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Abstract 

Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high 
annual incidence of human influenza is the virus’s ability to evade acquired immunity through continual antigenic evolution. Under-
standing the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus 
evolution and in predicting future ones. Several studies have analyzed longitudinal patterns of influenza A virus genetic diversity in 
natural human infections to assess the relative contributions of selection and genetic drift on within-host evolution. However, in these 
natural infections, within-host viral populations harbor very few single-nucleotide variants, limiting our resolution in understanding 
the forces acting on these populations in vivo. Furthermore, low levels of within-host viral genetic diversity limit the ability to infer the 
extent of drift across transmission events. Here, we propose to use influenza virus genomic diversity as an alternative signal to better 
understand within- and between-host patterns of viral evolution. Specifically, we focus on the dynamics of defective viral genomes 
(DVGs), which harbor large internal deletions in one or more of influenza virus’s eight gene segments. Our longitudinal analyses of 
DVGs show that influenza A virus populations are highly dynamic within hosts, corroborating previous findings based on viral genetic 
diversity that point toward the importance of genetic drift in driving within-host viral evolution. Furthermore, our analysis of DVG 
populations across transmission pairs indicates that DVGs rarely appeared to be shared, indicating the presence of tight transmission 
bottlenecks. Our analyses demonstrate that viral genomic diversity can be used to complement analyses based on viral genetic diversity 
to reveal processes that drive viral evolution within and between hosts.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Despite relatively widespread vaccination, human influenza infec-
tions result in over 20,000 deaths and $3.7 billion in direct medical 
costs each year in the USA alone (Paget et al., 2019). One of 
the contributing factors to the virus’s widespread circulation is 
its ability to rapidly evolve to evade natural and vaccine-derived 
immunity (Koelle et al., 2006; Boni, 2008; Smith et al., 2004; Bed-
ford et al., 2014; Bedford et al., 2015). This so-called ‘antigenic 
drift’ allows the virus to continually replenish its pool of suscep-
tible hosts by reinfecting hosts who already harbor immunity to 
previously circulating strains. Understanding how new antigenic 
variants evolve within single hosts and ultimately sweep the pop-
ulation is important for vaccine strain selection (Neher et al., 2016; 
Huddleston et al., 2020; Castro et al., 2020) and informing the 
development of vaccines that are more robust to viral evolution 
(Viboud et al., 2020). The evolution of antigenically diverse lineages 

of influenza virus is possible because there is diversity in the viral 
population on which selection can act. This diversity is generated 
by errors made by the viral polymerase during replication within 

single hosts and is impacted by the evolutionary forces that occur 

within hosts. Population bottlenecks that occur during transmis-

sion between hosts further shape this viral diversity (McCrone 

and Lauring, 2018). Analyzing these dynamics can therefore 

provide insights into the evolution acting within and between

hosts.
Deep sequencing data can be used to characterize patterns of 

viral genetic diversity within individual hosts. To do so, sequenc-

ing reads are aligned to a reference genome and used to estimate 

the frequency of each nucleotide at each site of the viral genome. 
By analyzing the frequencies of these intrahost single-nucleotide 
variants (iSNVs) across multiple time points, one can determine 
whether selection is acting on specific mutations or whether 
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genetic drift dominates within-host evolution (Xue et al., 2018). 
Finally, by comparing iSNV frequencies in donor and recipient 
hosts in transmission pairs, one can estimate how many viral 
particles seeded infection in the recipient (Sobel Leonard et al., 
2017). Previous analyses of this type have revealed that selection 
during an acute natural influenza A virus infection is relatively 
weak. Positive selection acting on known antigenic escape muta-
tions is not apparent, and the presence of prior immunity has 
little impact on the amount of observed within-host genetic diver-
sity (Debbink et al., 2017; McCrone et al., 2018). It has been 
suggested that this may be due to a mismatch in the timing 
between viral population growth and the immune response (Mor-
ris et al., 2020). While evidence for positive selection is limited, 
purifying selection does appear to act within these infections 
and contribute to shaping in vivo influenza virus populations
(McCrone et al., 2018).

Our understanding of influenza A virus evolution within indi-
viduals and between transmission pairs stems from analyses 
across many individual infections and transmission pairs. This is 
because within any given acute infection, there is limited viral 
genetic diversity. At a 2 to 3 percent variant calling threshold, 
the number of iSNVs identified in a viral sample is generally 
fewer than 15, and most of these iSNVs occur at low frequen-
cies (Debbink et al., 2017; McCrone et al., 2018). This limited 
genetic diversity hinders our ability to robustly characterize the 
evolutionary forces acting on these populations and results in con-
siderable uncertainty in our inferred contributions of selection 
and drift to within- and between-host evolution. Here, we propose 
using an alternative signal to study the evolutionary dynamics of 
viral populations within and between hosts. Specifically, we pro-
pose focusing on viral genomic diversity that is generated during 
infection in the form of influenza defective viral genomes (DVGs).

DVGs (here used synonymously with deletion-containing viral 
genomes (Alnaji et al., 2021)) harbor a large internal deletion 
in at least one of the eight segments of the influenza A virus 
genome. As a result, virions with a DVG are incapable of repli-
cating on their own. However, through coinfection of a cell with 
an infectious ‘wild-type’ virus, they can proliferate throughout an 
infection (Brooke, 2014; Genoyer and López, 2019). The process by 
which coinfection rescues cellular infection with DVGs is similar 
to the process by which coinfection can rescue infection by virions 
with incomplete genomes, (Jacobs et al., 2019; Brooke et al., 2013) 
except that instead of missing entire segments, DVGs harbor trun-
cated copies of gene segments. Individual DVG segments can be 
identified by the genomic sites at which these deletions occur. We 
refer to these unique DVG segments as ‘DVG species’. Due to the 
reliance on coinfection, we expect the evolutionary forces acting 
on populations of DVG species to mirror those acting on the wild-
type viral population. For example, if positive selection were to be 
acting on a specific viral mutation, then DVG species that coin-
fect with wild-type viruses harboring this mutation would appear 
to have an evolutionary advantage over the DVG species, which 
coinfect with viruses lacking this beneficial mutation. This is sim-
ilar to the process of genetic hitchhiking, in which loci that are 
linked to beneficial mutations will increase in frequency (Barton 
et al., 2000). Hitchhiking can occur due to physical linkage on a 
gene segment or through spatial structure that maintains linkage 
disequilibrium. Given the extent of spatial structure in within-
host influenza virus infections (Gallagher et al., 2018), we therefore 
expect linkage to be strong not only within gene segments but also 
between them, consistent with the limited effective reassortment 
between gene segments that has been found in a longitudinally 
sampled human influenza challenge study (Sobel Leonard et al., 

2017). With linkage between DVGs and co-circulating wild-type 
viruses, the dynamics of DVGs may thus offer a complementary 
signal of evolutionary processes occurring within hosts to that 
which is presented by viral genetic diversity in the form
of iSNVs.

