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Abstract
Purpose Surgical scene segmentation is crucial for providing context-aware surgical assistance. Recent studies highlight the
significant advantages of hyperspectral imaging (HSI) over traditional RGB data in enhancing segmentation performance.
Nevertheless, the current hyperspectral imaging (HSI) datasets remain limited and do not capture the full range of tissue
variations encountered clinically.
Methods Based on a total of 615 hyperspectral images from a total of 16 pigs, featuring porcine organs in different perfusion
states, we carry out an exploration of distribution shifts in spectral imaging caused by perfusion alterations. We further
introduce a novel strategy to mitigate such distribution shifts, utilizing synthetic data for test-time augmentation.
Results The effect of perfusion changes on state-of-the-art (SOA) segmentation networks depended on the organ and the
specific perfusion alteration induced. In the case of the kidney, we observed a performance decline of up to 93%when applying
a state-of-the-art (SOA) network under ischemic conditions. Our method improved on the state-of-the-art (SOA) by up to 4.6
times.
Conclusion Given its potential wide-ranging relevance to diverse pathologies, our approach may serve as a pivotal tool to
enhance neural network generalization within the realm of spectral imaging.

Keywords Hyperspectral imaging · Deep learning · Surgical scene segmentation · Tissue classification · Domain
generalization · Test-time augmentation
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Introduction

Semantic segmentation of intraoperative imaging data plays
a crucial role in context-awareness and autonomous robotics
in surgery. Spectral imaging [1] has emerged as an alter-
native to RGB imaging for intraoperative use, because it
offers entirely new possibilities for recovering functional
and morphological information. Examples include perfusion
monitoring [2–5], tumor detection [6–8] and tissue differen-
tiation [9–13]. Unlike RGB imaging, which imitates human
perception and is based on solely three channels in the vis-
ible spectrum of light, it is based on an arbitrary number of
channels across a potentially wider spectral range. The term
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multispectral imaging (MSI) is commonly used for spectral
imaging with up to tens of spectral bands, while spectral
imaging with up to hundreds of spectral bands is termed
hyperspectral imaging (HSI) [1].

Recent advances in deep learning-based surgical scene
segmentation using HSI have achieved performances on par
with human expertise [13].However, this research has largely
been based on subjects without previous surgical alterations
or pre-existing health conditions. This limitation, which can
be attributed to a lack of data adequately capturing the diverse
spectrum of tissue variations encountered in clinical settings,
substantially impedes the generalization of the developed
machine learning (ML) models. Addressing this gap in the
literature, this work investigates the impact of perfusion vari-
ations resulting from surgical interventions on the tissue
discrimination performance of state-of-the-art (SOA) ML
models. As depicted in Fig. 1, these perfusion-induced vari-
ations can give rise to a challenging distribution gap between
data representing physiological and pathological conditions,
potentially hindering the generalization capabilities of ML
models to such scenarios. The contribution of this paper
is twofold. Firstly, we demonstrate that distribution shifts
resulting from perfusion changes can lead to a dramatic
decline in the performance of HSI-based tissue classifica-
tion algorithms. Secondly, we introduce a novel test-time
augmentation approach that leverages synthetic HSI data to
overcome perfusion-related distribution shifts.

Materials andmethods

Our methodology is grounded in the following critical obser-
vations.

Sparsity of real-world data: training data from emerging
imaging modalities, such as HSI, lacks the diversity to rep-
resent the full range of pathologies encountered in real-word
medical settings. For example, the largest publicly available
HSI data set in visceral surgery, HeiPorSpectral [14], solely
features images from well-perfused tissue.

Limitations of synthetic data generation: the generation
of synthetic HSI data is challenging. While a lot of progress
has been made in simulating plausible HSI spectra [15],
we are not aware of any prior work on synthesizing full
hyperspectral surgical scenes. Furthermore, the challenge of
conditioning synthetic spectra generation on one of many
tissue classes has not yet been addressed. This would be an
important prerequisite for training semantic scene segmenta-
tion methods based on HSI data with pixel-wise class labels.

