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Abstract
Calcific aortic valve disease (CAVD) and osteoarthritis (OA) are common diseases in the
ageing population and share similar pathogenesis, especially in inflammation. This study
aims to discover potential diagnostic and therapeutic targets in patients with CAVD and
OA. Three CAVD datasets and one OA dataset were obtained from the Gene Expression
Omnibus database. We used bioinformatics methods to search for key genes and immune
infiltration, and established a ceRNA network. Immunohistochemical staining was per-
formed to verify the expression of candidate genes in human and mice aortic valve tis-
sues. Two key genes obtained, leucine rich repeat containing 15 (LRRC15) and secreted
phosphoprotein 1 (SPP1), were further screened using machine learning and verified in
human and mice aortic valve tissues. Compared to normal tissues, the infiltration of
immune cells in CAVD tissues was significantly higher, and the expressions of LRRC15
and SPP1 were positively correlated with immune cells infiltration. Moreover, the ceRNA
network showed extensive regulatory interactions based on LRRC15 and SPP1. The
authors’ findings identified LRRC15 and SPP1 as hub genes in immunological mecha-
nisms during CAVD and OA initiation and progression, as well as potential targets for
drug development.
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1 | INTRODUCTION

Calcific aortic valve disease (CAVD) and osteoarthritis (OA)
are common diseases and significant causes of morbidity
and mortality among ageing populations worldwide [1–7].
However, no effective medications are available to limit or
prevent CAVD and OA development, although surgical
repair is an optimal therapeutic strategy with considerable
residual morbidity and mortality risks [8, 9]. Thus, an urgent
clinical need exists to further undercover the underlying
mechanisms and development of potential novel therapeutic
medications.

Accumulating evidence demonstrated that inflammation
contributed importantly to the pathogenesis of CAVD and OA
[9–11]. For example, an inflammatory response initiated by
aortic valve endothelial cell dysfunction is the early patholog-
ical change of CAVD [12]. At this stage, injured valve endo-
thelial cells released multiple chemokines to recruit various
circulating leucocytes (such as monocytes, macrophages, neu-
trophils and T cells) and facilitated those inflammatory cells
infiltrated into the aortic valve and activation [13]. Moreover,
activated inflammatory cells were also found in the calcific
aortic valve leaflet and play critical roles in mediating valve
fibrosis and stenosis [14–16]. Like CAVD, inflammation
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exhibited a great impact on OA development and progression,
and there are considerable immune cells, especially macro-
phages, accumulated in the synovium of OA patients [9, 17,
18]. Furthermore, targeting inflammatory processes hold great
promising in improving aortic valve calcification or OA [19,
20]. Recently, emerging studies indicated that bioinformatics
analysis concomitant or common diseases that share similar
pathogenic mechanism could provide a new direction for
developing a novel therapeutic strategy [21, 22]. Yet, little
studies focus on CAVD and OA to discover potential thera-
peutic targets for CAVD and OA treatment, especially in
inflammation.

In the current study, we analysed two CAVD datasets and
one OA dataset downloaded from the Gene Expression
Omnibus (GEO) database for common differentially
expressed genes (DEGs) and combined used weighted gene
co‐expression network analysis (WGCNA) and machine
learning methods to identify immune‐related hub genes from
those DEGs. Moreover, we verified those hub genes in another
CAVD datasets and human and mice calcific aortic valve
leaflets (Figure 1 shows the current study flow chart.). This
work will provide new insights and direction for further un-
derstanding the mechanisms of CAVD and OA and will help
for novel medications development.

2 | MATERIALS AND METHODS

2.1 | Microarray datasets information and
processing

CAVD microarray datasets (GSE12644, GSE51472, and
GSE83453) were obtained from the GEO database (http://
www.ncbi.nlm.nih.gov/geo). Specifically, the GSE12644 dataset
included 10 normal aortic valves and 10 calcified aortic valves,
GSE51472 contains five normal samples and five calcified aortic
valve samples, and GSE83453 included nine calcified tricuspid
aortic valve samples and eight normal samples. The GSE169077
dataset was an OA gene expression profile and included five
normal and six OA samples. We log2‐transformed the expres-
sion levels of GSE12644 and GSE51472, the batch correction
was performed using the package SVA (3.50.0) and then nor-
malised the merged data rows for subsequent analysis. The same
methodwas used to analyseGSE169077. TheGSE83453 dataset
was used as a validation cohort to test the results obtained from
the merge data.