It has been proposed that DVGs may also be transmitted 
between hosts (Saira et al., 2013). Transmission of DVGs between 
hosts must rely on coinfection of recipient host cells by both wild-
type and DVG virions. A priori, this is expected to be unlikely under 
the assumption that wild-type and DVG virions infect host cells at 
random during transmission, given the large number of suscepti-
ble host cells. However, it is thought that some viruses, including 
influenza viruses (Wallis and Melnick, 1967), may form so-called 
collective infectious units (Sanjuán et al., 2017). In these collec-
tive units, virions aggregate together, presumably increasing the 
probability of cellular coinfection. This may play a role in how 
influenza viruses are able to transmit at all, given the high propor-
tion of virions harboring incomplete viral genomes (Jacobs et al., 
2019; Brooke et al., 2013). If viral aggregates form and wild-type 
virions within these aggregates are genetically identical due to 
the spatial structuring of the source individual’s viral population, 
then DVGs may provide more resolution into the characterization 
of transmission bottlenecks.

Here, we apply a recently developed bioinformatic pipeline 
(Alnaji et al., 2019) to previously published deep sequencing data 
from 217 clinical samples of influenza A H3N2 infections from 168 
naturally infected, otherwise healthy, individuals from a cohort 
study (McCrone et al., 2018). For 49 of these 168 individuals, lon-
gitudinally sampled sequence data are available, allowing us to 
examine DVG dynamics within hosts over the course of their infec-
tions. Furthermore, deep sequenced virus samples are available 
for thirty-nine epidemiological transmission pairs, allowing us 
to use DVG diversity to characterize the transmission bottleneck 
between donors and recipients.

Materials and methods
Influenza virus deep sequence data
All clinical and sequencing data were previously published as part 
of (McCrone et al., 2018), and all epidemiological and laboratory 
methods are described in detail in the original publication. In 
short, the Household Influenza Vaccine Effectiveness cohort at 
the University of Michigan School of Public Health queries partic-
ipating households weekly during the months of October through 
May for symptoms of respiratory illness. Individuals with symp-
toms were sampled via a combined nasal and throat swab by 
the research team. During the 2014–5 season, individuals were 
also instructed to take a self- or parent-collected nasal swab at 
symptom onset.

As described in McCrone et al., 2018, the amount of viral RNA 
in each sample was quantified through amplification of the M-
segment with Centers for Disease Control and Prevention reverse 
transcription polymerase chain reaction (RT-PCR) primers. Cycle 
threshold (Ct) values were converted to genomes/𝜇l based on dilu-
tions of a plasmid control. Complementary deoxyribonucleic acid 
(cDNA) was amplified from samples testing positive for influenza 
virus using the SuperScript III One-Step RT-PCR Platinum Taq HiFi 
Kit and the universal influenza A primers (Zhou et al., 2009). 
Sequencing libraries were prepared from 300 to 400 base pair 
(bp) sheared cDNA fragments, and barcoded libraries were fur-
ther purified by isolation of a 300–500 bp band using gel isolation. 
2 × 125 nucleotide paired end reads were generated on an Illu-
mina HiSeq 2500. Samples with input titers between 103 and 105
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genomes/𝜇l were sequenced in replicate. For each sequencing run, 
PCR amplicons derived from eight clonal plasmids of the circu-
lating strain were sequenced on the same HiSeq flow cell as the 
clinical samples.

Influenza A H3N2 (as identified by a library labeled ‘perth’, ‘hk’, 
or ‘vic’) sequencing reads were downloaded from the National 
Library of Medicine (NLM) National Center for Biotechnology 
Information (NCBI) Sequencing Read Archive (SRA) BioProject 
PRJNA412631 (McCrone et al., 2018) using the fasterq-dump utility 
available as part of the SRA Toolkit (https://github.com/ncbi/sra-
tools).

DVG identification
DVGs were identified using a modified version of the pipeline 
presented in Alnaji et al. (2019). The analysis pipeline was run 
in Nextflow v19.01.0.5050 (Di Tommaso et al., 2017). For quality 
control, sequencing reads were first trimmed using Trimmomatic 
v0.38 (Bolger et al., 2014) in Phred33 mode using the TruSeq3-
PE-2 adapters allowing for two seed mismatches, a palindrome-
ClipThreshold of 15, and a simpleClipThreshold of 10, scanning 
the read with a 3 base sliding window and cutting when the aver-
age quality falls below 20, removing leading and trailing bases with 
quality less than 28, and removing reads less than 75 nucleotides 
in length. Next, Kraken2 v.2.0.7-beta (Wood et al., 2019) with the 
k2_pluspf_16gb database in paired-end mode was used to cate-
gorize each read. The extract_kraken_reads.py script from Kraken 
Tools (https://github.com/jenniferlu717/KrakenTools) was used to 
filter only for reads assigned to influenza A virus (taxonomic id 
11320) or any children taxa. Quality control on the filtered reads 
was conducted with FastQc v0.11.8 (Andrews, 2010).

The paired-end reads were concatenated into a single fastq 
file and aligned using Bowtie2 v.2.3.4.3 (Langmead and Salzberg, 
2012) in end-to-end mode with a minimum scoring scheme of 
L,0,−0.3. Reference genomes for this initial alignment step were 
used in accordance with those used in (McCrone et al., 2018): Gen-
Bank CY121496-503 was used for samples collected as part of the 
2010–11 or 2011–2 season, GenBank KJ942680-8 was used for sam-
ples collected during the 2012–3 season, and GenBank CY207731-8 
was used for samples collected during the 2014–5 season. End-to-
end mode disallows soft-clipping of reads. Because soft-clipping is 
needed to align reads that span DVG junction sites, reads which do 
align in end-to-end mode are the subset of reads that are wild-type 
viral reads (as well as reads from the 5′ and 3′ ends of DVGs which 
do not span their respective deletion junction sites). We refer to 
this subset of reads as wild-type reads, remaining cognizant that 
this subset also likely contains some reads derived from DVGs. 
The number of wild-type reads that aligned to each position in 
the genome was calculated using Samtools v1.9 with htslib v.1.9 
(Li et al., 2009; Li, 2011) by first sorting by name, then adding mate 
score tags with fixmate, sorting again by coordinates, marking and 
removing duplicates with markdup, and finally tabulating reads 
using idxstats.

