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A B S T R A C T   

Greater physical activity and better sleep are associated with reduced risk of cognitive decline and dementia 
among older adults, but little is known about their combined associations with measures of brain function and 
neuropathology. This study investigated potential independent and interactive cross-sectional relationships be
tween actigraphy-estimated total volume of physical activity (TVPA) and sleep patterns [i.e., total sleep time 
(TST), sleep efficiency (SE)] with resting-state functional magnetic resonance imaging (rs-fMRI) measures of 
large scale network connectivity and positron emission tomography (PET) measures of amyloid-β. Participants 
were 135 non-demented older adults from the BIOCARD study (116 cognitively normal and 19 with mild 
cognitive impairment; mean age = 70.0 years). Using multiple linear regression analyses, we assessed the as
sociation between TVPA, TST, and SE with connectivity within the default-mode, salience, and fronto-parietal 
control networks, and with network modularity, a measure of network segregation. Higher TVPA and SE were 
independently associated with greater network modularity, although the positive relationship of SE with 
modularity was only present in amyloid-negative individuals. Additionally, higher TVPA was associated with 
greater connectivity within the default-mode network, while greater SE was related to greater connectivity 
within the salience network. In contrast, longer TST was associated with lower network modularity, particularly 
among amyloid-positive individuals, suggesting a relationship between longer sleep duration and greater 
network disorganization. Physical activity and sleep measures were not associated with amyloid positivity. These 
data suggest that greater physical activity levels and more efficient sleep may promote more segregated and 
potentially resilient functional networks and increase functional connectivity within specific large-scale networks 
and that the relationship between sleep and functional networks connectivity may depend on amyloid status.   

1. Introduction 

Greater engagement in physical activity (Blondell et al., 2014; 
Nuzum et al., 2020; Sewell et al., 2023a) and adequate sleep quality and 
duration (Sabia et al., 2021; Shi et al., 2018) are associated with a 
reduced rate of cognitive decline and a lower risk of dementia. 
Furthermore, there is evidence that physical activity and sleep may 

provide additive benefits for cognitive function (Callow et al., 2024; 
Falck et al., 2018; Wei et al., 2021) or work synergistically to reduce the 
incidence of dementia among older adults (Bloomberg et al., 2023; 
Huang et al., 2022). However, the mechanisms through which physical 
activity and sleep might affect the brain, either alone or in combination, 
to improve cognitive and clinical outcomes remain elusive. 

It has been suggested that higher levels of physical activity and 
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healthier sleep patterns may confer resilience against Alzheimer’s Dis
ease (AD) and other age-related neuropathologies by delaying the onset 
of, or reducing the rate of, pathology accumulation (Memel et al., 2021). 
However, evidence for an association between physical activity and AD 
pathology are mixed. A few cross-sectional studies among cognitively 
normal (Brown et al., 2013; Liang et al., 2010; Okonkwo et al., 2014) 
and non-demented older adults, including individuals with mild cogni
tive impairment, (MCI) (Stillman et al., 2017; Treyer et al., 2021), have 
reported that greater self-reported physical activity is associated with 
less abnormal levels of amyloid beta (Aβ) in the brain or in blood, one of 
the proteins that accumulates in the brain in AD. However, other studies 
using objectively measured physical activity have observed no associa
tion between physical activity and Aβ levels (De Souto Barreto et al., 
2015; Pedrero-Chamizo et al., 2021; Pedrini et al., 2022; Sohn et al., 
2022), suggesting that physical activity may influence brain health 
through mechanisms other than amyloid accumulation (Frederiksen 
et al., 2019; Rodriguez-Ayllon et al., 2023). 

Meanwhile, both animal (Xie et al., 2013) and human studies (Ooms 
et al., 2014) provide evidence that sleep plays a crucial role in modu
lating Aβ concentrations in the brain, with poorer objectively and sub
jectively measured sleep efficiency and duration showing an association 
with higher brain Aβ burden, quantified with positron emission to
mography (PET) in cognitively normal (Ju et al., 2013) and non- 
demented older adults (Lim et al., 2013a; Spira et al., 2013). Howev
er, the relationship between sleep dysfunction and AD pathology is 
complex and may be bi-directional in nature, with AD pathology 
contributing to sleep disturbances and vice versa (Ju et al., 2014; Lucey, 
2020). Moreover, a recent cross-sectional study found that self-reported 
physical activity attenuated the negative relationship between subop
timal sleep and greater PET-Aβ burden in cognitively normal older 
adults (Sewell et al., 2023b), highlighting the importance of considering 
both physical activity and sleep when evaluating their associations with 
AD pathology. 

Although physical activity and sleep may reduce accumulation of AD 
pathology, they may also influence cognitive outcomes by altering other 
aspects of brain function and structure, including those that protect 
against the negative impact of pathology on cognition (Arenaza-Urquijo 
& Vemuri, 2018; Memel et al., 2021). For example, resting-state network 
functional connectivity, including connectivity within large-scale brain 
networks and functional network segregation (or modularity), may 
enhance resilience to AD pathology, as they are associated with better 
cognitive performance in the presence of amyloid and tau (Ewers et al., 
2021; Soldan et al., 2021). Network segregation reflects high 

connectivity within networks (or modules) and low connectivity be
tween networks (see Fig. 1A for a graphical representation) and is 
associated with better cognitive performance across a variety of tasks 
(Chan et al., 2014; Cohen & D’Esposito, 2016; Kong et al., 2020; Wang 
et al., 2021; Zhang et al., 2023). Consistent with this perspective, a few 
observational studies among older cognitively normal and non- 
demented individuals have reported links between greater levels of 
physical activity (Soldan et al., 2021, 2022) or physical fitness (Voss 
et al., 2016) with greater connectivity in the default-mode network and 
with greater network segregation. Similarly, exercise interventions 
among non-demented older adults have demonstrated exercise-related 
enhancements of within-network connectivity in functional networks 
(Meng et al., 2022; Menon, 2011), including the default mode, salience, 
and frontoparietal networks (Dion et al., 2021; Porto et al., 2018; Won 
et al., 2021, 2023). Self-reported sleep quality has also been shown to 
have a positive association with default mode and attentional network 
connectivity in cognitively normal older adults, whereas subjective 
sleep disturbances and disorders in those with MCI are associated with 
reduced default mode connectivity (Luo et al., 2022; McKinnon et al., 
2017). Notably, amyloid burden may influence functional network 
connectivity in non-demented older adults (Lin et al., 2020; Magalhães 
et al., 2021; Sintini et al., 2021), underscoring the need to consider 
amyloid burden when evaluating links among physical activity, sleep, 
and functional network connectivity. 

This study builds on prior research that examined the separate as
sociations of physical activity or sleep with amyloid burden or func
tional connectivity by examining both physical activity and sleep within 
the same individuals to determine whether they have independent or 
synergistic relationships with functional connectivity, network segre
gation, and amyloid PET burden. Additionally, we examined whether 
brain amyloid levels modified the relationships between physical ac
tivity and sleep with functional network connectivity and segregation. 
Both physical activity and sleep were measured using actigraphy among 
well-characterized older individuals with normal cognition or MCI. 