In response to these shortcomings, our approach takes
the form of a “best-of-both-worlds” strategy, tailored to
address perfusion shifts in HSI analysis with the help of
both real and synthetic data. We assume that the real data
comprising full HSI images with pixel-wise class labels

represents only a limited number of perfusion conditions
that can be encountered in practice (e.g., only physiologi-
cal in Fig. 5). The synthetic data, on the other hand, lack
the tissue labels and global context but represent a broader
range of perfusion conditions. This is achieved by config-
uring the spectrum generation pipeline in Sect. 2.2.3 with
extreme (even implausible) parameter values for oxygen sat-
uration (StO2) (0–100%) and blood volume fraction (VHb)
(0–30%). Inspired by the concept of test-time augmentation,
our method combines these two data sources to transform
real-world images from unseen perfusion states into input
images that align with the training data distribution. This
enables the application of a frozen SOA network without
retraining, as depicted in Fig. 2.

The subsequent sections provide an overview of the pro-
posed concept which is given in Sect. 2.1, the datasets
employed in this studywhich are presented in Sect. 2.2, a pre-
liminary prototype implementation of the approach which is
given in Sect. 2.3, and details of the experimental conditions
which are presented in Sect. 2.4.

Concept overview

While the general idea of this paper is in principle applicable
to a broad range of pathologies, the study presented here has
specifically been designed for perfusion state shifts in hyper-
spectral image classification. Our assumption is that a neural
network for organ segmentation has been trained on well-
perfused (potentially healthy) tissue, as in previous studies
[9, 13], and is then applied to real-world settings in Fig. 1.
The basic idea to address perfusion-related distribution shifts
is illustrated in Fig. 2. The foundation of our pipeline is a syn-
thetic tissue database comprising a large volume of plausible
tissue spectra, generated with the help of a device digital
twin of the HSI camera used for our study (see Sect. 2.2.3).
Test-time augmentation is achieved in three steps:

• Step 1—Digital twin generation: initially, the input HSI
image is converted to its corresponding tissue digital twin
using the synthetic tissue database. This yields a hyper-
spectral image annotated with relevant tissue parameters
including corresponding StO2 and VHb.

• Step 2—StO2 and VHb filtering: next, the tissue param-
eters are leveraged to identify pixels corresponding to
out-of-distribution (OOD) perfusion states. OOD perfu-
sion states, refers to states which were not present during
training of the segmentation network.

• Step 3—Hybrid image generation: the synthetic tissue
database is leveraged to convert OOD pixels to in-
distribution pixels. The final test-time-augmented image
is composed of the original in-distribution pixels and pix-
els transformed based on the synthetic database and can
then be fed into the frozen segmentation network.
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Fig. 1 Surgical intervention as
well as pathologies can lead to
extreme domain shifts between
training and deployment
datasets. This holds true
especially for new imaging
modalities (here: hyperspectral
imaging (HSI)) for which
training data is sparse. In this
specific scenario, training data
for a surgical scene
segmentation algorithm were
acquired from well-perfused
organs (green) and does not
represent poorly perfused tissue
(purple) well

Fig. 2 Test-time augmentation for addressing perfusion-related domain
shifts in the context of surgical scene segmentation. (1) The hyperspec-
tral image is converted into its synthetic digital twin using a synthetic
database of plausible tissue geometries with corresponding spectra and
functional tissue parameters such as oxygen saturation (StO2) and blood

volume fraction (VHb). (2) The pixels with OOD tissue perfusion are
identified and (3) augmented based on in-distribution synthetic spectra.
(4) This yields a hybrid hyperspectral image comprising both original
spectra and augmented spectra, which is processed by a frozen model
to perform semantic scene segmentation

A concrete implementation of this concept is provided in
Sect. 2.3.

Hyperspectral imaging data

The data used for the development and validation of
our approach comprise 511 hyperspectral images from 12
porcine models in which the perfusion of the kidney was
altered (Sect. 2.2.1), 104hyperspectral images from4porcine
models in which the perfusion of several abdominal organs
was altered through clamping of the aorta (Sect. 2.2.2) aswell

as 500,000 synthetic tissue spectra simulated with a Monte
Carlo-based approach (Sect. 2.2.3). For real-world data
acquisition, the TIVITA� Tissue Halogen system (Diaspec-
tive Vision GmbH, Am Salzhaff, Germany) was used. This
system illuminates the respective field of view of around 20
× 27cm with six integrated halogen lamps and provides a
spectral resolution of 5 nm in the range from500nm to 995nm
for every recorded pixel. The synthetic data were generated
with a digital twin of the same camera.
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In vivo porcine kidney data

We covered the following perfusion scenarios on 12 pigs
undergoing kidney surgery:

1. Physiological tissue: we acquired 213 images without
altering kidney arterial inflow or venous outflow. These
images are in-distribution with the training data.