Wild-type reads were then used to identify consensus variants 
(those present at >50 percent allele frequency) relative to the ref-
erence genome using Samtools and Bcftools v.1.8 (Li, 2011) with a 
maximum read depth of 1,000, minimum read quality of 20, and 
minimum mapping quality of 20. Consensus variants were used 
to generate a run-specific reference genome using the consensus 
utility within Bcftools. To aid in the identification of DVGs with 
breakpoints near the 5′ or 3′ end of a segment, we added a 210nt 
poly-A pad to the 5′ and 3′ end of each segment in these reference 
genomes.

To identify DVG reads that span their respective deletion junc-
tion sites, we input into ViReMa v0.25 the sequencing reads that 
did not align in end-to-end mode. We mapped these reads to their 
run-specific consensus sequence, using a seed length of twenty-
five nucleotides, tolerating one mismatch in the seed alignment 
and not tolerating any mismatches within eight nucleotides of 
the junction site. To exclude small indels, we removed any DVG 
reads that support a deletion of less than 20 nucleotides. Dupli-
cate DVG reads were also removed with ViReMa. Bowtie v1.2.2 
(Langmead et al., 2009) was used within ViReMa. The relative 
read support of each identified DVG was calculated as the ratio 
of the number of reads supporting a given DVG to the number 
of reads that align to the central nucleotide of the respective 
genome segment. Due to the size filter in the sequencing protocol 
described earlier, we do not expect to identify DVGs that are less 
than 300 nucleotides in length (including sequencing adaptors and 
multiplex oligonucleotides).

As discussed in Alnaji et al. (2019), identifying the precise DVG 
breakpoint from sequencing data can be impossible when there 
are nucleotide repeats on either side of the deletion junction, as 
is prone to occur (Alnaji et al., 2021). ViReMa includes a ‘DeFuzz’ 
feature which allows users to force the reported junction site to 
either the 5′ or 3′ end of a given read. However, because DVGs 
may be supported by reads either in the forward or reverse direc-
tion, this behavior results in disparate reporting for the same DVG 
depending on the supporting read direction. Therefore, we slightly 
modified ViReMa’s underlying AddToDict function to force the 
reported junction sites to the 5′ or 3′ end of the reference genome, 
instead of the supporting read. All DVG junctions reported here 
have been DeFuzz’d to the 3′ end of the reference genome. ViReMa 
results were parsed in Perl v5.26.2 using the summary scripts 
included as part (Alnaji et al., 2019). DVG species are identified by 
the genomic location (1-indexed) of the nucleotides flanking the 
deleted nucleotides. For example, PB2 100_800 represents a DVG 
species generated from the PB2 segment in which nucleotide 101 
through 799 have been deleted.

Statistical analyses and visualization
All statistical analyses were conducted in Python. Statistical tests 
were conducted using Scipy v1.10.1 (Virtanen, SciPy 1.0 Contrib-
utors et al., 2020), and regression modeling was performed using 
statsmodels v0.13.5 (Seabold and Perktold, 2010). All visualization 
was done in Python using Matplotlib v3.8.0. For each sample, the 
diversity (H) of identified DVG species (s) was calculated in Numpy 
as a function of the relative read support r for all DVG species: 

H = −
s

∑
i=1

( ri

∑s
j=1 rj

)(ln(
ri

∑s
j=1 rj

)) . (1)

Evenness was then calculated as: 

J = H
ln(s)

. (2)

H and J were calculated only among samples with at least one DVG. 
Samples with only a single DVG were assigned H = 0 and J = 1.

The presence of premature stop codons in all observed DVG 
species within each sample was identified by first generating 
the sequence of a genome segment with a given DVG deletion 
(using the run-specific consensus sequence) and translating said 
sequence to a string of amino acids based on all open reading 
frames on a given sequence. A DVG was considered as giving rise 
to a premature stop codon if at least one premature stop codon 
was inferred across all possible reading frames in a given segment. 
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For each sample, the total relative read support of premature stop 
codon DVGs in each considered segment was tabulated by sum-
ming the relative read support of all DVGs on a given segment that 
give rise to a premature stop.

A null distribution for the expected relative read support of 
premature stop codon DVGs was generated by randomizing the 
breakpoints for each observed DVG. This was done by drawing a 
random 5′ and 3′ breakpoint, with replacement, from the observed 
breakpoints on each reference segment. To avoid recapitulating 
preferences for specific breakpoints in the empirical data, a noise 
term, drawn uniformly from [−10, 10], was added to each break-
point. Rejection sampling was used to ensure that at least 500 
nucleotides were deleted in each simulated DVG. This process was 
repeated 1,000 times. These randomized DVG breakpoints were 
then applied to each run-specific consensus genome to identify 
premature stop codons and calculate the relative read support of 
DVGs with a premature stop codon in a similar manner as above.

To examine the extent to which DVG species had in-frame ver-
sus out-of-frame nucleotide deletions, the modulus (‘mod’) of a 
given DVG was calculated using the % operator in Python. For 
example, the DVG PB2 100_800 in which Nucleotide 101 through 
799 have been deleted has a mod of (800 − 100 − 1)%3 = 0. The pro-
portion of relative DVG reads on each segment was calculated by 
drawing 10,000 bootstrap replicates of all DVGs observed on that 
segment, weighted by their relative read support, and calculating 
the proportion with mod = 0, 1, or 2. The median, 2.5th, and 97.5th 
percentile of the proportion belonging to each mod category were 
calculated in Numpy.

The length of the nucleotide repeat flanking a given DVG junc-
tion site was calculated based on the run-specific consensus 
sequence in which a given DVG was observed.