2. Methods 

Analyses were preformed using data from the ongoing prospective, 
longitudinal Biomarkers for Older Controls as Risk of Dementia (BIO
CARD) study (https://www.biocard-se.org), which was started in 1995 
at the National Institute of Health (NIH). At enrollment, participants 
were primarily middle aged with approximately 75 % having a family 
history of dementia. The study was stopped in 2005 for administrative 

Fig. 1. (A) Graphical depiction of brain network modularity. Interaction of amyloid PET status with (B) total volume of physical activity, (C) total sleep time, and (D) 
sleep efficiency, in the 10 most active hours in relation to resting-state fMRI network segregation (modularity). 
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reasons and was re-established in 2009 at the Johns Hopkins University 
(JHU) School of Medicine. Annual visits included clinical and cognitive 
assessments during both the NIH and JHU phases of the study. Written 
informed consent was provided by all participants in the study. At JHU, 
MRI scans and amyloid PET scans have been collected bi-annually since 
2015; wrist actigraphy data collection began in 2016. 

This study reports cross-sectional data from 135 non-demented 
participants who had both valid actigraphy data for ≥ 3 days and rs- 
fMRI data and amyloid PET collected between 2015–2023. To maxi
mize our sample size, we used actigraphy data from each participants’ 
first study visit with actigraphy data and used rsfMRI data from the scan 
performed closest to that date. The mean interval between actigraphy 
data collection and the rs-fMRI scan was 1.0 years (range = -1.3 to 1.5 
years). Details regarding the temporal stability of the actigraphy mea
sures can be found below. 

2.1. Clinical Assessment 

Clinical evaluations and cognitive assessments were conducted at 
each annual visit, which included a battery of neuropsychological tests 
(see Albert et al., 2014 for details) and a semi-structured interview based 
on the Clinical Dementia Rating (CDR) scale (Morris, 1993). The JHU 
BIOCARD Clinical Core staff generates a consensus diagnosis annually 
using procedures comparable to those established by the National 
Institute on Aging (NIA) Alzheimer’s Disease Centers program. First, a 
syndromic diagnosis is generated based on the following data: (1) clin
ical information pertaining to the medical, neurological, and psychiatric 
status of the individual; (2) reports of cognitive changes by the indi
vidual and collateral source based on the CDR interview; and (3) 
cognitive test scores relative to age-matched published norms and prior 
performance. Syndromic diagnostic categories included: (1) cognitively 
normal (referred to as normal throughout the manuscript), (2) MCI, (3) 
impaired not MCI, and (4) dementia. When a participant was believed to 
be cognitively impaired, a decision regarding the probable etiology of 
the syndrome was determined based on the clinical information pro
vided at each visit, including the individual’s medical history. Multiple 
etiologies for a single participant were possible. The consensus diag
nostic procedures are consistent with the recommendations of the NIA/ 
Alzheimer’s Association working groups for a diagnosis of MCI (Albert 
et al., 2011) and dementia (McKhann et al., 2011). An “impaired not 
MCI” diagnosis is given in the case of contrasting information from the 
CDR interview and cognitive test scores (i.e., participants or collateral 
source reported concerns for cognitive changes in daily life, but the 
cognitive testing did not show changes, or vice versa). Because partici
pants who are “impaired not MCI” do not meet MCI criteria, they were 
included with the group of normal participants, consistent with prior 
publications (see Albert et al., 2014). 

2.2. Actigraphy measures 

Participants were provided an actigraph (Actiwatch-2, Philips 
Respironics, Bend, OR) which was worn on their non-dominant wrist for 
seven consecutive days. Participants completed daily logs to document 
the removal of the actigraph, travel across time zones, naps, and time of 
sleep. Actigraphs were returned via mail, at which point the data were 
downloaded using Actiware Software (v. 6.0.9) and processed without 
knowledge of the participants’ clinical diagnoses. Actigraphy data 
collected during participant-reported travel periods across time zones, 
illness, medical procedures using anesthesia, non-wear time, and device 
malfunction were excluded from analyses. 

2.3. Sleep assessment 

Two standard nighttime sleep parameters were extracted from valid 
nights, utilizing a widely used algorithm (Kushida et al., 2001): (1) total 
sleep time (TST; the number of minutes slept while in bed), and (2) sleep 

efficiency (SE; the proportion of time in bed asleep, %). These standard 
sleep parameters were averaged across valid nights and analyzed as 
continuous variables. 

2.4. Physical activity assessment 

Thirty-second epochs of actigraph recorded movement (i.e., accel
eration) were recorded and aggregated into activity counts, a unitless 
measure of movement. As described previously (Callow et al., 2024) 
participants had to have at least three 24-hour daily intervals of valid 
data to be included in the analysis. A valid 24-hour daily interval was 
defined as having < 5 % of missing data. For each participant, missing 
epoch-level activity counts were imputed using the average value of 
activity counts across the remaining valid days at the same time of day. 
Activity counts were log-transformed to correct for skewness by 
applying log (1 + activity counts per minute), and then summed over 
two consecutive (30-sec) epochs to generate minute-level activity 
counts. Minute-level data were summed on an hourly basis. The number 
of activity counts during the 10 most active hours of each 24-hour in
terval were averaged across all valid 24-hour intervals and used to 
measure the total volume of physical activity (TVPA) (Varma et al., 
2017). TVPA has previously been linked to aspects of functional and 
structural brain network connectivity in BIOCARD (Soldan et al., 2022). 
The 10 most active hours of physical activity (PA) for our TVPA measure 
were used to minimize overlap between actigraphic sampling for our PA 
and sleep parameters. 

2.5. Temporal stability of physical activity and sleep measures 

Given the time lag between MRI and actigraphy collection, we 
evaluated the temporal stability of the physical activity and sleep 
measures using intraclass correlation coefficients (ICC) for the subset of 
participants with a follow-up actigraphy visit (n = 116, 2–6 years apart). 
The ICC between the first and second visit were 0.8 (p < 0.001) for 
physical activity and greater than 0.6 (p < 0.001) for both sleep pa
rameters, suggesting both actigraphy measures were relatively stable 
over time and reasonably representative of general sleep and physical 
activity patterns at the time of the MRI scan. 

2.6. MRI acquisition 

MRI scans were conducted on a 3 T Phillips Achieva scanner (Eind
hoven, The Netherlands). The multi-modal imaging protocol encom
passed a magnetization-prepared rapid gradient echo (MPRAGE) scan, 
which served as anatomical references and for image registration pur
poses. These scans were acquired with the following parameters: TR =
6.7 ms, TE = 3.1 ms, shot interval of 3000 ms, flip angle of 8◦, FOV =
240x256 mm2, consisting of 170 slices with voxel dimensions of 
1x1x1.2 mm3, and a scan duration of 5 min and 59 s. Resting state BOLD 
data were acquired using an echo-planar imaging (EPI) sequence with 
the following parameters: 48 slices, field of view (FOV) = 212 x 212 
mm2, voxel size = 3.3 x 3.3 x 3.3 mm3, TR = 3000 ms, TE = 30 ms, and a 
flip angle of 75 degrees. Each scan session lasted 420 s, comprising 140 
functional volumes. During scanning, participants received instructions 
to relax, keep their eyes closed, and maintain stillness. 