2.2 | Identification of differentially
expressed genes

Limma package (3.58.1) was used to generate the DEGs from
CAVD and OAGEO datasets. For CAVD, the merge date with
adjusted p values < 0.05 and |log2FC| > 0.5. For OA, we
obtained DEGs with p‐values <0.05, and |log2FC| > 0.5. The
DEG data were processed to draw heat maps using the
pheatmap package (1.0.12).

2.3 | Pathway enrichment analysis of DEGs

To explore the biological meaning of DEGs in CAVD, all
DEGs were subjected to gene ontology (GO) and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway
enrichment analysis using the clusterProfiler package (4.10.0),
with the threshold of p value < 0.05 and q value < 0.05.

2.4 | WGCNA

WGCNA is an algorithm that can be used to identify clusters
(modules) of related genes. The WGCNA package (1.72–1)
was used to establish a co‐expression network for the top 25%
of DEGs [23, 24]. Using this algorithm, we obtained the best
power value by testing different scales of independence and
mean connectivity (power values ranging from 1 to 20). The
power value was considered the best when the degree of in-
dependence was set to 0.85. The adjacency matrix was con-
verted to obtain the topological overlap matrix (TOM) and
corresponding dissimilarity (1‐TOM). Subsequently, the mini-
mum number of module genes was set at 10 after similar genes
were clustered. The most relevant module was used as the key
module for the subsequent analysis. To analyse the relationship
between CAVD and OA, we identified common genes for the
key modules of CAVD and DEGs of OA.

2.5 | Screening hub genes by machine
learning

Hubgeneswere obtained from the common genes ofCAVDand
OA through two machine learning methods: least absolute
shrinkage selection operator (LASSO) and support vector
machine‐recursive feature elimination (SVM‐RFE), respectively.
We used the intersection genes of CAVD key modules and OA
DEGs to construct LASSO and SVM‐RFE algorithms through
the glmnet package (4.1–8) and e1071 package (1.17–13). Hub
genes were obtained by identifying common genes between the
two machine learning methods. The expression levels of hub
genes in the CAVD samples and healthy individuals were
assessed using box plots. The diagnostic ability of hub genes was
examined using the area under the ROC curve (AUC). Finally,
hub genes were examined using GSE83453.

2.6 | Analysis of immune cell infiltration

We derived the enrichment scores for each immune‐related cell
type using the (single‐sample gene set enrichment analysis)
ssGSEA method. The ssGSEA function in the GSVA package
(1.50.0) was used to calculate the infiltration level of the im-
mune cell [25]. The vioplot package (0.4.0) was used to
compare immune cell levels between the disease and control
groups [26]. The relationship between the expression of hub
genes and the degree of immune cell infiltration was examined
using Spearman's correlation.
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2.7 | ceRNA network construction

To predict the relationship of lncRNA‐miRNA‐mRNA, we
constructed a ceRNA network. We used starBase database to
predict the miRNAs interacting with the mRNAs of hub genes.
Next, we downloaded the mRNA sequences of hub genes
from the National Centre for Biotechnology Information
(NCBI) and obtained the human miRNA sequences from
miRbase. Miranda software is used to predict miRNA, and the
miRNA‐mRNA binding score greater than 160 was considered
effective. Furthermore, to acquire the ceRNA network, we

searched the expected miRNA in starBase and filtered
miRNA‐lncRNA. Finally, Cytoscape was used to visualise the
obtained results.

2.8 | CAVD animal models

Our animal experiments follow the Guide for the Care and Use
of Laboratory Animals published by the US National Institutes
of Health and were approved by the Institutional Animal Care
and Use Committee at the Second Xiangya Hospital of Central

F I GURE 1 Research flow chart. DEGs, differentially expressed genes; WGCNA, weighted gene co‐expression network analysis; LASSO, least absolute
shrinkage selection operator; SVM‐RFE, support vector machine‐recursive feature elimination.
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South University (Protocol No. 2021810). Male Apoe−/−

(n = 8) nd C57BL/6 mice (n = 4) from 8 to 10 weeks old were
purchased from Beijing Vital River Laboratory Animal Tech-
nology Co. in China. All mice were housed under a 12 h light/
dark cycle in a pathogen‐free animal facility with free access to
food and water. Mice were kept on a standard chow diet or on
a 1.25% high cholesterol diet (HCD; D12108C, Research Di-
ets) for 24 weeks to produce CAVD. Then, mice were hu-
manely sacrificed with carbon dioxide narcosis, and aortic
roots were harvested and embedded in an optimum cutting
temperature (OCT) compound or frozen at −80°C.

