̂2) = φm

φr
(13)

123



Evolutionary Invasion Analysis of Modern Epidemics... Page 15 of 34 88

where φ j = R0 j
∏n

i=2

∣∣∣λi (ET S∗F̄ j D̄
−1
j E)

λi (ET Ŝr F̄ j D̄
−1
j E)

∣∣∣ for j = r ,m, and E is an auxiliary matrix.

Here, λi (.) denotes the i th eigenvalue of a given matrix, and ET represents the trans-
pose of the matrix E.

Outline of the proof Initially, we leverage the concept of multiplying by an auxiliary
matrix to reduce the dimension of the next-generation matrix, as discussed in Diek-
mann et al. (2010). This process yields a reduced-dimension next-generation matrix
containing only non-zero eigenvalues. The goal is to reduce the dimensionality of the
next-generation matrices S∗F̄ j D̄

−1
j and Ŝr F̄ j D̄

−1
j for j = r ,m. Given that only the

parameter values of these matrices are changing (with unchanged rows of all zeros),
the same auxiliary matrix E can be applied in the process outlined in Diekmann et al.
(2010). We then utilize two key properties of matrices: the determinant (denoted by
det(.)) of a matrix equals the product of its eigenvalues, and the determinant of the
product of matrices equals the product of their determinants. Notably, the absolute
value of the determinant of the reduced-dimensional next-generation matrices (for
j = r ,m) can be expressed as follows:

| det(ETS∗F̄ j D̄
−1
j E)| = | det(ETS∗)| · | det(F̄ j D̄

−1
j E)|,

| det(ET Ŝr F̄ j D̄
−1
j E)| = | det(ET Ŝr )| · | det(F̄ j D̄

−1
j E)|. (14)

Now, by taking the ratios of these quantities, we can achieve the following expression:

| det(ET Ŝr F̄mD̄−1
m E)|

| det(ET Ŝr F̄r D̄
−1
r E)| = | det(ETS∗F̄mD̄−1

m E)|
| det(ETS∗F̄r D̄−1

r E)| (15)

Note that the maximum absolute values of eigenvalues of these reduced-dimensional
next-generation matrices correspond to the basic reproduction numbers (Diek-
mann et al. 2010). More specifically, R0(V̂2) = ρ(ET Ŝm F̄mD̄−1

m E), and R0 j =
ρ(ETS∗F̄ j D̄

−1
j E) for j = r ,m. Furthermore, notice that ρ(ET Ŝm F̄mD̄−1

m E) = 1
(van den Driessche and Watmough 2002; Hurford et al. 2010). Now, using the prop-
erty that the determinant of a matrix is equal to the product of its eigenvalues and
substituting the eigenvalue product into Eq. (15) with the maximum value as the basic
reproduction numbers, we can achieve the result. ��

The fitness function for the strains can be defined as follows:

�(μr
k, μ

m
k ) = R0(V̂2) − 1, (16)

where the mutant will invade if and only if �(μr
k, μ

m
k ) > 0. It is worth mentioning

that different choices for the fitness function exist, such as �1(μ
r
k, μ

m
k ) = φm − φr .

However, theR0 value for the disease models can be easily obtained in epidemiology,
making it a suitable choice for our calculations. Examples will be provided in other
sections.

We aim to identify the virulence level that maximizes the invasion’s fitness. In other
words, we are interested in finding a strain that a mutant cannot invade. For discussion,
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Fig. 2 Fitness function and evolutionary stable strategy for a virus population. Panel a presents the fitness
function (φ(μ)) as a function of virulence for a given strain, assuming no direct dependence from others. It
should be noted that this function exhibits a global maximum, achieved at μk = μ∗

k , indicating μ∗
k as the

ESS for the pathogen. Panel b illustrates how the fitness function changes with the parameter y. The red
(with open circles) and blue curves (with vertical marks) represent the fitness function when the parameter
y takes values y2 and y1, respectively. Notably, the global maximum of each of these curves is achieved at
μ∗
k (y2) (for the red curve, open circles) and μ∗

k (y1) (for the blue curve, vertical marks), indicating the ESS
for the respective parameter values. This observation illustrates the change in ESS with a given parameter
y (Color figure online)

we will assume R0(V̂2) = φ(μm
k )

φ(μr
k )
, which is consistent with practical applications

and Eq. (13). Under this assumption, the optimal fitness is achieved when μ∗
k =

argmax φ(μk). This value represents the evolutionary stable strategy (ESS) for the
pathogen.