2.7. Resting-state fMRI Processing and Functional Network Generation 

The BOLD data underwent a standard preprocessing pipeline, which 
involved slice timing correction, realignment, normalization to Mon
treal Neurologic Institute (MNI) 152 volumetric space using the 
MPRAGE image, and spatial smoothing via a Gaussian filter with a full- 
width half-maximum of 4 mm. The BOLD image series then underwent 
detrending and bandpass filtering, retaining components within the 0.01 
– 0.1 Hz frequency range to isolate low-frequency fluctuations. Tem
poral filtering was performed by flagging frames contaminated by 
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motion artifacts, which were subsequently excluded from correlation 
matrix calculations. Frame-wise displacement (FD), calculated as the 
sum of absolute differentials of the six rigid-body head motion param
eters, was used to identify and scrub volumes with FD ≥ 0.5 mm (Power 
et al., 2014). Following the motion-scrubbing step, we excluded par
ticipants with fewer than 80 frames of usable data from the fMRI anal
ysis. Regression analysis was used to remove nuisance signals, including 
global, white matter, and CSF signals, along with the six rigid-body head 
motion parameters. Data were then parcellated into 114 regions of in
terest (ROIs), as defined in the MNI 152 volumetric space, based on the 
parcellation method developed by Yeo et al. (Thomas Yeo et al., 2011). 

Cross-correlation coefficients were computed between each pair of 
ROIs and transformed into z-scores using Fisher-z transformation. This 
process resulted in a 114 x 114 matrix of z-transformed values. To 
characterize functional connectivity at the network level, the z-trans
formed values were reduced to a 7 x 7 matrix by averaging values within 
the same network (Yeo et al., 2011). The present analyses focused on 
within-network connectivity of 3 of the 7 networks identified in this 
approach: the default mode (DMN), fronto-parietal executive control 
(FPN), and salience/ventral attention (SAL), as these networks have 
been shown to change with aging and AD (Meng et al., 2022; Menon, 
2011), are associated with measures of physical activity and/or sleep 
(Amorim et al., 2018; Won et al., 2021), and are related to cognition 
among older adults (Soldan et al., 2021). Additional networks were not 
examined to limit the number of comparisons while maintaining the 
focus of the manuscript. 

To compute functional-network modularity (a measure of network 
segregation, see Fig. 2A) for each subject, graph theory was employed 
utilizing the Brain Connectivity Toolbox (version 2019–03-03, (Rubinov 
& Sporns, 2009)) in conjunction with custom MATLAB scripts. The 
modularity measure assesses the extent to which a network can be 
partitioned into distinct subnetworks (or modules) that exhibit internal 
cohesion (i.e., high within-network connectivity) while remaining 
segregated from one another (i.e., low between-network connectivity) 
(Betzel et al., 2014). Higher modularity values indicate greater separa
tion between networks and enhanced connectivity within individual 
networks. Notably, modularity was strongly correlated with the related 
measure of network segregation (r = 0.97, p < 0.0001; (Wig, 2017)); 
and thus, we present results exclusively for network modularity in this 
report. For further details, please consult Soldan et al., 2022. 

2.8. PiB PET image acquisition and processing 

All participants underwent PET imaging, utilizing the 11C-labeled 
Pittsburgh compound B (PiB) tracer, conducted on an Advance PET 
scanner from GE Healthcare. These scans were performed immediately 
after an intravenous bolus injection. Distribution volume ratio (DVR) 
images were computed within the native space of each PET image, 
employing a simplified reference tissue model with cerebellar gray 
matter serving as the reference region (Zhou et al., 2003). Anatomical 
regions were delineated based on the structural MRI scans of each 
participant, utilizing MRICloud (Mori et al., 2016), and subsequently 
registered to the native space of each PET image. The mean cortical DVR 
(cDVR) was determined by averaging cDVR values across cortical re
gions, following established methods previously described (Bilgel et al., 
2018; Walker et al., 2020). Participants exhibiting a mean cDVR value 
exceeding 1.06 were classified as PiB positive. This threshold was 
derived in a prior study, employing a 2-class Gaussian mixture model 
fitted to cDVR data (Bilgel et al., 2016). Due to disruptions in testing 
during the COVID-19 pandemic and to maximize our available sample, 
PET scans performed as long as 3 years before or after the rs-fMRI scan 
were used for analyses. Additionally, we included PET scans obtained 
more than 3 years following the rs-fMRI scan if identified as amyloid 
negative (based on the above-mentioned cutoff, as these scans can be 
assumed to be negative at the time of the fMRI scan) and more than 3 
years prior if identified as already being amyloid positive (as they would 
be positive at the time of the fMRI scan). The average PET scan occurred 
1.6 years (− 3.8 to 6.0 years) apart from the fMRI scan. Sensitivity an
alyses examined whether exclusion of PET scans more than 2 years 
before or after the fMRI scan altered the results. 

2.9. Vascular risk factors 

The vascular risk score was based on the medical history of the 
participant. This score, which has been previously validated (Gottesman 
et al., 2017), is the sum of five binary vascular risk factors, where a value 
of 1 signifies the presence of the risk factor (recent/remote), and a value 
of 0 indicates its absence. These factors encompass hypertension, hy
percholesterolemia, current smoking within the last 30 days, obesity (i. 
e., measured body mass index of 30 kg/m2 or higher), and diabetes. The 
vascular risk summary score has been shown to predict dementia inci
dence (Gottesman et al., 2017) and been used in a number of prior 
studies (Newton et al., 2023; Pettigrew et al., 2020; Soldan et al., 2020). 
Data for vascular risk factors were obtained at the same visit as the MRI 

Fig. 2. Combined associations of total volume of physical activity (TVPA) with A) Default Mode Network Connectivity (top); and of B) sleep efficiency (SE) and total 
sleep time (TST) with Salience/Ventral Attention network connectivity (bottom). 
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scan. 

2.10. APOE Genotype 

APOE genotyping was conducted by the digestion of polymerase 
chain reaction-amplified genomic DNA using restriction endonucleases 
(carried out by Athena Diagnostic, Worcester, MA). Individuals carrying 
at least one ε4 allele were designated as ε4 carriers; those without an ε4 
allele were classified as non-carriers. 

2.11. Statistical analysis 

Differences between diagnostic groups (normal vs. MCI) were tested 
using Wilcoxon signed-rank tests for continuous variables and chi- 
square tests for categorical variables. Bivariate Pearson correlation an
alyses were used to determine simple associations between the objec
tively measured PA and sleep parameter variables while controlling for 
age. Based on significant Shapiro Wilk tests for non-normal distribu
tions, SE and TVPA were log transformed to correct for skewness. 