2.9 | Patient sample collection

The use of discarded and de‐identified human aortic valve
specimens (protocol No. 82100491) was approved by the
Institution Research Ethics Committee of Second Xiangya
Hospital of Central South University and conducted under the
guidance of the Declaration of Helsinki. Informed consent was
obtained from each patient before the collection of samples.
Aortic valve samples were obtained from six CAVD patients
and four healthy organ donors during surgery. After aortic
valve samples were collected, formalin fixation and paraffin
embedding were performed using standard methods.

2.9.1 | Immunohistochemical staining

Immunohistochemical staining was performed as described
previously [27, 28]. Briefly, serial cryostat sections (6 μm) from
mice or paraffin sections (6 μm) from human aortic valves
were prepared and processed for immunostaining to detect
leucine rich repeat containing 15 (LRRC15) (1:100, E‐AB‐
15178, Elabscience) and secreted phosphoprotein 1 (SPP1)
(1:100, 22952‐1‐AP, Proteintech). Immunohistochemical

images were captured by Nikon Ti2 295 microscopy (Nikon).
The LRRC15‐ and SPP1‐positive areas within the aortic valve
were determined by detecting the staining intensity with
computer‐assisted image analysis software (Image‐Pro Plus;
Media Cybernetics), and the data were presented as positive
area per μm [2] of the aortic valve area.

2.10 | Statistical analysis

GraphPad Prism software (Version 8.4, GraphPad Software,
Inc), or R Studio, was used for statistical analysis. The unpaired
2‐tailed Student's t test was used to examine the statistical
significance between two groups with normally distributed
continuous variables. For data without normal distribution, the
non‐parametric Mann–Whitney U test was used to compare
two groups. All data are presented as mean � SEM, and
p < 0.05 was considered statistically significant.

3 | RESULTS

3.1 | Data processing and identification of
DEGs

To adjust the batch effects of the merged CAVD GEO data-
sets (GSE12644 and GSE51472) (Figure 2a), batch correction
using R package SVA was applied to those two datasets, and
the PCA cluster diagram exhibited an efficient effect of
removing batch effects (Figure 2b), indicating that the merged
datasets can be further processed to avoid the analysis error. By
using the Limma package, we obtained 554 DEGs (adjusted p
values < 0.05 and log2FC > 0.5) in merged CAVD GEO
datasets (Figure 3a,b). Moreover, among those 554 DEGs, 311
genes were upregulated and 233 genes were downregulated
(Figure 3a). Furthermore, we obtained 1086 DEGs (p

F I GURE 2 Cluster plot of PCA analysis of gene expression datasets. (a) PCA clustering results of GSE12644 and GSE51472 before sample correction and
elimination of batch effects. (b) PCA clustering results of GSE12644 and GSE51472 after sample correction and elimination of batch effects. Each dot
represents a sample, green dots represent GSE12644 samples and purple dots represent GSE51472 samples. PCA, principal component analysis.
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values < 0.05 and |log2FC| > 0.5) in OA datasets
(GSE169077) (Figure 3c).

3.2 | Enrichment analysis of DEGs in CAVD

To understand the biological functions of those DEGs in
merged CAVD GEO datasets (Figure 3), R package

clusterProfilerwas used to perform theGOandKEGGpathway
enrichment analyses. As shown in Figure 4a, GO analysis
showed that those DEGs were significantly related to inflam-
matory processes, including leucocyte chemotaxis, leucocyte
migration, myeloid leucocyte migration, myeloid leucocyte
activation and cell chemotaxis, for the biological process (BP).
Collagen‐containing extracellular matrix, external side of plasma
membrane, tertiary granule, complex of collagen trimers and