2.4 Evolutionary Stable Strategies

Determining an ESSs for a pathogen is crucial in understanding the dynamics of
pathogen populations. The concept of ESS is based on the premise that if a current
pathogen populationwith specific parameters is not vulnerable to invasion by amutant,
then these parameters represent a stable strategy for the pathogen. The fitness function,
φ(μk), is used to analyze these strategies. As previously discussed, the ESS is given
by μ∗

k = argmax φ(μk). This can be demonstrated through Fig. 2a where it can be
seen that a pathogen with a virulence value of μr

k = μ∗
k ; cannot be invaded by a

mutant as its fitness is at its maximum. If the fitness function, φ(μk), is continuous
on the closed interval [0, 1], then we can determine the global ESS by calculating the
absolute maximum value.

Moreover, if φ(μk) ∈ C[0, 1] is twice differentiable at μ∗
k , derivative tests can be

utilized to find the local/absolute maximum values and ESS. It can be concluded that
if φ(μk) is twice differentiable at μ∗

k , then μ∗
k is an ESS if and only if

dφ

dμk

∣∣∣
μk=μ∗

k

= 0, and
d2φ

dμ2
k

∣∣∣
μk=μ∗

k

< 0. (17)
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2.5 Sensitivity Analysis of ESS

After determining the ESS, it is beneficial to analyze the sensitivity of the ESS with
regard to other parameters (as illustrated in Fig. 2b). For any given parameter y, the
change in the ESSμ∗

k with respect to the increase of y can be determined by calculating
dμ∗

k
dy . In order to do so, let ψ(x, y) = ∂φ(μk ,y)

∂μk

∣∣∣
μk=x

and let μ∗
k be a function of y. It is

important to note that μ∗
k satisfies the following equation:

∂

∂ y
ψ(μ∗

k , y) = ∂ψ(μk, y)

∂μk

∣∣∣
μk=μ∗

k

dμ∗
k

dy
+ ∂ψ(μk, y)

∂ y

∣∣∣
μk=μ∗

k

= 0 (18)

and it can be rewritten as:

dμ∗
k

dy
= −

∂2φ(μk ,y)
∂ y∂μk

∣∣∣
μk=μ∗

k

∂2φ(μk ,y)
∂2μk

∣∣∣
μk=μ∗

k

∝ ∂2φ(μk, y)

∂ y∂μk

∣∣∣
μk=μ∗

k

. (19)

Consequently, by examining the sign of the partial derivative of φ(μk, y) with respect
to the parameter y at μk = μ∗

k , one can determine the sensitivity of the ESS with
respect to the change in y. This allows for an analysis of the behavior of the ESS
with respect to any given parameter without the need for an explicit calculation of μ∗

k .
This calculation can further be simplified with the given problem. For example, let
φ(μk, y) = U (μk ,y)

W (μk ,y)
where U ,W > 0. This results in the following expression:

∂2φ(μk, y)

∂ y∂μk

∣∣∣
μk=μ∗

k

∝ ∂

∂ y

(
W

∂U

∂μk
−U

∂W

∂μk

)∣∣∣
μk=μ∗

k

(20)

and, the sign of
dμ∗

k
dy is equal to the sign of ∂

∂ y

(
W ∂U

∂μk
−U ∂W

∂μk

)∣∣∣
μk=μ∗

k

.

The calculation of the ESS and the analysis of changes in the ESS with respect to
parameters can be summarized in a structured framework. This framework provides a
systematic approach for analyzing the stability of ESS and its sensitivity to different
parameters, which is crucial in understanding the behavior of the pathogen population.

The next section will demonstrate the proposed framework through several exam-
ples.

3 Results from Illustrative Cases

In this section, we demonstrate the theoretical framework for evaluating an evolution-
ary stable strategy (ESS), as described in the previous section, using COVID-19 and
HCV as case studies.
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Box 1. Framework for calculating ESS and conducting sensitivity analysis

1. Use the ODE model (SIR, SEIR, etc.) and calculate the basic repro-
duction numberR0. (This is just the mathematical model currently used
for the diseases, assuming only one strain for the pathogen.)
2. Choose a base model parameter (decision variable) defined by
evolution. (In this study, we consider the mortality rate due to the
disease (virulence) as that parameter.)
3. You may categorize the model parameters into categories such that the parameters that are

• independent of the evolution
• dependent on the evolution but not directly related to the decision variable, or
• function of the decision variable. (For example, consider the transmission rate β as a

function of virulence μk ).