Primary analyses were performed using multivariable linear and 
logistic regression analysis. Minimally adjusted models (Model 1) 
accounted for age, sex, education, and diagnosis. Fully adjusted models 
(Model 2) additionally included PiB-PET positive status, vascular risk 
summary score, and APOE ε4 status (which has been reported to influ
ence rs-fMRI networks) (Sintini et al., 2021)). To determine the com
bined associations of PA and sleep with rsFC, Models 1 and 2 regressed 
all three predictors of interest (i.e., TVPA, TST, and SE) in the same 
model and the covariates on rsFC, using separate models for each rsFC 
measures (e.g., rsFC within the DMN, SAL, and FPN networks, and 
modularity). To assess the combined associations of sleep and PA with 
amyloid burden, measured by amyloid positive status, Model 1 (mini
mally adjusted) and Model 2 (fully-adjusted, excluding amyloid) used 
logistic regression analysis with amyloid status (dichotomous variable) 
as the outcome. Based on previous reports suggesting ε4 carrier status 
can moderate associations between sleep and AD pathology levels 
(Fenton et al., 2023; Lim et al., 2013b), we additionally assessed 
whether the presence of the ε4 allele modified associations between 
physical activity and sleep with amyloid status in fully adjusted models. 
We further tested for potential 2-way interactions between PA x sleep 
parameters in relationships with both rsFC and amyloid status, 
although, non-significant interaction terms are not reported. Interaction 
terms were tested in separate models, no 3-way or multiple interactions 
terms were tested in a single model. 

Finally, Model 3 (fully adjusted) tested whether the independent 
association of TVPA, TST, and SE with rsFC were moderated by PET 
amyloid status (which can influence relationships among sleep, physical 
activity, and resting-state connectivity (Kim et al., 2023; Lin et al., 2020; 

Pruzin et al., 2022)), by additionally including an interaction term PET 
amyloid status x [PA or sleep measure]) in the fully adjusted model. 
Non-significant interaction terms between diagnosis and PET amyloid 
status with PA and sleep metrics are not reported. A sensitivity analysis 
was also conducted to determine whether the primary results from 
Models 1, 2, and 3 were the same when excluding participants with MCI, 
as well as participants with a diagnosis of Impaired not MCI. Finally, 
based on previous reports of a U-shaped relationship between sleep 
duration and cognition (Ma et al., 2020), an additional sensitivity 
analysis was conducted with TST as a categorical predictor. 

All multiple linear regression models were tested for data points with 
abnormal leverage (hat value > 3 times average), influence (Cook’s D >
0.5), and discrepancy (studentized residuals greater > 3). Furthermore, 
collinearity between covariates and predictors in all models were 
checked for a high variance inflation factor (VIF > 5). No additional data 
were removed from further analyses based on an exclusionary criterion 
of violating more than one of these three heuristics. Statistical signifi
cance was set based on a two-tailed alpha < 0.05 and Bonferroni family 
wise error rate (FWER) correction for multiple comparisons of individ
ual within network connectivity analysis (i.e. 3 comparisons). Multiple 
comparison correction was not applied for modularity or amyloid PET 
status as they were distinct a priori tests of whole brain connectivity and 
AD pathology. 

3. Results 

Demographic characteristics of the sample and a comparison be
tween the groups shown in Table 1. There were no significant differ
ences in demographics, sleep, PA, and rs-fMRI measures between the 
MCI and cognitively normal groups. As expected, the MCI group showed 
lower MMSE scores compared to those who were cognitively normal. 

3.1. Correlations between TVPA and Sleep actigraphy measures 

Across the total sample, there was a significant negative association 
between TVPA and SE (r = -0.26, p = 0.003), and a non-significant 
negative association between TVPA and TST (r = -0.05, p = 0.527). 

3.2. Association of physical activity and sleep with resting state functional 
connectivity 

In Model 1 (minimally adjusted), TVPA (β = 0.018, p < 0.001) and 
SE (β = 0.014, p = 0.002) were each positively associated with modu
larity, while TST (β = -0.011, p = 0.013) was negatively associated with 
modularity in the total sample (Table 2). Results were the same in Model 
2 (fully adjusted models) (See Table 2). Additionally, in fully adjusted 
models, TVPA (β = 0.017, p = 0.001), but neither sleep parameter, was 

Table 1 
Participant characteristics by diagnosis. Values reflect mean (SD) unless otherwise indicated.  

Participant Characteristics Total Sample (n = 135) Cognitively Normal (n = 116) MCI (n = 19) p-value 

Sex, N (%) 94F (69.4 %) 80F (69 %) 14F (74 %)  0.683 
Age (yrs) 70.0 (7.9) 69.7 (7.6) 72.8 (8.6)  0.163 
Education (yrs) 17.1 (2.3) 17.3 (2.3) 16.1 (2.5)  0.056 
Vascular Risk 1.5 (1.1) 1.4 (1.1) 1.8 (1.0)  0.113 
Mini Mental State Exam 29.0 (1.2) 29.2 (1.0) 27.5 (1.4)  <0.001*** 
APOE- ε4 Carriers, N 37 (27 %) 31 (27 %) 6 (32 %)  0.664 
PET Amyloid positive 53 (39 %) 45 (39 %) 8 (42 %)  0.984 
Total Volume of Physical Activity 12.0 (0.3) 12.1 (0.3) 12.0 (0.3)  0.381 
Total Sleep Time (min) 415.0 (53.1) 417.2 (50.3) 405.4 (68.6)  0.955 
Sleep Efficiency (%) 86.4 (5.4) 86.6 (5.4) 85.5 (5.8)  0.361 
Modularity 0.15 (0.05) 0.15 (0.05) 0.14 (0.04)  0.183 
DMN Connectivity 0.13 (0.05) 0.13 (0.06) 0.11 (0.04)  0.374 
SAL Network Connectivity 0.16 (0.06) 0.16 (0.07) 0.16 (0.05)  0.937 
FPN Connectivity 0.12 (0.05) 0.12 (0.06) 0.14 (0.05)  0.416 

Notes: MCI = Mild Cognitive Impairment. Sex: F = Female. Total Volume of Physical Activity = average log transformed total activity epoch counts from 10 most active 
hours. DMN = Default Mode Network. SAL = Salience Network. FPN = Frontoparietal Network. *** p<0.001 
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positively associated with DMN connectivity. In contrast, higher SE (β =
0.019, p = 0.001) but not TST (β = -0.011, p = 0.053) was associated 
with higher SAL network connectivity measures in fully adjusted models 
(Fig. 2). Neither TVPA nor the sleep measures were associated with FPN 
connectivity measures, see Table 2 for model results for the total sample. 
No significant interactions between TVPA and SE or TVPA and TST were 
found with modularity or any of the individual network measures (all 
p’s > 0.100), and thus, they are not reported in our final models. 