Transmission analyses
We used the same household pairings as reported in McCrone et 
al., 2018. Epidemiologically linked pairs (‘transmission pairs’) were 
identified as pairs of individuals from the same household who 
were infected with influenza viruses more similar than 95 per cent 
of unlinked pairs, as measured by the L1-norm. When the direc-
tion of transmission was uncertain (N = 6 pairs), the couple was 
considered only once when tabulating the number of shared DVGs, 
but we considered the relative support of shared and unshared 
DVGs from both individuals. When multiple samples were avail-
able from the same host (regardless of whether donor or recipient, 
N = 25 individuals across 26 transmission pairs), we used the set 
of DVGs present in all samples for a given host, taking the max-
imum relative read support. Pairs of epidemiologically unlinked 
samples (“unlinked pairs”) were generated by randomly assigning 
pairs of samples within each season, excluding samples from the 
same household.

Data and code availability
All raw sequencing data are available from the NCBI SRA BioPro-
ject PRJNA412631 (McCrone et al., 2018). Additional metadata are 
available as part of McCrone et al., 2018 and the associated repos-
itory at https://github.com/elifesciences-publications/Host_level_
IAV_evolution. All additional analysis and visualization code is 
available at https://zenodo.org/doi/10.5281/zenodo.11121677.

Results
A limited number of DVGs are observed in 
plasmid controls
To determine the number of spurious DVGs introduced by the 
sequencing protocol, we first queried the reads generated from 

the plasmid controls for each sequencing run for DVGs. This anal-
ysis acts as a negative control as these DVG reads are generated 
from clonal plasmids containing full-length viral genome seg-
ments and thus should not contain any DVGs. While we observed 
many (median [sd]: 53.50 [62.66]) unique DVG species in each 
plasmid control, encouragingly these DVG species were almost 
exclusively present at very low read support (Figure S1, 1.14e−3
[sd 7.50e−4]). The vast majority (>99.67 percent) of DVGs identi-
fied in plasmid controls are supported by <0.005 relative reads. 
Consequently, we required DVGs to be supported by a minimum of 
0.005 relative reads for all downstream analyses to remove spuri-
ous DVGs introduced by the sequencing protocol. Furthermore, we 
remove any DVGs identified in the respective plasmid control for 
a given sequencing run. Notably, as plasmid controls do not have 
to be reverse transcribed, this analysis cannot control for spuri-
ous DVGs present in clinical samples that were generated when 
converting viral RNA to cDNA.

DVGs are observed readily in clinical samples
In contrast to the plasmid control earlier, DVGs are observed read-
ily in the clinical samples (Figure 1A). We observe at least one DVG 
species above the relative read threshold of 0.005 in all 217 of the 
clinical samples. Lower viral titer samples tend to harbor more rel-
ative DVG reads, potentially reflecting increased technical noise in 
low titer samples (Figure S2, Table S1). However, this association is 
only statistically significant at the 𝛼 = 0.05 level in the NP, M, and 
NS segments (P-values <0.001, <0.001, and 0.033, respectively) and 
the estimated effect sizes are relatively small (e.g. 0.0158 decrease 
in relative read support per unit decrease in log10 genomes/𝜇l in 
the NP segment). We, therefore, do not expect our DVG abun-
dance estimates to be significant biased by sample titer. Most DVG 
species are very rare, present in a mean of 1.59 samples, with 47.85 
per cent observed in only a single sample (Figure S3A). The most 
common DVG, NS 316_545, was present in 125 out of 217 samples. 
Analysis of the unfiltered DVG data revealed that this DVG was 
observed in an additional eighty-one samples at a relative read 
support ≥0.005 but was removed by our filtering protocol as it was 
also observed in the sequence data for the corresponding plas-
mid control. A BlastN analysis of a representative supporting read 
and the inferred NS segment with this DVG overwhelming align 
to influenza A virus segments (Tables S2–S4), indicating that it is 
not the result of sequencing reads generated from contaminant 
genetic material. Notably, the junction sites for NS 316_545 occur 
at an 11-nucleotide repeat in the NS segment, which is highly 
abnormal among identified DVG species (Figure S4A). We do not 
observe a general trend between the repeat length adjacent to DVG 
junction sites and the number of samples in which a given DVG is 
observed (Figure S4C).

We observe DVGs most abundantly on the PB2, PB1, and PA 
influenza virus segments (Figure  1A,B, Mann-Whitney U test com-
paring the relative read support of PB2, PB1, and PA DVGs vs. 
HA, NP, NA, M, and NS DVGs P-value <0.0001). The polymerase 
segments also harbor about an order of magnitude more unique 
DVG species compared to the remaining five segments (Figure  1C, 
Mann–Whitney U test comparing the number of unique PB2, PB1, 
and PA DVGs vs. HA, NP, NA, M, and NS DVGs in each sample P-
value <0.0001). Our finding that DVGs are most abundant on the 
polymerase segments is consistent with previous in vitro (Alnaji 
et al., 2021; Pelz et al., 2021) and in vivo (Saira et al., 2013) analy-
ses. Based on this, we limit downstream analyses to DVGs found 
on PB2, PB1, and PA.

Canonically, the generation of influenza DVGs results in the 
deletion of the internal coding region for each segment and the 

https://github.com/elifesciences-publications/Host_level_IAV_evolution
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Figure 1. DVGs identified in clinical samples. (A) Heatmap showing the prevalence of DVGs in each sample (rows), by gene segment (columns). DVG 
prevalence is quantified by the total relative DVG read support across a given segment. (B) Total relative DVG reads per sample per segment. (C) 
Number of unique DVG species per sample per segment. In (B) and (C), solid lines in the boxplots show the median value for each segment, dotted lines 
show the mean, and box extends to the limits of the IQR, and whiskers extend to 1.5 IQR below and above the first and third quartiles, respectively. 
Outliers are shown as dots beyond the range of the whiskers. (D–F) Breakpoints of all PB2 (D), PB1 (E), and PA (F) DVG species identified in representative 
sample HS1530. Each line connects the last undeleted base on the 5′ end of the DVG and the first undeleted base on the 3′ end of the DVG.

conservation of the 5′ and 3′ termini, which are thought to be 
needed for virion packaging (Gerber et al., 2014). To assess whether 
our identified DVGs followed this pattern we mapped the dele-
tion junction sites onto the reference genome (Figure  1D,E,F, 
Figure S5). This analysis reveals that the majority of observed DVG 
species do indeed result in the deletion of the internal portion 
of each segment, providing confidence that our analysis pipeline 
is accurately identifying defective genomes, that is, those which 
are incapable of establishing productive infection in the absence 
of wild-type virus. Nearly all observed DVG species maintain the 
5’ and 3’ termini. However, it is important to note that these 
data were generated by the amplification with primers that bind 
to these portions of each segment (McCrone et al., 2018; Zhou 
et al., 2009). As such, identified DVG species may represent only 
a subset of the DVG population present in a given sample. Our 
analysis also identified a small number of polymerase DVGs har-
boring relatively small deletions. A comprehensive analysis of 
the number of deleted nucleotides in each of the observed poly-
merase DVGs reveals a highly bimodal pattern (Figure S6). To 
ensure that our analyses were based solely on truly defective 
genomes and not those harboring small indels with minimal fit-
ness effects, we implemented an additional empirical filtering 
step to remove any DVG species with fewer than 500 deleted 
nucleotides. Among polymerase DVGs with at least 500 deleted 
nucleotides, we observe a preference for DVG junction locations to 
occur between locations in the genome with nucleotide repeats of 
length 1 to 7, as compared to a null distribution of simulated DVGs
(Figure S4B,D).