4. Find MFE, V̂2 and evaluate theR0(V̂2) = φm
φr

.
5. Considers φ(x) = φx (where x depends on the given strain) as a
function of the chosen decision variable and finds maxima that provide
the ESS.
6. Finally, consider the equation φ(x, y) = φx (y) to determine the sensitivity of ESS to the parameter y.

Fig. 3 An illustration of the system dynamics of the susceptible, exposed, asymptomatic, symptomatic, and
recovered compartments in relation to SARS-CoV-2. Further explanations of the variables and parameters
utilized in this figure can be found in Tables 3 and 4. The system of ODEs governing this model is presented
in Eq. (21)

3.1 SEIR Model Type: SARS-CoV-2 Example

We explore the susceptible-exposed-infected-removed (SEIR) compartment model to
showcase the proposed theory, with the spread of strains of the SARS-CoV-2 as an
example. We use the equations presented in Eq. (21) to model the spread of a specific
virus strain in the host population (refer to Ogbunugafor et al. (2020) for details on
the single-strain model). Figure3 visualizes the SEIR model.

dS

dt
= μ(N − S) − (α IA + β IS

N

)
S

dE

dt
= (α IA + β IS

N

)
S − (ε + μ)E

d IA
dt

= εE − (ω + μ)IA

d IS
dt

= (1 − p)ωIA − (v + μs)IS
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Table 3 The variables in
Eq. (21)

Variables Description

N Total population

S Susceptible individuals

E Exposed individuals

IA Asymptomatic individuals

IS Symptomatic individuals

R Recovered individuals

All variables are measured as the number of people

Table 4 The parameters in Eq. (21)

Parameters Description Units

μ Natural death rate day−1

µS Virulence (Infected death rate) day−1

ω−1 Expected time in the asymptomatic state days

v Recovery rate day−1

p The fraction that moves along the “mild” recovery track

ε−1 Average number of days before infectious days

α Transmission rate through the asymptomatic individuals day−1

β Transmission rate through the symptomatic individuals day−1

The infected death rate is considered as the measure of virulence in the model, and it is highlighted in the
table as a row of bold text

dR

dt
= pωIA + v IS − μR (21)

Now, consider a two-strain scenario for the SARS-CoV-2 model, where the strains
are denoted as r (resident) and m (mutant). We extend the model by introducing
the decision variable μS and assuming that the transmission rate β is a function of
μS , denoted by β j = β(μ

j
S) for j = r , m. Additionally, we assume that other

parameters remain unchanged by evolution. To conform with the notation introduced
in the theoretical framework, we use the notationX j = (E j IA j IS j )

T . In this framing,
the matrices SF j and Dj relevant to this problem are given by:

SF j =
⎛
⎝0 αS

N
β j S
N

0 0 0
0 0 0

⎞
⎠ , D j =

⎛
⎝

ε + μ 0 0
−ε ω + μ 0
0 −(1 − p)ω v + μ

j
S

⎞
⎠ for j = r ,m.

Now, consider the case of resident strain at the mutant-free equilibrium V̂r . It can
be observed that |SFr − Dr |V̂r = 0, indicating that the following expression holds
true:
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Ŝr = N (ε + μ)(ω + μ)(v + μr
S)

ε
(
α(v + μr

s) + βrω(1 − p)
) . (22)

Furthermore, it should be noted that the basic reproduction number for the single-strain
(r ) model is given by:

ρ(S∗F̄r D̄−1
r ) = R0r = S∗ε

(
α(v + μr

s) + βrω(1 − p)
)

N (ε + μ)(ω + μ)(v + μr
s)

. (23)

where S∗ is the susceptible population at DFE. Therefore, the basic reproduction
number for theMFE of the resident strain can be derived using the following equation:

ρ(Ŝr F̄mD̄−1
m ) = R0(V̂2) = Ŝrε

(
α(v + μm

s ) + βrω(1 − p)
)

N (ε + μ)(ω + μ)(v + μm
s )

. (24)

By substituting Eq. (22) into the expression for the basic reproduction number atMFE,
we obtain a form:

R0(V̂2) = �m

�r
(25)

where � j = R0 j . This means that the available basic reproduction number infor-
mation, modified with the parameters specific to evolution, can be directly used to
determine the ESS for models in the SEIR setup. In the event where only μS and β

parameters are subject to evolution, the expression for R0(V̂2) can be simplified to

the form R0(V̂2) = φ(μm
S )