2. Avascular tissue: on 108 images, both arterial inflow and
venous outflow were inhibited through reversible clamp-
ing. This scenario emulates a transplantation procedure.

3. Arterial ischemia: the arterial inflow to the kidney was
inhibited while venous outflow was not restricted for a
total of 113 images. This scenario emulates for example
a partial nephrectomy procedure, in which arteries of the
kidney are clamped to resect a tumor.

4. Venous congestion: we acquired 77 images with inhibited
kidney venous outflow and unrestricted arterial inflow,
akin to conditions like venous thrombosis or a blocked
anastomosis of the vein during transplantation.

In the OOD scenarios, the clamping was repeated several
times for a clamping period of at least 2 mins. Hyperspec-
tral images were taken every 30 sec throughout the clamping
period. The slight heterogeneity in the number of acquired
images results from the exclusion of images with uncertain
perfusion state. Reference kidney annotations were gener-
ated by a medical expert using a polygon tool.

In vivo porcine aorta clamping data

We covered the following perfusion scenarios on 4 pigs
undergoing aorta clamping during surgery:

1. Aortic ischemia: we acquired 80 hyperspectral images
during and after blocking the blood flow of the aorta using
a removable clamp. As a consequence of the supradi-
aphragmatic aortic clamping, a variety of visceral organs,
including the colon, small bowel, and liver, are expected to
become ischemic. This scenario emulates a range of clin-
ical scenarios, including systemic malperfusion states as
a consequence of, e.g., cardiac insufficiency, as well as
organ-specific ischemia occurring as a side effect in gen-
eral surgeries (e.g., oncological resections). This scenario
allows us to simultaneously observe the effect of arterial
ischemia on the colon, small bowel, and liver.

2. Reperfusion: after 20min of aortic clamping, the clamp
was removed, leading to the reperfusion of the organs.
During the first 6min of reperfusion, 24 images were
acquired. Hyperspectral images were generally taken
every 1min during the aortic ischemia and reperfusion.

Upon initial sedation, the animals were intubated and
anesthetized. Body temperature, peripheral oxygen satura-
tion, blood gas analysis parameters and the flow through the
renal artery were monitored throughout the measurements to
rule out potential confounding factors.

Synthetic data

The synthetic data in our study were generated through the
simulation of light transport within a generic tissue model
using a Monte Carlo method and based on a range of param-
eters relevant to the image formation process, including StO2
and VHb [16]. More specifically, the synthetic dataset com-
prises 500,000 reflectance spectra ranging from 300 nm
to 1000 nm that were generated according to [15] using
a 2-nm spacing between the wavelengths and 106 photons
per wavelength. The underlying physiological tissue model
has three tissue layers. The ranges of the optical properties
characterizing the tissue model were derived from the liter-
ature [4], namely StO2 (0–100%), VhB (0–30%), reduced
scattering coefficient (5–5cm−1), scattering power [0.3–3
arbitrary units (a.u.)], anisotropy (0.8–0.95 a.u.), refractive
index (1.33−1.54 a.u.), tissue thickness (0.002–0.2 cm) and
water content (0.8–0.9 a.u.). The simulations have been con-
ducted with a GPU-accelerated version [17] of the Monte
Carlo multilayered simulation framework [18].

Prototype implementation of test-time
augmentation

The following paragraphs describe implementation details of
the first prototype implementation of the proposed test-time
augmentation approach. The digital twin generator oper-
ates through a pixel-wise nearest neighbor search within the
synthetic database. This process allows us to retrieve the sim-
ulation parameters while maintaining a spectrum that closely
resembles the original. The detection of OOD pixels relies
on the prior knowledge acquired during network training
on physiological data. The data set used has been described
in previous work [13] and comprises 506 HSI images from
20 pigs with 18 different tissue types, namely heart, lung,
stomach, small intestine, colon, liver, gallbladder, pancreas,
kidney, kidney with Gerota’s fascia, spleen, bladder, subcu-
taneous fat, skin, muscle, omentum, peritoneum and major
veins. To detect OOD pixels, we check whether the StO2
and VHb values of the corresponding digital twin pixels lie
within the interquartile range (IQR) of StO2 and VHb val-
ues for the physiological training data. Note in this context
that we are—strictly mathematically speaking—not check-
ing whether a given real pixel is in the distribution of the
training data (which is itself subject of ongoing research).
Instead we make the OOD decision based on properties that
we can directly correct for (StO2 and VHb).
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Hybrid image generator: pixels that are considered to be
in-distributionundergonochanges.OODpixels are corrected
by finding the nearest neighbor in the synthetic database that
features StO2 and VHb values close to the median StO2 and
median VHb observed in the physiological data. To compen-
sate for the fact that purely synthetic data may not be fully
realistic, we then average the real spectrumwith the synthetic
one to obtain the final transformed spectrum. The resulting
hybrid image is inputted into a pre-trained frozen network.