3.3. Sensitivity analysis 

The exclusion of participants with MCI (n = 19) did not significantly 
alter the associations between TVPA, TST, or SEFF and network modu
larity (see Table 2 and Supplementary Table 1). However, when par
ticipants with MCI were excluded, a significant association between 
higher TST and lower rs-fMRI measures within the DMN and SAL net
works emerged. The pattern of results was also the same when addi
tionally excluding participants with a diagnosis of Impaired not MCI 
(data not shown). Furthermore, results from analyses using TST as a 
categorical variable with previously published cutoffs (e.g., <6h vs. 6–8 
h vs. > 8 h (Bloomberg et al., 2023)) were similar, suggesting there were 
no non-linear relationships between TST and the brain measures (data 
not shown). 

3.4. Moderating effect of amyloid PET status on associations between 
TVPA and sleep with rs-fMRI networks 

Amyloid PET status (i.e., negative vs. positive) significantly moder
ated the association between SE and network modularity (β = 0.014, p 
= 0.005) such that SE was positively associated with modularity in those 
who were PiB negative, but not associated with modularity in those 
classified as PiB positive (Fig. 1D). PET amyloid status also showed a 
marginally significant interaction with TST (β = 0.007, p = 0.076), such 
that TST was negatively associated with modularity in PiB-positive 
participants, but not PiB negative participants (Fig. 1C). Aβ status did 
not modify the relationship between TVPA and modularity (β = 0.001, p 
= 0.533) (Fig. 1B). Furthermore, Aβ PET burden did not moderate the 
association between TVPA, TST, or SE on rsFC within the DMN, SAL, or 

FPN network (all p’s > 0.200). In an additional sensitivity analysis, we 
also found that limiting PET measures to within 2 years of the MRI scan 
(n = 116) or to only before or after the resting state scan (n = 130 and 
137, respectively) did not significantly alter our findings (data not 
shown). 

3.5. Association of TVPA and sleep with cortical amyloid 

Neither TVPA, TST, or SE were significantly associated with cortical 
amyloid burden (all p’s > 0.060, see Table 2). Furthermore, no APOE- 
ε4 x [PA or Sleep] and no PA x Sleep interactions were found in relation 
to cortical amyloid burden (both p > 0.100, data not shown). Similarly, 
limiting PET measures to those within 2 years of MRI scans or only 
before or after the resting-state scan did not significantly alter our 
findings (data not shown). 

4. Discussion 

This cross-sectional study of individuals with normal cognition and 
MCI investigated the association between objectively measured physical 
activity and sleep with functional connectivity in large-scale brain net
works obtained from resting-state fMRI and brain amyloid burden 
quantified using PiB PET imaging. Results showed that greater physical 
activity was associated with greater functional network modularity and 
greater connectivity within the default-mode network (DMN), inde
pendent of amyloid status, sleep efficiency (SE) and total sleep duration 
(TST). In addition, independent of physical activity levels and TST, 
greater SE was also associated with greater functional network modu
larity, as well as with greater connectivity within the salience network, 
particularly among participants without significant amyloid burden. In 
contrast, longer TST was related to lower network modularity and lower 
connectivity within the SAL network, primarily among participants with 
high brain amyloid levels. Finally, there was little evidence that com
bined physical activity levels, SE, and TST were directly related to brain 
amyloid status. Taken together, these findings suggest that higher levels 
of physical activity and higher SE make independent and additive con
tributions to a more resilient functional network structure and increased 
connectivity within specific networks. These findings bolster the notion 

Table 2 
Combined associations of physical activity and sleep parameters with resting-state functional network connectivity and amyloid burden.    

Model 1 Minimally adjusted Model 2 Fully adjusted 
rs-fMRI / PET Measure Actigraphy Measure Estimate SE p-value R2

adj Estimate SE p-value R2
adj           

Modularity TVPA  0.018  0.004  <0.001  0.247  0.012  0.004  0.006**  0.299 
TST  − 0.011  0.005  0.013*   − 0.010  0.004  0.027*  
Sleep Efficiency  0.014  0.005  0.002**   0.014  0.004  0.002*            

Default Mode Connectivity TVPA  0.019  0.005  <0.001**  0.181  0.017  0.005  0.001***  0.176 
TST  − 0.006  0.005  0.207   − 0.006  0.005  0.215  
Sleep Efficiency  0.008  0.005  0.090   0.007  0.005  0.163           

Salience Ventral Attention Connectivity TVPA  0.012  0.006  0.037  0.111  0.005  0.006  0.381  0.221 
TST  − 0.015  0.006  0.015*   − 0.011  0.006  0.053  
Sleep Efficiency  0.020  0.006  0.001**   0.019  0.006  0.001**           

Frontoparietal Network Connectivity TVPA  <-0.001  0.006  0.957  0.009  − 0.003  0.006  0.639  0.118 
TST  − 0.004  0.005  0.512   − 0.002  0.006  0.764  
Sleep Efficiency  0.002  0.005  0.752   0.002  0.006  0.674           

PET Amyloid Positive TVPA  0.030  0.201  0.881  0.015  0.321  0.251  0.200  0.106 
TST  − 0.253  0.219  0.248   − 0.485  0.256  0.650  
Sleep Efficiency  − 0.009  0.215  0.966   0.116  0.262  0.064            

Note. TVPA = Total volume of physical activity. SE = Standard Error. TST = Total Sleep Time. PET = Amyloid Positron Emission Tomography Status. Both multiple 
linear and logistic regressions controlled for age, sex, education, and diagnosis in Model 1 and additionally PiB-PET positive status, vascular risk summary score, and 
APOE ε4 status in Model 2 (excluding PiB-PET status in the logistic regression for cortical Amyloid PET burden). * p-value < 0.05; ** p-value < 0.01, *** p-value <
0.001. Statistical significance was set based on a two-tailed alpha < 0.05 and Bonferroni family wise error rate (FWER) correction for multiple comparisons of within 
individual network connectivity analysis. R2

adj = adjusted R-squared model values. 
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that greater physical activity and better sleep quality may be linked to 
better cognitive and clinical outcomes among older adults by altering 
aspects of functional connectivity, rather than by directly influencing 
amyloid accumulation. 

4.1. Physical activity and resting-state functional connectivity 

Analysis of the current data also revealed a positive association be
tween total volume of physical activity and rs-fMRI modularity—a graph 
theory-based measure of network segregation and a potential neuro
imaging marker of cognitive resilience (Adams et al., 2023; Ewers et al., 
2021). This is consistent with our prior findings of a similar relationship 
between physical activity and functional network modularity in a subset 
of this study population (Soldan et al., 2022), and extends these findings 
by showing that this association is independent of amyloid status, as 
well as of SE and sleep duration. These findings are also consistent with a 
previous study linking objectively measured physical activity to greater 
within network functional connectivity across several large-scale net
works (Pruzin et al., 2022), which would result in greater network 
modularity, though this was not directly assessed. Prior studies further 
suggest that greater structural and functional network segregation and 
connectivity mediate the positive associations between cardiorespira
tory fitness, which is reflective of greater lifetime physical activity, and 
cognition in both younger and older adults (Callow & Smith, 2023; 
Kawagoe et al., 2017; Won et al., 2021). Taken together, these findings 
as well as prior studies suggest that physical activity may promote 
functional network modularity, thereby enhancing resilience against 
both age and pathology-related cognitive decline. 