DVG populations are dynamic
Our primary goal in this study was to assess how DVG popula-
tions change over time during the course of single infections and 
during transmission between hosts. To assess the former of these 
two goals, we first analyzed both the total relative polymerase 
DVG read support as well as the number of unique polymerase 
DVG species on a per-sample basis as a function of the days post-
symptom onset, which is used in the absence of data on time since 
infection (Figure 2A,B). Between 0 and 3 days post symptom onset, 
we do observe an increase in the quantity of relative DVG reads 
(mean [sd] 1.60 [2.64] vs. 3.45 [4.56], P-value = 0.003) and the num-
ber of DVG species (45.95 [61.89] vs. 83.0 [90.25], P-value = 0.01) per 
sample. By Day 6, we observe a precipitous drop in the quantity of 
DVG reads (0.39 [0.45]) and number of DVG species (28.67 [30.65]), 
likely due to the decreased viral population size toward the end 
of infection. This trend is qualitatively similar to observed num-
bers of iSNVs identified in these samples, which appear, by eye, 
to increase between Day 0 and Day 4 post symptom onset and 
decrease by Day 6 (McCrone et al., 2018).

To examine patterns of DVG generation and persistence within 
individuals, we examined the DVG populations identified in the 
subset of individuals with longitudinal data (N = 49 individu-
als, each with 2 sampling times). In general, DVG populations 
are highly dynamic over time, from one collection time point 
(t0) to the next (t1) (Figure 2C and Figure S7) and many DVG 
species do not persist across time points. These observed DVG 
dynamics likely stem from a combination of real changes in the 
underlying population and technical noise induced by sampling, 
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Figure 2. Polymerase DVG dynamics over the course of infection. (A) Total relative polymerase DVG reads per sample as a function of the number of 
days post symptom onset that a given sample was taken. (B) Number of unique polymerase DVGs per sample as a function of the number of days post 
symptom onset that a given sample was taken. In (A) and (B), solid lines in the boxplots show the median value for each segment, dotted lines show 
the mean, box extends to the limits of the IQR, and whiskers extend to 1.5 IQR below and above the first and third quartiles, respectively. Outliers are 
shown as dots beyond the range of the whiskers. (C) Longitudinal DVG dynamics in Representative Individual 50319. Lines connect the relative read 
support of a given polymerase DVG in each of the two samples taken. DVGs first observed at the first time point (t0 DVGs) are shaded and those 
observed at the second, but not the first, time point (t1 DVGs) are unshaded. (D) log10 relative read support of t0 DVGs which do and do not persist at 
time t1 for longitudinal samples from the same subject 1 day apart. Solid line represents the estimated probability of a DVG with a given log10 relative 
read support persisting from a logistic regression. (E) Proportion of all DVGs observed in a given t0 sample that are also observed in the corresponding 
t1 sample as a function of the number of days between when those samples were taken. Whiskers extend to the exact binomial confidence intervals 
for a given proportion.

reverse transcription of viral RNA, and amplification of cDNA 
(Boussier et al., 2020). Nevertheless, the extinction of many t0 DVG 
species and the appearance of novel DVG species at t1 implies 
that there is continuous de novo DVG generation and loss during
infections.

We first hypothesized that the probability that a DVG persists 
across longitudinal time points is dependent on the frequency of 
that DVG at the first time point. Using logistic regression, we tested 
whether the log-odds that a DVG identified in the first sample of 
a pair was still present in the second sample of the pair depended 
on the log10 relative read support of the DVG identified in the first 
sample. Among samples taken 1 day apart (N = 24), we find that 
read support is significantly associated with the log odds of DVG 
persistence (P-value < 0.001, Figure 3D, Table S5) such that a 1 log-
unit increase in the relative read support is associated with an 
odds ratio of persistence of 1.78. Specifically, between a log10 rel-
ative read support of –2 and 0, the probability of DVG persistence 
increases from 0.23 to 0.91.

There are a range of time intervals between the two samples 
(from 0 to 6 days) available for individuals with longitudinal data. 

These longitudinal data include self- or parent-collected nasal 
swabs at illness onset and combined nasal and throat swabs at a 
later visit to the research clinic (see McCrone et al., 2018). Thus, we 
are able to correctly specify the temporal ordering of samples even 
among those taken on the same day. To evaluate the impact of the 
time between samples on the probability of DVG persistence, we 
examined how quickly DVGs that were identified in one sample 
were no longer observed in a later sample. To this end, we iden-
tified the unique DVG species present in the earliest sample (t0) 
from each individual with two samples in this dataset and calcu-
lated the proportion of these which were present in their later (t1) 
sample. By grouping these proportions based on the time between 
samples, we find a significant dependence on the number of days 
which have elapsed between t0 and t1 (𝜒2 test of independence P-
value < 0.001, Figure 2E). Specifically, the further apart in time that 
the two samples from a host were taken, the fewer t0 DVGs per-
sisted in the t1 sample. Of DVGs observed at t0, 28.93 percent are 
present a day later and only 2.75 percent persist 6 days later. These 
result are further supported by a multivariate logistic regression 
model incorporating both relative read support and time between 
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Figure 3. Length patterns of observed polymerase DVGs. Top row: Length of all observed DVG species in the PB2 (A), PB1, (B), and PA (C) segments, 
binned in 25 nucleotide bins. Vertical dotted line shows our threshold for calling a ‘defective’ genome. Middle row: Relative read support of DVG 
species in the PB2 (A), PB1 (B), and PA (C) segments plotted as a function of their length. Bottom row: PB2 (G), PB1 (H), and PA (I) DVGs observed at the 
first time point in the 24 individuals with available sequence data on consecutive days (N = 24) stratified by whether they are observed at the second 
time point (‘persistent’) or not (‘not persistent’) plotted as a function of their length. Solid lines in the boxplots show the median value for each 
segment, dotted lines show the mean, and box extends to the limits of the IQR, and whiskers extend to 1.5 IQR below and above the first and third 
quartiles, respectively.

samples as a categorical variable (Figure S8 and Table S6). In this 
model, both relative read support and time between samples are 
significant predictors of the probability of DVG persistence (all 
P-values <0.001).