F I GURE 3 Differential genes for CAVD and OA. (a) Volcano plot of DEGs of CAVD; each point represents a gene, red represents up‐regulated
differential genes, black represents no significant differential genes, and the green represents down‐regulated differential genes. (b) Cluster heatmap of CAVD
DEGs expression between normal and disease groups. Cyan represents CAVD groups, red‐orange represents normal groups. (c) Cluster heatmap of OA DEGs
expression between normal and disease groups. CAVD, calcific aortic valve disease; DEGs, differentially expressed gene; OA, osteoarthritis.
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specific granule were the most enriching cellular component
(CC) among thoseDEGs (Figure 4a). For themolecular function
(MF), DEGs were mainly related to extracellular matrix struc-
tural constituents, integrin binding, cytokine activity, and che-
mokine activity (Figure 4a). In linewithGOenrichment analyses,
KEGG pathway enrichment analyses also exhibited that DEGs
weremost enriched in inflammation‐associated pathways among
the top 30 gene sets, including cytokine‐cytokine receptor
interaction, viral protein interaction with cytokine and cytokine
receptors, cell adhesion molecules, chemokine signalling
pathway, IL‐17 signalling pathway, and NF‐kappa B signalling
pathway (Figure 4b). Collectively, these results indicate that
DEGs inmerged CAVDGEOdatasets were strongly associated
with inflammatory responses.

3.3 | The key co‐expression networks and
modules in CAVD

We next selected the top 25% of DEGs from the merged
CAVD datasets for WGCNA analysis. As shown in Figure 5a, a
sample clustering tree, including all samples, was well obtained.
Then, the optimal soft threshold of 20 (based on scale‐free
R2 = 0.85; Figures 5b,c) was used to obtain the modules for
further analysis, and a total of four modules were identified
(Figure 5d). A correlation analysis was then performed to
explore the importance of modular genes in CAVD develop-
ment. The strongest positive correlation was observed in the
turquoise module (r = 0.83, P = 2e‐08), while the grey module
had a significant negative correlation (r = −0.8, P = 1e‐07)
(Figure 5e). Because the biological functions of DEGs in
merged CAVD GEO datasets were strongly associated with
inflammatory responses in CAVD, we then selected the tur-
quoise module as the key module for further analyses.

3.4 | Identification of hub genes through
machine learning

The turquoise module contained 36 genes (Figure 5e). By
combining those key module genes and DEGs of OA
(Figure 3c), we identified 10 overlapped common genes
(Figure 6a). Moreover, we used two machine learning methods,
including LASSO and SVM‐RFE algorithms, separately to
further discover the key hub genes among those 10 overlapped
common genes. The LASSO algorithm identified five potential
candidates, including LRRC15, SPP1, angiopoietin like 7
(ANGPTL7), matrilin 2 (MATN2), and transferrin (TF)
(Figure 6b), whereas the SVM‐RFE algorithm identified
LRRC15, SPP1, monoamine oxidase A (MAOA), and collagen
type XI alpha 1 chain (COL11A1) as the possible hub genes
(Figure 6c). Thus, we selected LRRC15 and SPP1 as the key
hub genes that may play critical roles in inflammation involved
in the pathogenesis of CAVD and OA (Figure 6d).

As shown in Figure 7a,b, the expressions of LRRC15 and
SPP1 were significantly increased in the CAVD group
compared to the normal group. Moreover, those two genes
exhibited significant discriminative power in distinguishing
CAVD from controls, with an AUC of 0.982 (95% CI: 0.929–
1.000) for LRRC15 and an AUC of 0.976 (95% CI: 0.916–
1.000) for SPP1 (Figure 7c,d). These observations (Figure 7)
were further confirmed by using the GSE83453 dataset to
evaluate the diagnostic effect (Figure 8). Furthermore,
immunohistochemistry staining showed that LRRC15 and
SPP1 expressions in aortic valve tissues were significantly
increased in both CAVD patients and high‐cholesterol diet‐
induced experimental CAVD mice using apolipoprotein e‐
deficient mice (Apoe−/−) compared to health control sub-
jects and normal chow‐diet‐fed wild‐type C57BL/6 mice
(Figure 9).