These results also demonstrate that greater total volume of physical 
activity in particular was associated with enhanced connectivity within 
the DMN. The DMN is a large-scale brain network that operates during 
wakeful rest, and reduced connectivity within it has consistently been 
associated with age-related and pathological cognitive decline (Buckner 
et al., 2008; Magalhães et al., 2021; Staffaroni et al., 2018). Consistent 
with these findings, prior studies have reported cross-sectional associ
ations between greater self-reported (Boraxbekk et al., 2016; Soldan 
et al., 2021) and objectively measured physical activity (Dion et al., 
2021; Gogniat et al., 2022; Pruzin et al., 2022; Soldan et al., 2022) and 
greater DMN connectivity in non-demented older adults. However, a 
recent longitudinal study measuring physical activity via self-report 
failed to identify a link with DMN connectivity in cognitively normal 
older adults (Dorsman et al., 2020), possibly because self-reported 
physical activity measures tend to be more weakly related to measures 
of brain health compared to more objective physical activity measures 
(Callow & Smith, 2023; Logan et al., 2013; Parker et al., 2008). Aβ 
burden did not moderate the relationship between physical activity and 
DMN connectivity, consistent with a study using self-reported physical 
activity (Soldan et al., 2021). Taken together, the finding reported here 
suggest that physical activity may promote more modular and resilient 
functional networks in nondemented older adults and increase connec
tivity within the DMN. 

4.2. Sleep and resting-state functional connectivity 

Independently of physical activity levels, higher SE was also associ
ated with greater network modularity in those without significant am
yloid burden. This suggests that greater SE is associated with more 
segregated and potentially more resilient functional networks in those 
who are amyloid negative. It also suggests that interventions focused on 
improving sleep may have beneficial consequences for global functional 
network organization, which in turn may improve cognitive outcomes of 
older adults. Consistent with this interpretation, several prospective 
investigations have demonstrated links between subjective and objec
tive sleep measures, such as SE and TST, with cognitive performance 
both at baseline and over a 5-year follow-up period (Ma et al., 2020; 
McSorley et al., 2019). Moreover, a prospective cohort study 

demonstrated that enhanced objective sleep consolidation mitigated the 
impact of the APOE-e4 allele on the rate of cognitive decline and the 
incidence of AD dementia (Lim, Yu, et al., 2013). It is unclear, however, 
why SE was not related to functional network segregation among par
ticipants with significant amyloid burden. One possibility is that amy
loid alters functional network segregation, as reported previously 
(Adams et al., 2022; Zhang et al., 2023), making associations between 
SE and segregation potentially more difficult to detect. 

The finding that the association between SE and modularity persisted 
after accounting for the effects of physical activity is consistent with 
reports suggesting self-reported physical activity and sleep measures 
provide independent and additive associations with cognition (Falck 
et al., 2018) and cognitive decline in nondemented older adults 
(Bloomberg et al., 2023). Therefore, these findings indicate that physical 
activity and sleep may offer complementary benefits for functional 
network segregation, which may afford cognitive resilience in both 
healthy and pathological aging. 

The finding that longer TST was associated with lower network 
modularity, primarily in those with significant amyloid burden suggests 
that, in the presence of amyloid, extended sleep duration, which may be 
more frequently disrupted, could lead to lower functional network 
modularity. This interpretation is consistent with the view that longer 
sleep duration, above and beyond what is typically observed among 
older adults, particularly when accounting for SE, may be detrimental to 
brain and cognitive health (Chen & Wang, 2022). Another possibility for 
the negative association between TST and network modularity relates to 
the finding that amyloid accumulation appears to be associated with 
increases in functional network modularity (Adams et al., 2022), 
possibly reflecting a compensatory response of the brain to maintain 
function in the presence of pathology and/or amyloid-related inflam
mation. Thus, observing shorter sleep duration being related to greater 
network modularity, particularly in amyloid positive individuals, could 
be indicative of these individuals requiring additional neural resources 
to maintain function in the presence of significant amyloid burden 
(Cabeza et al., 2018; Davis et al., 2018). However, this interpretation is 
speculative and requires future longitudinal assessments of sleep, 
functional connectivity, and amyloid accumulation. 

We additionally observed that greater SE and shorter sleep duration 
were associated with higher connectivity in the salience network. The 
salience network is thought to facilitate individuals’ ability to identify 
information of importance and attend to it (Menon, 2015). Little is 
known about the relationship between sleep and salience network 
connectivity among cognitively normal or non-demented older adults, 
as most prior research on sleep and resting-state network connectivity 
focused on the DMN. Considering that the association of sleep and 
salience network connectivity was independent of amyloid status, re
sults suggest that shorter but more efficient sleep may help promote the 
development of healthier salience functional networks in cognitively 
normal older adults, irrespective of AD pathology. Interestingly, loss of 
coherence within the salience network has been shown to mediate age- 
related declines in cognition (Touroutoglou et al., 2018), suggesting that 
more efficient sleep may protect against cognitive decline by increasing 
salience network connectivity, in addition to network modularity. 
Additionally, the observation that shorter sleep duration was associated 
with greater salience network connectivity may be consistent with 
findings indicating that insomnia symptoms (which are reflective of 
reduced sleep duration or quality) are associated with higher insula 
connectivity, a critical part of the salience network (Chen et al., 2014; 
Cheng et al., 2022). It is also in line with a recent investigation among 
individuals across the AD spectrum that found that subjective sleep 
disturbances were associated with hyperconnectivity within the salience 
network in individuals who were amyloid positive vs. negative (Kim 
et al., 2023). 

Previous research on sleep and resting-state network connectivity 
has largely focused on the DMN and employed subjective measures of 
sleep, i.e. questionnaires that can be subject to recall bias and may have 
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limited accuracy for participants with MCI (Dinapoli et al., 2017; Van 
Den Berg et al., 2008). Overall, these studies have produced mixed re
sults, with some linking poorer subjective sleep quality to lower con
nectivity in the DMN among participants without dementia (Amorim 
et al., 2018) and participants with MCI (Luo et al., 2022; McKinnon 
et al., 2017) and others not finding this association (Lysen et al., 2020). 
In this study, we only found a weak relationship between greater sleep 
duration and lower DMN connectivity was observed among participants 
with normal cognition, independent of SE, which was not related to 
DMN connectivity. This may suggest that associations between sleep 
parameters and DMN connectivity are subtle, and that sleep is more 
strongly related to connectivity in the salience network. 