No evidence for selection acting on DVG species 
in vivo
Previous in vitro work has observed a preference for the repli-
cation of shorter DVG species that is shaped by length-based 
selection during virion packaging (Alnaji et al., 2021; Pelz et al., 
2021; Mendes and Russell, 2021). To evaluate whether we observe 
any length-based selection in in vivo DVG populations, we first 
determined the length of all unique DVG species in each subject 
(Figure 3A–C). We observe a clear preference for DVG species that 
are shorter in all three polymerase segments, although our data 
are truncated by the size filtration step in the laboratory methods 
used to generate these data (McCrone et al., 2018). Among DVGs 
that are observed, shorter ones tend to be observed at higher rela-
tive read support (Kruskal–Wallis H-test p-values <0.001, Figure 
S9A–C). While these patterns may reflect a real preference for 
shorter DVG species, they may also be biased by preferential PCR 
amplification of shorter genetic segments (Shagin et al., 1999; 
Boussier et al., 2020).

Based on this cross-sectional analysis alone, we are unable 
to disentangle whether the observed preference for shorter DVG 
species is due to preferential within-host generation or selection 
following generation. However, we can use longitudinal data to 

address this question. To do so, we identified all DVGs present in 
the first-time sample of the 24 individuals with paired sequence 
data sampled 1 day apart and identified whether they were 
observed in the second sample (‘persistent’) or not (‘not persis-
tent’). If shorter DVGs were under positive selection, we would 
expect them to be more likely to persist across time points. This 
analysis, however, reveals no consistent preference for the persis-
tence of shorter DVGs. In PB2, persistent DVGs tend to be slightly 
shorter (mean [sd] 660.30 [297.66] vs. 721.07 [304.45], P-value =
0.02), whereas they are slightly longer in PB1 (806.89 [328.77] vs. 
693.79 [333.20], P-value = 0.01) and indistinguishable in PA (700.32 
[272.39] vs. 700.17 [280.51], P-value = 0.86). As above, we again 
fit a multivariate model predicting DVG persistence as a func-
tion of time between sampling, log10 relative read support at t0, 
and DVG length. In these models, DVG length was not a signifi-
cant predictor of DVG persistence (Figure S9D, Table S7, and Table 
S8), with the exception of DVGs between 750 and 1250 nucleotides 
in length when modeled as a categorical variable (P-value=0.02). 
Given this combined set of results, we conclude that evidence for 
length-based DVG selection in these data is limited.

To evaluate whether there is any evidence of selection acting 
on other DVG features, we next evaluated trends in DVG diver-
sity and evenness over the course of infection. As noted above, 
DVG populations within hosts are highly variable. Were there to be 
selection acting on specific DVG species, we might expect to see a 
reduction in DVG diversity and evenness throughout the course of 
infection. Across the individuals in this dataset, however, we see 
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Figure 4. Longitudinal trends in polymerase DVG diversity and evenness. (A) Diversity of DVG populations among all samples stratified by time since 
symtpom onset. (B) Evenness of DVG populations among all samples stratified by time since symptom onset, excluding samples in which only one 
DVG was identified. In (A) and (B), solid lines in the boxplots show the median value for each segment, dotted lines show the mean, and box extends to 
the limits of the IQR, and whiskers extend to 1.5 IQR below and above the first and third quartiles, respectively. Outliers are shown as dots beyond the 
range of the whiskers. (C) Diversity at both sampling times of the subset of DVGs present in the first sample among individuals with longitudinal 
sampling. (D) Evenness at both sampling times of the subset of DVGs present in the first sample among individuals with longitudinal sampling, 
excluding individuals with only one DVG at the first sampling time.

no such trend (Figure  4A,B, Kruskal–Wallis H-test P-value = 0.32, 
0.43, respectively).

This cross-sectional analysis is unable to differentiate between 
the effects of selection reducing DVG diversity and evenness and 
continual generation of new DVGs throughout an infection. To 
disentangle these effects, we again turn to individuals with paired 
longitudinal sequence data. Specifically, we focus on the subset 
of DVGs that are present at the first time point and estimate the 
diversity and evenness of those DVGs at both sequenced time 
points. Among this population of DVGs, we observe no clear trend 
toward a decrease in diversity or evenness between time points, 
regardless of when in the course of infection samples were taken 
(Figure  4C,D). This pattern is consistent with lack of evidence for 
selection acting on the DVG populations present at t0.

Finally, in vitro work has suggested that some DVG species may 
be translated to peptides and small proteins and potentially serve 
a functional role during infection (Akkina et al., 1984). To deter-
mine whether there was any signal for this in these data, we 
first evaluated whether there was any preference for DVGs that 
delete a factor of three nucleotides, thereby preserving the origi-
nal reading frame. When DVG reads are stratified by the number of 
deleted nucleotides (D) mod (%) 3, we do not observe a consistent 
preference for DVGs where D%3 = 0 (Figure S10A–C). Furthermore, 
individual DVGs with D%3 = 0 are not observed at higher relative 
read support than those with D%3 = 1or 2 (Mann–Whitney U test 

comparing relative read support of DVGs with D%3 = 0 to those 
with D%3 = 1or 2 on PB2, PB1, and PA segment P-value = 0.66, 0.09, 
0.54, respectively, Figure S10D–F). We further evaluated whether 
there was any selection against DVGs that result in a premature 
stop codon, which may be expected if there is selection acting on 
the translated product of DVGs. In general, however, the total rel-
ative read support of DVGs with premature stop codons in each 
sample closely follows what would be expected from a null distri-
bution of randomly generated DVGs (Figure S11A–C). Furthermore, 
DVG read support does not seem to differ between observed DVGS 
that do versus do not have premature stop codons (Mann–Whitney 
U test comparing relative read support of DVGs with and with-
out premature stop codons on PB2, PB1, and PA segment P-value =
0.40, 0.06, and 0.74, respectively, Figure S11D–F). Thus, we do not 
see any positive evidence for selection acting against DVGs based 
on the presence/absence of early stop codons.