Segmentation network: segmentation performance on par
with human inter-rater variability was achieved by Seidlitz
et al. [13] using a U-Net architecture with an efficientnet-b5
encoder. The related network training was recently improved
to yield better generalization across geometric domain shifts
[9] and the corresponding network weights were made pub-
licly available at https://github.com/IMSY-DKFZ/htc. This
pre-trained segmentation network is used here without any
further fine-tuning. As input, it takes full hyperspectral
images with L1-normalized spectra.

Experiments

The purpose of the experiments was to investigate the fol-
lowing two research questions:

RQ1: Do abnormal perfusion states lead to domain
shifts that causeSOAsurgical scene segmentation algo-
rithms to fail?
RQ2: Can test-time augmentation with synthetic data
compensate for perfusion-related domain shifts?

To this end, we validated our prototype implementation
using the real-world datasets described in Sects. 2.2.1 and
2.2.2.

To qualitatively assess the domain shift between physio-
logical and malperfused kidneys, median kidney spectra per
imagewere computed for all 511 images in the dataset before
and after test-time augmentation. Principal component anal-
ysis (PCA) was then performed on the union of all original
and augmentedmedian spectra from all four perfusion states.
Kernel density estimation (KDE) was used to approximate
the probability density function of the spectra for each per-
fusion state. The differences between the density functions
before and after test-time augmentation were visually com-
pared. Furthermore, the change in the median spectra was
visually compared.

To quantitatively assess the effect of perfusion-induced
domain shifts on segmentation performance, segmentation
predictions were generated for the original and augmented
images using the frozen SOA network described in Sect. 2.3.
The widely used Dice similarity coefficient (DSC) [19] was
used to compare the predictions to reference semantic anno-
tations for the kidney (cf. Sect. 2.2.1) as well as colon, small
bowel, and liver (cf. Sect. 2.2.2). The DSC scores for each

individual image and organ class were hierarchically aggre-
gated to derive overall organ scores.

To avoid model overfitting, we randomly split the in vivo
kidney data comprising 511 images from 12 pigs into a vali-
dation set comprising 341 images from 7 pigs and a hold-out
test set comprising 170 images from 5 pigs. On the valida-
tion set, two different thresholds for the OOD detection were
used: amore conservative setting defining the range 5–95per-
centile as in-distribution and a more comprehensive setting
defining only the range 25–75 as in-distribution. A decision
was made based on the overall DSC on the validation data.
After setting the thresholds, the DSC performance on the test
set was analyzed. The aorta clamping data (cf. Sect. 2.2.2)
were treated as an additional test set.

Results

RQ1: Do abnormal perfusion states lead to deep learn-
ing failure?

While a drop in StO2 during the aortic clamping period
and a recurrence of physiological StO2 levels upon reper-
fusion can be observed for the organ classes colon, small
bowel, and liver (cf. Fig. 3), the segmentation network per-
formance did not deteriorate for any of the three organ classes
throughout the entire time course (cf. Fig. 4). Instead, the
DSC remains consistently close to 1 for all recordings. How-
ever, in the case of kidney, Fig. 5 demonstrates a large domain
gap between well-perfused and poorly perfused tissue. Rep-
resentative spectra are depicted in Fig. 6. This gap leads to
a failure of organ segmentation algorithms. In fact, the DSC
for the kidney drops from 0.73 (physiological), to 0.58 (avas-
cular), 0.61 (arterial ischemia) and 0.05 (venous congestion),
respectively, which corresponds to a relative decrease in per-
formance of up to 93% as shown in Fig. 7.

RQ2: Can test-time augmentation compensate for the
effect?