φ(μr
S)

where the function φ(μS) = C0 + C1
β(μs )
v+μs

, and C0 = α

and C1 = ω(1 − p) are constants.
Moreover, the maximum value of φ with respect to μs may attain at μ∗

S when the

derivative of β with respect to μS is equal to
β(μ∗

S)

v+μ∗
S
:

dβ

dμS

∣∣
μS=μ∗

S
= β(μ∗

S)

v + μ∗
S
. (26)

It is important to note that if we use the basic reproduction number� = R0 instead of
φ for the analysis, we will obtain the same results since � = C2φ with constant C2 =

S∗ε
N (ε+μ)(ω+μ)

. However, to explicitly find theESSs,we need tomodel the exact function
β(μS). In this article, we demonstrate the concept using example functions such as
β(μS) = μS

a1+μS
, tanh2(a1μS +a2), sech2(a1μS +a2) and sin(a1μS +a2), where a1

and a2 are constants. (Note that if β is a decreasing function, the optimal solution is
trivial μS = 0, so we exclude decreasing functions in this demonstration.) While we
do not discuss estimating theβ function using data in this article, one can easily use any
curve-fitting algorithm to identify the transmission function β(μS). For example, the
theoretical analysis conducted by Massad (1987) utilized data from myxoma viruses
to fit the hyperbolic secant squared function to demonstrate the relationship between
transmission rate and virulence.
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Fig. 4 The behavior of the fitness function� = R0 when transmission functionβ(μS) equals to a μS
0.01+μS

,

b tanh2(25μS −2), c sech2(25μS −2) and d sin2(25μS −2). It can be observed that only (a) and (c) have
a non-zero global ESS, while (b) and (d) have non-zero local ESSs (color figure online)

Depending on the transmission function, there may be one or more local ESSs (see
Fig. 4). If β is an oscillatory function, the fitness function may also be oscillatory and
have multiple local ESS. Since μS is in the closed interval [0, 1] (and assuming that β
is bounded on [0, 1]), the absolute maximum of the fitness function can be attained at
either the endpoints of the interval [0, 1] or at a local maximum of the fitness function.
Figure4 demonstrates the local and absolute maximums of the fitness function, which
gives ESS for the pathogen. When a pathogen’s fitness is at the local maximum of
its fitness function, it may need a relatively significant change in virulence to attain
global ESS.We leave it to the reader to choose the transmission function that best suits
their project, and they can expose, extend, and justify their choice using our theoretical
basis. For further discussion, we choose β(μS) = sech2(a1μS + a2), but the same
analysis can be conducted with any other function.

To illustrate the theoretical concepts discussed earlier in the case of SARS-CoV-
2, we utilize the parameter values from Table 4 with the transmission function β =
sech2(25μS − 2). With fixed parameter values taken from Ogbunugafor et al. (2020):
μ = 0.000034, ω−1 = 3.119, v = 0.031, p = 0.956, ε−1 = 2.381, and α = 0.429.
As shown in Fig. 5, panel (a) illustrates the variation of R0 with respect to virulence,
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Fig. 5 Panel a illustrates the basic reproduction number (R0) as a function of virulence (μS ), considering a
transmission rate given by β(μS) = sech2(25μS −2). The plot reveals a global maximum ofR0 occurring
around μS = 0.07. In panel b, the red curve represents the infected population with the mutant strain
(μS = 0.07), exhibiting an increasing trend, while the black curve depicts the infected population with the
resident strain (μS = 0.1), showing a decreasing trend. This observation suggests that the mutant variant
is invading the population, indicating that the resident strain is not in its ESS (Color figure online)

while panel (b) displays the host population density for both resident (μS = 0.1)
and mutant strains (μS = 0.07). Notably, the maximum value of R0 occurs around
μS = 0.07, indicating the dominance of the mutant strain over the resident strain in
the long run.

To expand on the concept presented earlier, we consider the possibility of incor-
porating the transmission rate α as a function of virulence. This allows for a more
comprehensive analysis of the evolution of virulence in pathogens. To derive the ESS
μ∗
S in this scenario, we take the derivative of the fitness function � with respect to μS .