4.3. Relationship of sleep and physical activity to brain amyloid burden 

The current study did not demonstrate a significant association be
tween total volume of physical activity and sleep parameters with am
yloid positivity. This aligns with many prior studies that have failed to 
establish a direct link between physical activity and amyloid levels 
measured by PET, particularly studies using objective measures of 
physical activity (for reviews, see Brown et al., 2019; Frederiksen et al., 
2019; Rodriguez-Ayllon et al., 2023). Most previous studies reporting 
associations of physical activity with PET amyloid levels relied on sub
jective physical activity assessments (i.e., questionnaires) (Brown et al., 
2013; Okonkwo et al., 2014), which may be less accurate than 
actigraphy-based measures, as they rely on participants’ memory and 
are influenced by social desirability biases. Our results support findings 
from a recent meta-analysis of observational studies that did not find a 
significant association between physical activity and Aβ measured by 
PET or in blood among middle-aged and older adults with normal 
cognition or MCI (Rodriguez-Ayllon et al., 2023). 

Consistent with our findings, a smaller study investigating objective 
sleep measures in relation to global amyloid burden in older adults 
failed to identify significant associations (Spira et al., 2021). One pos
sibility why we did not observe a direct relationship between amyloid 
PET burden and SE and TST in this study is our use of objective sleep 
measures, as previous studies linking sleep and amyloid have predom
inantly used subjective sleep measures (for a review, see Lucey, 2020). 
Supporting this conclusion, a recent study found amyloid burden led to a 
mismatch in perceived vs objective sleep quality in older adults, with 
amyloid burden successfully predicting worse self-reported sleep quality 
compared to objective sleep measures (Winer et al., 2021). Furthermore, 
previous research suggests that the relationship between subjective 
sleep duration and Aβ accumulation may be specific to certain brain 
regions in cognitively normal adults (Insel et al., 2021), while we 
focused on amyloid positivity based on measures across the cortex. 
Finally, the findings reported here are limited by the temporal discrep
ancy between some of our PET measurements and actigraphy data 
collection. It is worth noting, however, that limiting the analysis of PET 
measurements within a shorter time frame and to either those obtained 
before or after the actigraphy assessments did not alter the results. 
Future research should prioritize longitudinal studies that examine the 
connection between objective sleep with changes in multiple 
neuroimaging-based measures of AD pathology, including region- 
specific Aβ and Tau PET markers. This would provide a more compre
hensive understanding of the impact of physical activity and sleep on 
resilience against AD pathological accumulation in older adults. 

4.4. Potential Mechanisms Relating Sleep and Physical Activity to rsFC 

Cross-sectional studies have revealed that fitness and physical ac
tivity are correlated with the development of more efficient cortical 
neurite density and white matter connection efficiency across the life
span (Callow et al., 2022; Callow & Smith, 2023). These structural ef
fects may facilitate functional network connectivity, as suggested by 
some reports linking better white matter structural connectivity to 

better functional connectivity within networks (Neudorf et al., 2022; 
Rieck et al., 2020). Additionally, exercise interventions in older cogni
tively normal adults and those with MCI have demonstrated exercise- 
related alterations in resting-state connectivity within the SAL and 
DMN (Won et al., 2023) that are accompanied by exercise-related gray 
matter neurite density changes within the same networks. (Callow et al., 
2021). Taken together this supports the view that one avenue by which 
physical activity influences rs-fMRI networks (and thereby potentially 
cognition) may be through its effects on neurite density and white 
matter connectivity. Additionally, neuropathological evidence suggests 
that objectively measured late-life physical activity levels are associated 
with greater synaptic density and reduced microglial inflammatory ac
tivity in post-mortem brain tissue, which in turn mediated the positive 
association between physical activity and global cognition (Casaletto 
et al., 2021, 2022). These findings collectively suggest that physical 
activity may promote cognitive resilience by facilitating the develop
ment of healthy white matter tracts and synaptic and dendritic tissue, 
thereby potentially enhancing the efficiency of functional networks. 

Only a few neuroimaging studies provide insight into the impact of 
sleep on brain health in aging, although there are several recent reports 
linking sleep and structural network connectivity. For example, objec
tive measures of healthy sleep were found to be associated with better 
structural network integrity in healthy aging (Altendahl et al., 2020), 
while healthy self-reported sleep throughout middle and older age has 
been found to be predictive of better white matter integrity and neurite 
density at a 5–20 year follow-up in nondemented older adults (Tsiknia 
et al., 2023). Therefore, complementing physical activity, healthy sleep 
may increase the density of white matter connections and thus structural 
network integrity, which may in turn promote more resilient functional 
networks. Of note, emerging evidence indicates that a multidomain 
approach to lifestyle factors provides the most significant benefits for 
promoting healthy neurocognitive aging and dementia prevention 
(Montero-Odasso et al., 2022). Additional studies of the effects of 
objectively measured sleep on neuroimaging measures of brain health in 
older adults are needed to elucidate the mechanisms by which sleep may 
influence the organization of functional networks. 

5. Limitations 

It is important to acknowledge the limitations of this study. The 
participants in the BIOCARD cohort are predominantly white, highly 
educated, and have a strong family history of AD, which may limit the 
generalizability of the findings to more diverse populations. Addition
ally, the study design employed here was cross-sectional in nature, 
which limits making any causal inferences regarding sleep, physical 
activity, and brain health. The MCI group was small, which limits the 
ability to detect differences by diagnostic status. Furthermore, the 
calculation of total volume of physical activity was based on the 10 most 
active hours of the day. It is conceivable that categorizing activity across 
various time ranges of the day or breaking down physical activity into 
different intensities could yield different results. Additionally, we 
focused predominantly on within network and modularity-based 
network measures of connectivity and did not explore associations 
with additional network measures focusing on between network mea
sures of connectivity. Future longitudinal studies in larger, more diverse 
samples are needed to confirm some of these findings regarding re
lationships and mechanisms through which physical activity and sleep 
may contribute to functional network organization and ultimately 
cognitive resilience in aging and AD. 
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Ames, D., Doré, V., Maruff, P., Laws, S.M., Masters, C.L., Rowe, C.C., Martins, R.N., 
Erickson, K.I., Brown, B.M., 2023b. The interaction between physical activity and 
sleep on cognitive function and brain beta-amyloid in older adults. Behav. Brain Res. 
437 https://doi.org/10.1016/J.BBR.2022.114108. 

Shi, L., Chen, S.J., Ma, M.Y., Bao, Y.P., Han, Y., Wang, Y.M., Shi, J., Vitiello, M.V., Lu, L., 
2018. Sleep disturbances increase the risk of dementia: A systematic review and 
meta-analysis. Sleep Med. Rev. 40, 4–16. https://doi.org/10.1016/J. 
SMRV.2017.06.010. 