F I GURE 4 Functional enrichment analysis of DEGs in calcific aortic valve disease. (a) Gene ontology enrichment analysis results. The x‐axis represents the
number of genes that are functionally enriched, and the y‐axis represents the enriched pathways. BP, biological process; CC, cellular component; MF, molecular
function; (b) Kyoto encyclopedia of genes and genomes enrichment analysis of the top 30 pathways results. The x‐axis represents the number of genes that are
functionally enriched, and the y‐axis represents the enriched pathways.
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3.5 | Immune cell infiltration analysis

The ssGSEA method was used to analyse the immune cells
infiltration between the CAVD and control group. As shown in
Figure 10a, a significantly higher fraction of B cells, CD4‐

positive T cells, CD8‐positive T cells, macrophages, and NK
cells was observed in the CAVD group than that in normal
controls. Figure 10b exhibited the correlation between the
individual immune cells. Moreover, we also investigated the
association between individual immune cells and hub genes.

F I GURE 5 Weighted gene co‐expression network analysis results. (a) Sample clustering dendrogram for CAVD. (b) Scale‐free topology model fit
corresponds to different powers, representing the scale independence of the analysis. (c) Mean connectivity corresponds to different powers. (d) Dendrogram of
dissimilarity metric (1‐TOM) clusters. Gene expression similarity was assessed by a pairwise weighted correlation measure and clustered into modules according
to a topological overlap measure. Each colour represents a co‐expression module, and each branch represents a gene. (e) Heatmap of module signature gene
associations with the CAVD disease status. The correlation coefficient and p‐value are labelled in each cell, and the colour type and shade of each cell represent
the strength of the correlation. CAVD, calcific aortic valve disease.
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We found that the expression of LRRC15 was significantly
positively correlated with the infiltration of type 1 T helper
cells, CD56 NK cells, activated CD8 T cells, and activated CD4
T cells, while it was negatively correlated with the infiltration of
memory B cells (Figure 10c). SPP1 had strong positive cor-
relations with regulatory T cells, NK T cells, MDSC, effector
memory CD4 T cells and activated dendritic cell (Figure 10c).

3.6 | The ceRNA network analysis of hub
genes

We also generated a ceRNA network on those two hub genes,
LRRC15 and SPP1. As shown in Figure 11, a total of 480
points (including 2 hub genes, 45 miRNAs and 433 lncRNAs)
and 887 edges were identified in the ceRNA network.

Specifically, 399 lncRNAs regulate LRRC15 through 10 miR-
NAs, and 442 lncRNAs competitively bind various miRNAs
(such as hsa‐miR‐181c‐5p, hsa‐miR‐520h, hsa‐miR‐3163 and
hsa‐miR‐4262) to regulated SPP1 expression. Moreover, we
identified that hsa‐miR‐580‐3p regulated both LRRC15 and
SPP1. Furthermore, we found that LncRNA NEAT1 and
lncRNA XIST regulated 19 and 18 miRNAs, respectively,
suggesting that they were at the core of the network.

4 | DISCUSSION

Inflammation contributes importantly to CAVD and OA that
affect adults aged 60 years and older worldwide [10, 29, 30].
Due to the lack of effective drugs to limit the progression of
CAVD and OA, discovering the underlying mechanisms and

F I GURE 6 Screening of candidate genes by machine learning method. (a) Vene plot of calcific aortic valve disease key module genes and osteoarthritis
differentially expressed genes. (b) Screening of candidate biomarkers by the LASSO model. The ordinate is the value of the coefficient, the lower abscissa is log
(λ), and the upper abscissa is the number of non‐zero coefficients in the model. (c) Screening of candidate biomarkers by the SVM‐RFE algorithm. (d) Vene plot
of candidate genes screened by LASSO and SVM‐RFE. LASSO, least absolute shrinkage sum selection operator; SVM‐RFE, support vector machine‐recursive
feature elimination.
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developing potential novel therapeutics is critical for patients
with CAVD and OA. In this study, by using WGCNA and
machine learning methods, we integrated multiple CAVD and
OA datasets from GEO and identified that LRRC15 and SPP1
exhibited a high possibility of serving as novel targets. More-
over, bioinformatics analytic methods revealed that LRRC15
and SPP1 play important roles in modulating multiple in-
flammatory processes that affected CAVD development,
including leucocyte recruitment, migration, infiltration and
activation. Furthermore, ceRNA network analysis showed that
lncRNA NEAT1 and XIST were key lncRNAs in the network,
and hsa‐miR‐580‐3p regulated both LRRC15 and SPP1 ex-
pressions. Together, our findings suggested that LRRC15 and
SPP1 may be crucial in immunological mechanisms during

CAVD and OA initiation and progression, as we potential
targets for drug development.