The resulting expression is given by:

α′(μ∗
S) + (1 − p)ω

(v + μ∗
S)

2

(
β ′(μ∗

S)(v + μ∗
S) − β(μ∗

S)
) = 0 (27)

where prime (′) denotes the derivative of the function with respect to μS . Figure6
illustrates the fitness function for the virus and the behavior of the infected host density
for each strain when α(μS) = 0.4(1 − μS) and β(μS) = sech2(25μS − 2). Notably,
the global maximum of fitness function occurs around μS = 0.07. It is observed
that the infected population with the mutant strain exhibits an increasing trend, while
the infected population with the resident strain shows a decreasing trend (panel (b)
of Fig. 6). This observation suggests that the mutant variant (with virulence 0.07)
dominates the resident strain (with μS = 0.1) in the long run, indicating that the
resident strain is not in its ESS. Furthermore, we observe that, compared to Fig. 5, the
inclusion of α(μs) (in Fig. 6) will decrease the time required for the mutant population
to surpass the resident population. The intersection of the mutant and resident curves
occurs at t ≈ 229 in Fig. 5, while the intersection of these curves occurs at t ≈ 200
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Fig. 6 The results incorporate the transmission rate α(μS) with β(μS) = sech2(25μS − 2), using parame-
ters from Fig. 5. Panel a shows fitness (� = R0) vs. virulence;R0 peaks at μS = 0.07 (orange curve). In
panel b, the red curve depicts the increasing trend in infected population with themutant strain (μS = 0.07),
while the black curve shows the decreasing trend in infected population with the resident strain (μS = 0.1).
The dominance of the mutant strain over the resident strain in the long run indicates that the resident strain
is not in its evolutionarily stable strategy (ESS) (Color figure online)

in Fig. 6. Although we have assumed that only β and α are affected by virulence for
demonstration purposes, readers can extend this analysis to incorporate other factors.

3.1.1 Sensitivity Analysis for SARS-CoV-2

First, wewill discuss the sensitivity analysis for the ESS, assuming only β is a function
of μS . Hence, the fitness function φ can be used for this analysis, providing similar
results as analyzing � = R0. We present the analysis using φ for this case to simplify
the calculations.We follow the calculation below to determine the sign of the derivative
of ESS with respect to a parameter y when the fitness function is φ. Note that:

(v + μS)
2 ∂φ

∂μS
= C1(

dβ

dμS
(v + μS) − β), and

∂(v + μS)
2

∂ y

∣∣
μS=μ∗

S�������0
∂φ

∂μS

∣∣
μS=μ∗

S
+ (v + μS)

2 ∂2φ

∂ y∂μS

∣∣
μS=μ∗

S

= ∂

∂ y

(
C1(

dβ

dμS
(v + μS) − β)

)∣∣
μS=μ∗

S
.

Hence, we can conclude the following result (Eq. (28)) for any parameter y with the
SARS-CoV-2 model:

dμ∗
S

dy
∝ ∂

∂ y

(
C1(

dβ

dμS
(v + μS) − β)

)∣∣
μS=μ∗

S
. (28)

Notice that, theμ∗
S change only with parameter v (if y = ω or p, the right-hand side of

Eq. (28) equals zero at μ∗
S ), and the ESS level of virulence will always increase as the
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Fig. 7 The HCV model is based on a framework for waterborne, abiotic, and indirectly transmitted
(W.A.I.T.) disease systems, where an abiotic agent or reservoir (e.g., surface, water supply, or physical
instrument) is the primary the vector of transmission (Miller-Dickson et al. 2019; Meszaros et al. 2020).
This diagram illustrates the system dynamics of the compartments of HCV. Additional details regarding
the variables and parameters employed in this diagram are provided in Tables 5 and 6, respectively. The
system of ODEs that governs this model is presented in Eq. (30)

recovery rate increases, regardless of the exact relationship between the transmission
rate β and virulence μS .

Similarly, if we assume both β and α as a function of virulence μS , relationship in
the Eq. (19) can be reduced to,

dμ∗
S

dy
∝ ∂

∂ y

(
C2(α

′(v + μS)
2 + (1 − p)ω(β ′(v + μS) − β)

)∣∣
μS=μ∗

S
(29)

whereC2 = ε
(ε+μ)(ω+μ)

. Hence, the changes in ESSμ∗
S are unaffected by the changes

in transition rate ε (from the exposed group to the infected group) and background
death rate μ. When considering the recovery rate v, we notice that,

dμ∗
S

dv
∝ 2β(μ∗

S)

(v + μ∗
S)

− β ′(μ∗
S).