Taken together, our analyses have not revealed evidence 
for selection acting on influenza A virus DVGs generated dur-
ing natural human infection. Within-host DVG persistence 
appears to be governed primarily by the time between samples 
and the the abundance of the DVG species within a sample. 
These findings are consistent with a model in which within-
host viral populations (including DVG subpopulations) during 
acute infections are dominated by genetic drift as opposed to
selection.
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Figure 5. Polymerase DVGs shared between pairs of individuals. (A) Histogram showing the number of DVGs shared between epidemiologically 
unlinked pairs (dark shading) and between transmission pairs (light shading). X-axis has been truncated to 10 for visualization purposes, despite a 
long tail on the unlinked pair distribution. (B) Relative read support in the source individual of DVGs that are not shared between donor and recipient 
individuals. (C) Relative read support in the source individual of DVGs that are shared between donor and recipient individuals.

DVGs support the existence of a tight 
transmission bottleneck
Viral evolution is shaped not just by the dynamics which oper-
ate within hosts but also by those which operate between hosts, 
including at the stage of transmission. Previous analyses based on 
viral genetic variation have revealed that the transmission bot-
tleneck of influenza A is quite small, on the order of one to two 
virions (McCrone et al., 2018; Shi et al., 2024). This results in a 
significant loss of genetic diversity during transmission such that 
nearly all genetic variation observed within a host is likely to have 
been generated de novo following transmission.

To determine whether genomic diversity supports these con-
clusions, we evaluated how DVG populations compare between 
known donor and recipient pairs. To do this, for each transmission 
pair, we tabulated the number of unique DVG species identified in 
the donor that were also identified in the recipient (and thus could 
have been transmitted from donor to recipient). We compared this 
to a null distribution of epidemiologically unlinked samples to 
account for the de novo generation of identical DVGs within each 
host. We found that epidemiologically unlinked samples generally 
share very few polymerase DVGs, on the order of zero to two (mean 
[sd] = 1.08 [1.99], Figure 5A). This indicates that de novo DVG gen-
eration on polymerase segments does not result in the repeated 
emergence of a small number of specific DVGs as expected based 
on Figure S3. Among transmission pairs, we similarly found that 
generally very few DVGs are shared between individuals (1.41 
[1.73]). The number of DVG species shared between random pairs 
and household pairs was not found to be significantly different 
at an 𝛼 = 0.05 level (Mann–Whitney U test P-value = 0.07). With a 
hard cut-off for significance, this indicates that transmission pairs 
are not statistically more likely to share more DVGs than unlinked 
pairs. However, we can also interpret our findings more cautiously: 
transmission pairs might share more DVGs than unlinked pairs; 
however, if they do, the excess number they share is small, indi-
cating that very few DVG species, if any, transmit between donor 
and recipients. This finding is consistent with a small transmission 
bottleneck that has been inferred using patterns of viral genetic 
diversity.

To further assess the possibility of DVG transmission between 
donors and recipients, we analyzed in more detail the 55 DVG 
species that were shared across the 23 transmission pairs. If these 
DVGs were shared due to transmission as opposed to de novo gen-
eration, we would expect them to be disproportionately present 

at higher relative read support in the donor host relative to DVGs 
that were not transmitted. However, we observe that the relative 
read support of shared DVGs (mean [sd] 0.030 [0.11]) is comparable 
to that of non-shared DVGs (0.031 [0.20]) We found no significant 
difference between the relative read support in the donor host 
of shared and non-shared DVGs (Figure 4B,C, Mann–Whitney U 
P-value = 0.78).

These results indicate that DVGs are unlikely to be transmit-
ted from donors to recipients and thereby support the conclu-
sion from previous studies based on viral genetic variation that 
transmission bottleneck sizes are very small.

Discussion
Understanding how influenza viral populations evolve within and 
between hosts is key to understanding how viral evolution pro-
ceeds on the host population scale. This is relevant, for example, 
in learning how new antigenic variants arise and ultimately sweep 
the host population. Previous work has used viral genetic diver-
sity, or diversity in the form of single nucleotide variants, to better 
understand the evolutionary forces acting on virus populations 
within hosts. These analyses have not found evidence of posi-
tive selection acting efficiently within acutely infected hosts, e.g. 
known antigenic escape mutants do not appear to be enriched 
in vaccinated individuals (Debbink et al., 2017; McCrone et al., 
2018). Purifying selection appears to occur to some extent. Genetic 
drift is thought to be strong in these populations, underscoring 
the role that stochasticity plays in shaping viral evolution within 
hosts. Furthermore, the size of the transmission bottleneck has 
been estimated to be on the order of one to two virions (McCrone 
et al., 2018; Shi et al., 2024). This stringent bottleneck introduces 
an additional source of genetic drift at the point of transmission. 
However, the resolution of these studies is inherently limited by 
the low levels of genetic diversity that exist within acute human 
infections of influenza (Debbink et al., 2017; McCrone et al., 2018).

Analyses based solely on iSNVs do not consider the genomic
diversity that is generated during infection in the form of DVGs. 
These genomes feature large internal deletions in at least one 
segment and are therefore incapable of replicating without coin-
fection of a cell already harboring a wild type virus. Due to 
this reliance on coinfection and the spatial structure of within-
host infections that may retain linkage between specific wild-type 
genotypes and their corresponding DVG species, we expect the 
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ecological and evolutionary dynamics of DVGs to mirror those of 
the wild-type viral population.