A total of 544 DEGs (311 upregulated and 233 down-
regulated genes) were identified in the merged CAVD cohort
(Figure 3a,b). Consistent with previous studies [31–33], GO
and KEGG enrichment analysis revealed that multiple
inflammation associated processes were activated in CAVD
group, such as leukocyte chemotaxis, leukocyte migration, cell
chemotaxis, cytokine activity, cytokine‐cytokine receptor and
chemokine signalling pathways were significantly enriched
(Figure 4). Indeed, inflammatory cytokines and their actions on
cytokine receptors play critical roles in regulating immune cells
infiltration and activation, which eventually result in aortic
valve fibrosis and calcification [16, 34–36]. For example,

F I GURE 7 Validation of candidate biomarkers in the combined GSE12644 and GSE51472 datasets. (a) Expression of LRRC15 in CAVD and normal
groups. (b) Expression of secreted phosphoprotein 1 in CAVD and normal groups. (c) Diagnostic performance of LRRC15 expression in CAVD. ***p < 0.001
(d) Diagnostic performance of SPP1 expression in CAVD. AUC, area under the ROC curve; CAVD, calcific aortic valve disease; LRRC15, leucine rich repeat
containing 15; ROC, receiver operating characteristic.

GONG ET AL. - 85



Winchester et al. found that patients with aortic stenosis (AS)
developed a sustained systemic adaptive immune response,
including the activation of circulating CD8 T cells [34].
Moreover, macrophages, CD4‐ and CD8‐positve T cells, B
cells and NK cells are positively associated with pressure
gradients and aortic valve calcification [35, 37–40]. In line with
those observations, ssGSEA analysis showed a significant in-
crease of such immune cells in the CAVD group (Figure 10a).

One essential question that needs to be figured out is to
identify the potential key genes controlling inflammatory
processes. We identified two potential hub genes, LRCC15 and
SPP1, by using WGCNA analysis and machine learning. The

type I transmembrane protein LRRC15 belongs to the LRR
family, and the major function of the LRR family is to facilitate
protein‐protein and protein‐matrix interactions [41, 42].
Accumulating evidence demonstrated that LRRC15 was
abundantly expressed in mineralised tissues and was upregu-
lated in response to multiple proinflammatory cytokines, such
as TNF‐α, IL‐1β or IFN‐γ [43, 44]. High expression of
LRRC15 was associated with the increased infiltration of
macrophages, and macrophages are the key immune cells that
promoted aortic valve calcification [45, 46]. Moreover, Wang
et al. showed that LRRC15 promoted mesenchymal stem cells
osteogenic differentiation [47], a characteristic pathological

F I GURE 8 Validation of candidate hub genes in the validation dataset GSE83453. (a) Expression of LRRC15 in CAVD and normal groups. (b) Expression
of SPP1 in CAVD and normal groups. (c) Diagnostic performance of LRRC15 expression in CAVD. **p < 0.01, ***p < 0.001 (d) Diagnostic performance of
SPP1 expression in CAVD. AUC, area under the ROC curve; CAVD, Calcific aortic valve disease; LRRC15, leucine rich repeat containing 15; ROC, receiver
operating characteristic; SPP1, secreted phosphoprotein 1.
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alteration that exhibited in sclerotic regions of human
advanced OA [48]. In the current study, KEGG enrichment
analyses indicated that IL‐17 and NF‐kappa B signalling
pathways were significantly affected. Indeed, IL‐17 and NF‐
kappa B signalling pathways play critical roles in controlling
TNF‐α and IL‐β production and secretion in macrophages
[49]. Moreover, the expression of LRRC15 was positively
correlated with multiple immune cells (Figure 10c). These data
suggest that LRRC15 regulates macrophage activation through
IL‐17 and NF‐kappa B signaling pathways and subsequently
contributes to CAVD and OA development, but further vali-
dation experiments are required.