Hence, ESS μ∗
S will increase with the recovery rate v if and only if β ′(μ∗

S) <
2β(μ∗

S)

(v+μ∗
S)
.

3.2 Reservoir (W.A.I.T.) Model Type: HCV Example

We will perform a similar analysis as the SARS-CoV-2 model to the HCV disease
dynamics explained by Eq. (30) and Fig. 7 (using the single-strain model as explained
by Miller-Dickson et al. (2019)). Equation (30) is used to model the dynamics of a
specific virus strain in host populations and needle compartments.
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Table 5 The variables in Eq. (30)

Variables Description

S Susceptible individuals who inject drugs and share needles within the community of
people who inject drugs (PWID)

IE Early-stage infected individuals (acute HCV infection)

IL Late-stage-infected individuals (chronic HCV infection)

Nu Uninfected needles

Ni Infected needles

All of the variables are measured as the number of people

Table 6 The parameters in Eq. (30)

Parameters Description Units

πS Birthrate of susceptible person/day

γ Daily fractional self-clearance rate day−1

μ Natural death rate day−1

µE Virulence (Infected death rate of early-stage infected population) day−1

ω Transfer rate into late-stage infection days−1

τ Rate of entering treatment day−1

πN Birthrate of uninfected needles needles/day

ε Decay rate of HCV infection in needles days−1

ku Discard rate of uninfected needles day−1

ki Discard rate of infected needles day−1

α Injection rate times infection of needle probability injections
person.day

β Injection rate times infection of host rate injections
person.day

μL Death rate of late-stage infected population day−1

The infected death rate is considered the measure of virulence in the model, and it is highlighted in the table
as a row of bold text

dS

dt
= πS + γ IE − βS

Ni

Ni + Nu
− μS

d IE
dt

= βS
Ni

Ni + Nu
− (ω + τ + μE + γ )IE

d IL
dt

= ωIE − (μL + τ)IL

dNu

dt
= πN − α(IE + IL)

Nu

Ni + Nu
− kuNu + εNi

dNi

dt
= α(IE + IL)

Nu

Ni + Nu
− ki Ni − εNi

(30)
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Now, consider a two-strain scenario for the HCV model, where the strains are
denoted as r (resident) and m (mutant). We extend the model by introducing the
decision variable μE and assuming that the transmission rate β is a function of μE ,
denoted by β j = β(μ

j
E ) for j = r , m. Additionally, we assume that other parameters

remain unchanged by evolution. We use the notationX j = (Ni j IE j IL j )
T to conform

with the notation introduced in the theoretical framework. Here, the matrices SF j and
D j relevant to this problem are given by (we will use N to denote total number of
needles in the community):

SF j =
⎛
⎝

0 αNu
N

αNu
N

β j S
N 0 0
0 0 0

⎞
⎠ , D j =

⎛
⎝
ki + ε 0 0

0 ω + τ + μ
j
E + γ 0

0 −ω τ + μL

⎞
⎠ for j = r ,m.

We denote the S̄ =
(

S
N

)(
Nu
N

)
to simplify the notations carried out in the following

calculations. It should be noted that the basic reproduction number for the single-strain
(r ) model is given by:

ρ(S∗F̄r D̄−1
r ) = R0r =

√
S̄∗βrα(μL + τ + ω)

(ω + τ + μr
E + γ )(ki + ε)(μL + τ)

(31)

where, S̄∗ is the S̄ at the DFE. Consider the resident strain at the mutant-free equi-
librium V̂r . It can be observed that |SFr − Dr |V̂r = 0, indicating that the following
expression holds true:

Ŝr = S̄|V̂r = (ω + τ + μr
E + γ )(ki + ε)(μL + τ)

βrα(μL + τ + ω)
(32)

Therefore, the basic reproduction number for the MFE of the resident strain can be
derived using the following equation:

ρ(Ŝr F̄mD̄−1
m ) = R0(V̂2) =

√√√√ Ŝβmα(μL + τ + ω)

(ω + τ + μm
E + γ )(ki + ε)(μL + τ)

(33)

By substituting Eq. (32) into the expression for the basic reproduction number at MFE
(Eq. (33)), we obtain a form:

R0(V̂2) = �m

�r
(34)

where � j = R0 j . This means that the available basic reproduction number infor-
mation, modified with the parameters specific to evolution, may be directly used
to determine the ESS in more complex models with reservoirs. If only μE and β

parameters are subject to evolution, the expression for R0(V̂2) can be simplified
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to the form R0(V̂2) =
√