According to Figs. 5 and 6, our test-time augmenta-
tion approach substantially reduces the domain gap between
training and deployment data. This has a direct positive effect
on the downstream task performance, as illustrated in Fig. 7.
Compared to the baseline approach (no augmentation), our
method improves the DSC by 0.37 (avascular), 0.34 (arte-
rial ischemia) and 0.18 (venous congestion), respectively.
This corresponds to relative improvements by factors of 1.63,
1.55 and 4.6, respectively. In the aortic clamping scenario, in
which a performance drop with perfusion alterations could
not be observed, the network performance with and without
test-time-augmentation was on par (cf. Fig. 4).
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Fig. 3 StO2 changes resulting from tissue manipulation according to
synthetic digital twin analysis. Each box plot depicts the time-resolved
mean StO2, retrieved from the nearest neighbor simulated spectrum and

averaged over all images and subjects. The black dotted line on the 0.09
represents the OOD threshold of StO2 that we used in this study

Fig. 4 Aorta clamping does not lead to a segmentation performance
drop. For each organ, the line plot presents the time-resolved DSC hier-
archically averaged for each subject over each timepoint. The first 20

mins depict clamping, while the last 6 mins depict reperfusion. The
standard deviation over subjects is shown as the shaded area around the
line plot

Discussion

To our knowledge, this paper is the first to study the effect
of perfusion shifts on the performance of HSI segmentation
algorithms. We showed that perfusion conditions encoun-
tered in real-world settings but not during neural network
training can have a devastating effect on amodel’s tissue clas-
sification performance. To overcome this issue, we proposed
a test-time augmentation approach, with which we were able
to move the test data distribution closer to the training data

distribution and therewith substantially enhance the perfor-
mance.

With this work, we address a key gap in the literature.
Previous work on surgical scene segmentation has focused
on data shifts related to geometry [9], but we are not aware
of any publications that address the lack of abnormal condi-
tions or specific pathologies in the training data. In different
domains, other approaches such as disentangled represen-
tation learning [20], fine-tuning [21, 22] and style transfer
[23, 24] have been used to overcome certain types of domain
shifts. While such approaches have shown promise in other
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Fig. 5 Our test-time augmentation approach reduces the domain gap
between training and deployment data. For each perfusion condition
(physiological, avascular, arterial ischemia and venous congestion) the
kernel density estimation of the median spectrum per image is depicted
before (upper row) and after (lower row) test-time augmentation. After
augmentation, the density of the physiological data (representing the

training data) is in much better agreement with the deployment data.
For illustration, the dimensionality of the data was reduced by a princi-
pal component analysis (PCA). The variance captured by the first and
second principal axis was 74.7% and 12.0%, respectively, across all 511
original and 511 augmented median spectra obtained from 12 subjects

domains, they are mostly not applicable to our problem and
typically rely on the availability of large amounts of data,
often thousands of images. The latter ultimately renders such
approaches unusable under the conditions of data scarcity
typical for the surgical domain, especially when dealing with
novel image modalities such as HSI. To overcome this gap in
the literature, we propose a different approach that encapsu-
lates valuable prior knowledge about the origin of the domain
shift.

In this context, we are unaware of any prior work in the
broader field of surgical scene understanding that has utilized
test-time augmentation.

Outside the field of surgical scene segmentation, several
approaches for test-time augmentation have been proposed in
the broader context of image classification and semantic seg-
mentation in non-medical settings. One approach [25–28] is
to modify the training paradigm by changing the network
architecture, such that the architecture can be adapted to
the test set distribution on-the-fly. Such training paradigms
are termed test time training paradigms. However, such
paradigms require the model to be retrained using the new
architecture and thus require access to the original training
data. Furthermore, often in medical applications, accurately
determining the test set statistics is not possible in an online
setting, as the complete test set is not available for infer-
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Fig. 6 Representative images and spectra for the perfusion conditions a physiological, b avascular, c arterial ischemia and d venous congestion.
For each state, the median spectrum across all 5 test pigs before and after test-time augmentation is depicted