In addition to LRRC15, SPP1, also known as osteopontin,
was highly expressed in the CAVD group (Figure 7 to Figure 9)
and this was consistent with previous studies [27, 50–52]. SPP1
was initially implicated in bone mineralisation and was subse-
quently shown to be a pro‐inflammatory cytokine [52]. For
instance, SPP1 induced matrix metalloproteinase 13 produc-
tion and plays an important role in type II collagen degradation
[53, 54]. In support of our findings, previous studies identified
that SPP1 is strongly associated with the severity of knee OA

and may serve as a key regulator gene in CAVD [55–58]. In
addition, we further identified that SPP1 was positively
correlated with various immune cells (Figure 10c), suggesting
that SPP1 holds a high possibility of serving as a target for the
treatment of CAVD and OA.

Another critical question is the regulator mechanisms
involved in those two hub genes expression. Emerging
studies have shown that non‐coding RNAs play an impor-
tant role in the development and progression of CAVD and
OA through the modulating expression of large gene net-
works [59, 60]. Therefore, we intended to establish a ceRNA
network map potentially in regulating LRRC15 and SPP1
expressions. Previous studies identified LINC00702‐miR‐
181b‐5p axis, miR‐127‐5p and miR‐186 affects SPP1
expression in CAVD or OA [54, 57, 61], to the opposite, we
identified that lncRNA NEAT1 and lncRNA XIST were key
lncRNAs in the network and hsa‐miR‐580‐3p regulated both
LRRC15 and SPP1 expression (Figure 11). These data
suggested that lncRNA NEAT1 [62], XIST and hsa‐miR‐
580‐3p may serve as potential targets for CAVD and OA
treatment.

F I GURE 9 Validation of candidate hub genes in the human and mice calcific aortic valve tissues. (a) Expression of LRRC15 in aortic valves of health
subjects and CAVD patients. (n = four to six per group). Scale: 400 μm. (b) Expression of SPP1 in aortic valves of health subjects and CAVD patients. (n = four
to six per group). Scale: 400 μm. (c) Expression of LRRC15 in aortic valves of age‐matched C57BL/6 and Apoe−/− mice. Black arrow indicates SPP1‐positive
area in aortic valves (n = four to eight mice per group). Scale: 100 μm. (d) Expression of SPP1 in aortic valves of age‐matched C57BL/6 and Apoe−/− mice.
Black arrow indicates the SPP1‐positive area in aortic valves (n = four to eight mice per group). Scale: 100 μm. Data shown are mean � SEM. *p < 0.05. CAVD,
Calcific aortic valve disease; LRRC15, leucine rich repeat containing 15; SPP1, secreted phosphoprotein 1.
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4.1 | Limitations

There are several limitations to our study. First, although the
datasets were merged, the sample size of the dataset used for
analysis was relatively small. Second, further studies need to
verify the key hub genes in a larger cohort and to investigate
the biological functions of the candidate genes, although we
examined LCRR15 and SPP1 expression in an independent
CAVD dataset and in human and mice calcific aortic valves.

5 | CONCLUSIONS

In summary, we identified that LRRC15 and SPP1 could serve
as inflammation‐associated candidate hub genes or potential
therapeutic targets in CAVD and OA using bioinformatics and
machine learning. Given that still lacking effective medications
to slow CAVD and OA progression, those findings may pro-
vide new insights for the development of novel medications
for CAVD and OA.

F I GURE 1 0 CAVD immune infiltration and its correlation with LRRC15, SPP1 expression. (a) Comparison of various types of immune cell infiltration
between normal and CAVD groups. Blue represents the normal group, red represents the CAVD group, and the p value is marked above. (b) Correlation
composition of various immune cell types. *p < 0.05, **p < 0.01, ***p < 0.001. (c) Visualisation of the correlation analysis results of LRRC15 and SPP1
expression and immune cell infiltration. The colour of each cell represents the magnitude of the correlation coefficient, blue represents the negative correlation,
and red represents the positive correlation. Asterisks represent p values, *p < 0.05, **p < 0.01, ***p < 0.001. CAVD, Calcific aortic valve disease; LRRC15,
leucine rich repeat containing 15; SPP1, secreted phosphoprotein 1.
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