φ(μm
E )

φ(μr
E )

where the function φ(μE ) = β(μE )
ω+τ+μE+γ

. In this

example, we assume μE is the decision variable, and β is a function of μE . Since
argmax

√
φ(x) = argmax φ(x), ESS can be obtained by analyzing φ(μE ) and we

will consider it as the fitness function for the strain. Hence, ESS, denoted μ∗
E , is given

by,

β ′(μ∗
E ) = β(μ∗

E )

ω + τ + μE + γ
, (35)

where prime (′) denote the derivative with respect to μE .

3.2.1 Sensitivity Analysis for HCV

In a similar calculation to the SARS-CoV-2 model example, a derivative of ESS with
respect to a given parameter y can be explained by,

dμ∗
E

dy
∝ ∂

∂ y

(
β ′(ω + τ + μE + γ ) − β

)∣∣
μE=μ∗

E
. (36)

Hence, ESS is only sensitive to the parameters ω, τ, γ , and β. Furthermore, it proves

that
dμ∗

E
dy > 0 with parameters y = ω, τ or γ . Therefore, we can conclude that the

ESS level of virulence will increase as;

• The treatment rate τ ,
• The transfer rate into late-stage infection ω, or
• The self-clearance rate γ

increases. In addition, when y = β, the Eq. (36) can be reduced to,

dμ∗
E

dβ
∝ (

(ω + τ + μE + γ )
β ′′(μ∗

E )

β ′(μ∗
E )

− 1)
)

< 0 (37)

where, (′′) denotes the second derivative with respect to the μE . Since the maximum
of the fitness function has been attained at μ∗

E , the second derivative condition can

be reduced to β ′′(μ∗
E ) < 0. Therefore,

dμ∗
E

dβ
< 0, and the ESS level of virulence will

decrease as the infection of host rate β increases.

4 Discussion

In this study, we utilize mathematical approaches to identify the evolutionary stable
strategy (ESS) level of virulence for virus pathogens of differing structures and nat-
ural history: SARS-CoV-2 and HCV. The viruses underlying these outbreaks exhibit
distinct characteristics in the diseases they cause, their modes of transmission, bio-
logical structures, and the level of virulence exerted on their hosts. We build models
of each, with parameters determined from existing studies that implement published
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data (Ogbunugafor et al. 2020; Miller-Dickson et al. 2019). Furthermore, we propose
a framework for identifying evolutionary stable strategies based on the identification
of a fitness function that aids in the invasion analysis of mutant strains. We apply
the invasion analysis developed in other texts (Otto and Day 2007) to compute ESS
virulence in different viral natural histories. Table 7 summarizes select findings and
briefly discusses some of their public health implications.

In SARS-CoV-2, we examine two different cases:(i) one in which virulence is
a function solely of the β transmission parameter, where symptomatic individuals
transmit to susceptible individuals, and (ii) another where virulence is a function
of terms associated with both symptomatic (β) and asymptomatic (α) individuals
(See Eqs. (28) and (29)). This duality recapitulates debates early in the COVID-19
pandemic, where experts sought to identify the role of asymptomatic infection in
disease dynamics (Moghadas et al. 2020; Mizumoto et al. 2020; Nishiura et al. 2020;
Kronbichler et al. 2020; Rothe et al. 2020). Our findings highlight why properly
characterizing the transmission mechanism of an emerging infectious disease is so
crucial: they offer profoundly different predictions for how ESS virulence will evolve.

When virulence is a function of transmission from symptomatic individuals, the
ESS level of virulence increases as a function of recovery rate. In this grim hypothetical
scenario, virulence increases as the recovery rate goes up, suggesting that treatments
and public health interventions will foster increased virulence. Encouragingly (from
a public health perspective), SARS-COV-2 is now widely understood to have more
complicated transmission dynamics, with both symptomatic and asymptomatic trans-
mission playing a role (Mizumoto et al. 2020; Nishiura et al. 2020; Kronbichler et al.
2020). Given this natural history, our observations and predictions for optimal (ESS)
virulence aremore complicated,with the direction of virulence evolution depending on
several other mathematical relationships. For example, ESS virulence depends on the
slope of the transmission rate satisfying a very particular set of conditions, including
the asymptomatic recovery rate. These findings in SARS-CoV-2 highlight the com-
plexity of phenotypic evolution in emerging pathogens: simplistic or narrow views
of SARS-CoV-2 natural history are likely inadequate, miss the many nuances and
dependencies that define how a given population of viruses will evolve in a population
of hosts, and implore much more careful definitions and examinations of virulence.