At present, little is known about the in vivo dynamics of 
influenza DVGs. The vast majority of our understanding of 
influenza DVGs come from in vitro studies (Wasik et al., 2018; Pelz 
et al., 2021; Alnaji et al., 2021), and existing in vivo studies offer 
only a cross-sectional view of DVGs within a host population (Saira 
et al., 2013). How DVG populations change over time, and what 
those dynamics tell us about the forces shaping the entire col-
lection of influenza viral particles within and between hosts in 
natural human infections therefore remained an open question. 
Here, we attempted to address this knowledge gap by identifying 
DVGs from deep sequencing data collected as part of a longitudi-
nal influenza household cohort study (McCrone et al., 2018). We 
identified at least some quality-filtered DVGs in all samples in 
the dataset, primarily on the PB2, PB1, and PA segments. While 
most DVGs were shared between very few samples, a single DVG, 
NS 316_545, was observed in 125 out of 217 samples. This DVG 
occurred in an additional 81 samples but was removed by our fil-
tering as it was also observed in the respective plasmid control. We 
do not expect this DVG to be due to contamination due to our strin-
gent read filtering and the observation that NS 316_545 supporting 
reads are assigned to be of influenza origin by BlastN. We therefore 
suspect that its presence may be driven by spurious generation 
during our sequencing protocol. Alternatively, the commonality of 
this DVG could be due to intrasegment recombination, which has 
been reported to occur in other orthomyxovirus species (Cárdenas 
et al., 2020) but is thought to be rare in influenza viruses (Boni et 
al., 2010). This DVG, however, does occur between an 11-nucleotide 
repeat which may promote recombination (Urbanowicz et al., 
2005).

Following their identification, we assessed changes in DVG 
populations over the course of infection and across transmission 
pairs. We observed a slight increase in the number of DVG species 
and the abundance of DVGs through 3 days post symptom onset, 
with a subsequent decrease at Day 6 post symptom onset. We 
found evidence for the continual loss and generation of DVGs, with 
the rate of loss of a DVG species between time points dependent on 
the DVG’s abundance, as measured by total relative read support.

Furthermore, we did not find positive evidence of selection act-
ing on observed DVG populations. While shorter DVGs do tend to 
be observed more frequently and at higher relative read support, 
they are no more likely to persist between time points in single 
individuals in our longitudinal data. This result is consistent with 
a potential preference for the generation of shorter DVGs but the 
absence of positive selection following generation. We observe no 
decrease in DVG diversity or evenness throughout the course of 
infection, again leaving us empty-handed in terms of evidence for 
selection acting directly on DVG populations. Finally, we observe 
no preference for in-frame DVGs or those that prevent the genera-
tion of a premature stop codon. These analyses indicate that in the 
absence of selection, stochastic processes dominate the dynamics 
of influenza A virus DVGs during natural human infections.

The strength of genetic drift acting on a given population can 
be quantified by the effective population size NE. Drift is stronger 
in populations with small NE whereas the ability of stochasticity to 
considerably affect evolutionary dynamics will be minimal in pop-
ulations with large NE. Quantifying the within-host NE of influenza 
A using genetic data is difficult, given the rapidly changing popu-
lation sizes and noise in iSNV frequency estimates. When it has 
been attempted, the estimates tend to be on the order of <100 
(McCrone et al., 2020). While here we do not attempt to quantify 
NE, our observations that DVG populations are highly dynamic and 

change rapidly between time points is consistent with a relatively 
small NE as populations with a large NE would be expected to be 
more stable.

As discussed earlier, the viral diversity which is present within 
hosts is also shaped by the process of transmission between 
hosts. The size of the transmission bottleneck can be quantified to 
guide our understanding of how this process shapes viral diversity. 
Here, we compared DVG populations between known transmis-
sion pairs. We find that known transmission pairs, on average, 
share very few DVG species, only marginally more than epidemio-
logically unlinked pairs. The ones that are shared between donor 
and recipient pairs are not present at particularly high frequency 
in the donor, indicating that some of these shared DVGs may 
be due to de novo generation in the recipient host, rather than 
transmission. These findings underscore the existence of a tight 
transmission bottleneck of only a small number of viral particles 
(McCrone et al., 2018; Shi et al., 2024). While our finding that very 
few, if any, DVGs transmit may appear unsurprising, DVGs can 
persist in cells in vitro for several weeks (Cane et al., 1987), increas-
ing the likelihood that transmitted DVGs would be able to find a 
wild-type helper virus sometime during the course of infection. 
Furthermore, it is thought that viruses may transmit not indepen-
dently, but in collective infectious units of multiple viral particles, 
which would make it more likely that a DVG and a wild-type virus 
from the same collective infectious unit find the same host cell 
(Sanjuán et al., 2017). Our finding that DVG transmission is very 
rare is consistent with the existence of a very stringent transmis-
sion bottleneck and indicates that small transmission bottlenecks 
may benefit a viral population by purging viral ‘cheaters’ in the 
form of DVGs (Zwart and Elena, 2015).

There are some important limitations to our analyses. First, as 
with any in vivo deep sequencing–based study, the samples taken 
from individuals using throat or nasal swabs may not adequately 
reflect the within-host viral population, particularly when sub-
compartmentalization within a host is substantial as has been 
shown in experimentally infected animal hosts (Amato et al., 
2022; Ganti et al., 2022). Additionally, viral genetic material in 
a given sample was subject to reverse transcription and cDNA 
amplification, which may result in the generation of spurious DVG 
species, the loss of species present in the sample, and obfuscation 
of the population composition (Boussier et al., 2020). In part due to 
this technical noise, it is difficult to reliably quantify the absolute 
amount of DVGs within a sample using sequencing data. Here, we 
have relied on a relative measure of the number of reads span-
ning a given junction site to the number of reads mapping to the 
central nucleotide in a given segment as a proxy for the quantity 
of a DVG species. Without additional laboratory measurements, 
we feel that this metric represents a suitable attempt to account 
for varying sequencing depth between samples. Furthermore, our 
set of identified DVGs will be affected by the amplification and 
sequencing protocol used to generate these data. Genetic material 
was amplified based on primers which bind to the terminal regions 
of the wild-type segments, and there are several size-filtering steps 
which eliminate smaller DVG segments. However, DVGs that lack 
these terminal packaging signals would be expected to be inef-
ficiently packaged into virions and would likely be under lethal 
selection (Gerber et al., 2014; Liang et al., 2005). Sequence-based 
analysis of in vitro DVGs without the size filtration step similarly 
observed conservation of these packaging signals (Pelz et al., 2021; 
Alnaji et al., 2019; Saira et al., 2013). We therefore expect the 
magnitude of bias introduced by the sequencing protocol into our 
observed distribution of DVG lengths and junction sites to be min-
imal. Despite these limitations, the fact that the plasmid controls 
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harbor very low relative amounts of DVGs provides confidence 
that the DVGs reported here represent a subset of true biological 
DVGs. Alternative viral sequencing approaches, particularly long 
read sequencing, have the potential to overcome some of these 
shortcomings and in future studies may provide greater resolution 
into the evolutionary processes shaping within- and between-host 
viral populations.
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