Fig. 7 Our test-time augmentation approach improves kidney segmen-
tation under perfusion shifts. The box plots present the Dice similarity
coefficient (DSC) hierarchically averaged for each subject. Median and

mean values are shown as solid and dashed lines, respectively. The
boxes represent the interquartile range (IQR) and whiskers extend up
to 1.5 times the IQR

ence at a given time. The same challenge is faced by the
approaches [29–32], which involve changing or fine-tuning
the batch normalization [33] statistics of the trained model,
to match the statistics of the complete test set. Addition-
ally, it has been shown that adapting batch normalization
statistics is not sufficient for more challenging tasks [34–36].
Batch-agnostic normalization layers (e.g., group normaliza-
tion [37]) have been shown to be more robust toward more
challenging tasks. However, they still depict failure cases
[36]. Meanwhile, although conditional autoencoder, GANs
[38] and diffusion models [39] have been shown to be able
to transfer the test distribution to the original training distri-
bution for test time adaptation [40–42], these models require
a large amount of data to generalize well to unseen domains.
On the other hand, the medical HSI field is very limited in
terms of availability of large datasets.

A key strength of our method is that it does not require
retraining the network; instead, the incoming data are trans-
ferred so that it can be handled by a frozen network. Further-
more, it elegantly leverages prior knowledge on potential
gaps between training and deployment datasets. While, to
correct for OOD pixels, our method increases inference time,
we assume that it can be optimized to be real-time capable.

Overall, our work represents a promising, novel concept,
but several limitations and opportunities for future work
deserve further discussion:

Furthermore, while we obtained a performance boost of
up to a factor of 4.6, performance for venous congestion
is not on par with in distribution performance. This can
possibly be explained with the shortcomings of our simula-
tion framework. For example, our simulations only consider
the most obvious consequences of perfusion shifts, namely
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changes in blood volume fraction (VHb) and oxygen satura-
tion (StO2). However, venous congestion, for example, can
lead to the accumulation of several substances in the kidney
(e.g., azotemia), as the kidney plays a major role in filtering
waste products from the body. Changes in the concentration
of chromophores other than Hb/HbO2 have not been consid-
ered in the simulations, butmay alter the spectra and thus lead
to poor baseline performance in case of venous congestion.
Overall, integration of pathologies in simulation frameworks
such as [43] is an open research topic.

Our study addresses domain shifts related to perfusion,
specifically exploring clinical scenarios that involve entire
organs affected by arterial ischemia, venous congestion, or
avascular conditions. While we consider the data acquired
for this study to be unique, future work should expand the
application of our approach to a wider range of perfusion
states and pathologies. This expansion should include valida-
tion on common surgical scenarios such as partial perfusion
impairment (e.g., reduced inflow or outflow, only parts of
an organ being affected by malperfusion). A key remain-
ing research question in this context is how to transfer the
proposed approach to further conditions, such as cancerous,
cirrhogenous or fatty tissue. Multiple works have investi-
gated the capabilities of HSI to discriminate physiological
and pathological tissues, indicating that their spectral signa-
tures can be very distinct [44]. We therefore assume that,
equivalent to our findings for perfusion state shifts, domain
gaps between physiological and pathological tissue could
deteriorate the performance of a segmentation network that
was solely trained on physiological data. As is the case for
perfusion-induced variations, real-world pathological HSI
data is very sparse with only a single publicly available
dataset that is small and covers only a few specific brain
tumors [45]. While synthetic data generation to simulate
perfusion variations is established, the simulation of patho-
logical tissue alterations has not yet been addressed due to
a lack of substantial prior knowledge (e.g., measurements
of optical properties for pathological tissues). Closing this
knowledge gap is an important next step to enable the trans-
fer of our approach to pathology-induced domain gaps.

With regard to our study’s design, it could also be argued
that we should have based our study on a simple pixel-wise
classification network. However, previous work [9] showed
that the model performance increases with increased spatial
granularity of HSI data. As a simple pixel-wise classification
network did not yield performance comparable to human
experts, we based our study on image-wise segmentation.
Furthermore, phrasing it as a segmentation task enabled us to
base our work on an openly available network, thus enabling
the comparison of performance values.

Finally, our prototype implementation comes with a rel-
atively simple way to detect and replace OOD pixels. More
sophisticated methods can potentially further boost perfor-

mance. It should be noted that we avoided hyperparameters
in our method due to the limited number of validation cases.
Had we had access to more data, for example, we could have
tuned the threshold for deciding whether a sample is OOD.

In conclusion, this paper pioneered the exploration of
distribution shifts in spectral imaging caused by perfu-
sion alterations. Our test-time augmentation-based approach
could evolve as a blueprint for addressing further domain
shifts resulting from surgical intervention or pathologies.
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