We also compute the ESS virulence for HCV transmission in a population of per-
sons who inject drugs (PWID). The model of HCV transmission includes an indirect
transmission compartment, where infected needles circulate in a population. Using an
existing model of HCV dynamics, we observe that the ESS virulence will increase as
the treatment rate, rate of movement into the late-stage infection increases, and the
self-clearance rate increases. Despite being a public health concern, HCV has highly
effective treatments available on the market (Liang and Ghany 2013; Morozov and
Lagaye 2018; Hu et al. 2020). Intriguingly, self-clearance rate of HCV is known to be
influenced by host genetics, with alleles fostering increased or impaired rates of clear-
ance (Thomas et al. 2009; Prokunina-Olsson et al. 2013; Ge et al. 2009). Our findings
highlight why one might expect that virulence evolution may increase in populations
of individuals who carry the high-clearance allele under certain conditions. This is an
intriguing finding because of what it says about how heterogeneity in host characteris-
tics may influence the trajectory of virus evolution. This finding has been discussed in
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other settings (Hebert-Dufresne et al. 2020). Further, the HCV model highlights how
diseaseswith an indirect transmission route differ fromdirectly-transmitted pathogens.
Future studies in this realm will examine ESS virulence evolution in epidemics with
other structures-waterborne, vector-borne, and classical fomite transmission.

This study is not designed to explain any particular outcome or directly inform
public health interventions. However, we acknowledge that using well-known human
pathogens as examples comeswith the risk ofmisinterpretation. Therefore, we empha-
size (rather strongly) that this study only aims to utilizemodels with good existing data
to make a general point about the capriciousness of virulence evolution, as it strongly
depends on several features of the virus’s natural history and particulars of transmis-
sion. We feel that this is an important point to make in light of misinterpretations of
modern findings in infectious diseases, some of which even fuel misinformation.

Moreover, these points transcend any particular virus-host system: we believe that
attempts to understand any pathogen-host system will be colored by similar nuances.
Furthermore, this study utilizes analytical approaches to study disease dynamics,
which are increasingly understood to be defined by nuances that undermine the
assumptions of SEIR-style analytical descriptions. While this problem plagues many
areas of infectious disease modeling, we acknowledge that it undermines the realism
of these simulations. Nonetheless, mathematical modeling remains an important tool
for studying disease dynamics because it provides a transparent means to engage the
actors that drive infectious outbreaks. Future investigations can utilize other com-
putational approaches for modeling infectious diseases (Marshall and Galea 2015;
Cardenas et al. 2022), and examine a growing number of virus (and other pathogen)
evolution scenarios.

Our study hopes to add to a growing chorus to refine applications of the evolution of
virulence, a canon in evolutionary theory that has helped spawn an entire subfield at the
intersection of evolutionary biology and epidemiology (Ebert and Bull 2003). While
it has helped to revolutionize our understanding of infectious diseases by offering
an evolutionary lens on the host-pathogen interaction, it can sometimes oversimplify
how pathogen evolution manifests. Our study focuses on outbreaks caused by single-
stranded RNA viruses and still offers diverse patterns in evolutionary outcomes. In
response to these (and other) findings, those interested in pathogen evolution should
more carefully consider their definition of virulence, what aspects of the disease’s
natural history underlie it, and how it may evolve in a given setting. Even more, our
findings are consistent with discussions in the broader fields of ecology where experts
continue to examine the meaning and consequences of context-dependence (Catford
et al. 2022; Hite and de Roos 2023).

The results have several practical implications. For one, attempts to transform dis-
ease emergence and epidemiology into predictive sciences must not rely on simplistic
assumptions about the relationships between biological traits that drive transmis-
sion or confer clinical symptoms. Alternatively, we should appreciate how contexts
profoundly shape how complex biological systems function—ideas that have been
well-articulated in other areas of disease evolution and ecology. Further, our results
highlight why we need continued research into the basic biology involved in infec-
tious disease. In the future, mathematical modeling approaches can implement more
detailed findings from natural settings and utilize newer technologies (e.g., artificial
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intelligence) to better integrate data and understandings of different sorts into respon-
sible and transparent predictive models in epidemiology.
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