Sintini, I., Graff-Radford, J., Jones, D. T., Botha, H., Martin, P. R., Machulda, M. M., 
Schwarz, C. G., Senjem, M. L., Gunter, J. L., Jack, C. R., Lowe, V. J., Josephs, K. A., & 
Whitwell, J. L. (2021). Tau and Amyloid Relationships with Resting-state Functional 
Connectivity in Atypical Alzheimer’s Disease. Cerebral Cortex (New York, N.Y. : 
1991), 31(3), 1693–1706. https://doi.org/10.1093/CERCOR/BHAA319. 

Sohn, B.K., Byun, M.S., Yi, D., Jeon, S.Y., Lee, J.H., Choe, Y.M., Lee, D.W., Lee, J.Y., 
Kim, Y.K., Sohn, C.H., Lee, D.Y., 2022. Late-Life Physical Activities Moderate the 
Relationship of Amyloid-β Pathology with Neurodegeneration in Individuals Without 
Dementia. Journal of Alzheimer’s Disease : JAD 86 (1), 441–450. https://doi.org/ 
10.3233/JAD-215258. 

Soldan, A., Pettigrew, C., Zhu, Y., Wang, M. C., Bilgel, M., Hou, X., Lu, H., Miller, M. I., & 
Albert, M. (2021). Association of Lifestyle Activities with Functional Brain 
Connectivity and Relationship to Cognitive Decline among Older Adults. Cerebral 
Cortex (New York, N.Y. : 1991), 31(12), 5637–5651. https://doi.org/10.1093/ 
CERCOR/BHAB187. 

Soldan, A., Alfini, A., Pettigrew, C., Faria, A., Hou, X., Lim, C., Lu, H., Spira, A. P., 
Zipunnikov, V., Albert, M., & Team, R. (2022). Actigraphy-estimated physical activity is 
associated with functional and structural brain connectivity among older adults. 116, 
32–40. https://pubmed.ncbi.nlm.nih.gov/35551019/. 

Soldan, A., Pettigrew, C., Zhu, Y., Wang, M.C., Gottesman, R.F., DeCarli, C., Albert, M., 
2020. Cognitive reserve and midlife vascular risk: Cognitive and clinical outcomes. 
Ann. Clin. Transl. Neurol. 7 (8), 1307–1317. https://doi.org/10.1002/ACN3.51120. 

Spira, A.P., Gamaldo, A.A., An, Y., Wu, M.N., Simonsick, E.M., Bilgel, M., Zhou, Y., 
Wong, D.F., Ferrucci, L., Resnick, S.M., 2013. Self-Reported Sleep and β-Amyloid 
Deposition in Community-Dwelling Older Adults. JAMA Neurol. 70 (12), 1537. 
https://doi.org/10.1001/JAMANEUROL.2013.4258. 

Spira, A.P., Zipunnikov, V., Raman, R., Choi, J., Di, J., Bai, J., Carlsson, C.M., Mintzer, J. 
E., Marshall, G.A., Porsteinsson, A.P., Yaari, R., Wanigatunga, S.K., Kim, J., Wu, M. 
N., Aisen, P.S., Sperling, R.A., Rosenberg, P.B., 2021. Brain amyloid burden, sleep, 
and 24-hour rest/activity rhythms: screening findings from the Anti-Amyloid 
Treatment in Asymptomatic Alzheimer’s and Longitudinal Evaluation of Amyloid 
Risk and Neurodegeneration Studies. Sleep Advances : A Journal of the Sleep 
Research Society 2 (1). https://doi.org/10.1093/SLEEPADVANCES/ZPAB015. 

Staffaroni, A.M., Brown, J.A., Casaletto, K.B., Elahi, F.M., Deng, J., Neuhaus, J., 
Cobigo, Y., Mumford, P.S., Walters, S., Saloner, R., Karydas, A., Coppola, G., 
Rosen, H.J., Miller, B.L., Seeley, W.W., Kramer, J.H., 2018. The Longitudinal 
Trajectory of Default Mode Network Connectivity in Healthy Older Adults Varies As 
a Function of Age and Is Associated with Changes in Episodic Memory and 
Processing Speed. J. Neurosci. 38 (11), 2809–2817. https://doi.org/10.1523/ 
JNEUROSCI.3067-17.2018. 

Stillman, C.M., Lopez, O.L., Becker, J.T., Kuller, L.H., Mehta, P.D., Tracy, R.P., 
Erickson, K.I., 2017. Physical activity predicts reduced plasma β amyloid in the 
Cardiovascular Health Study. Ann. Clin. Transl. Neurol. 4 (5), 284–291. https://doi. 
org/10.1002/ACN3.397. 

Thomas Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., 
Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fisch, B., 
Liu, H., Buckner, R.L., 2011. The organization of the human cerebral cortex 
estimated by intrinsic functional connectivity. J. Neurophysiol. 106 (3), 1125. 
https://doi.org/10.1152/JN.00338.2011. 

Touroutoglou, A., Zhang, J., Andreano, J.M., Dickerson, B.C., Barrett, L.F., 2018. 
Dissociable Effects of Aging on Salience Subnetwork Connectivity Mediate Age- 
Related Changes in Executive Function and Affect. Front. Aging Neurosci. 10 
https://doi.org/10.3389/FNAGI.2018.00410. 

Treyer, V., Meyer, R.S., Buchmann, A., Crameri, G.A.G., Studer, S., Saake, A., Gruber, E., 
Unschuld, P.G., Nitsch, R.M., Hock, C., Gietl, A.F., 2021. Physical activity is 
associated with lower cerebral beta-amyloid and cognitive function benefits from 
lifetime experience-a study in exceptional aging. PLoS One 16 (2). https://doi.org/ 
10.1371/JOURNAL.PONE.0247225. 

Tsiknia, A.A., Parada, H., Banks, S.J., Reas, E.T., 2023. Sleep quality and sleep duration 
predict brain microstructure among community-dwelling older adults. Neurobiol. 
Aging 125, 90. https://doi.org/10.1016/J.NEUROBIOLAGING.2023.02.001. 

Van Den Berg, J.F., Van Rooij, F.J.A., Vos, H., Tulen, J.H.M., Hofman, A., Miedema, H.M. 
E., Neven, A.K., Tiemeier, H., 2008. Disagreement between subjective and 
actigraphic measures of sleep duration in a population-based study of elderly 
persons*. J. Sleep Res. 17 (3), 295–302. https://doi.org/10.1111/J.1365- 
2869.2008.00638.X. 

D.D. Callow et al.                                                                                                                                                                                                                               

https://doi.org/10.3233/JAD-160922
https://doi.org/10.1093/AJE/KWZ037
https://doi.org/10.3389/FPSYT.2022.862958
https://doi.org/10.1016/J.TICS.2011.08.003
https://doi.org/10.1016/J.TICS.2011.08.003
https://doi.org/10.1016/B978-0-12-397025-1.00052-X
https://doi.org/10.1186/S13195-022-01036-1/FIGURES/2
https://doi.org/10.1109/MCSE.2016.93
https://doi.org/10.1109/MCSE.2016.93
https://doi.org/10.1007/S00429-021-02403-8/FIGURES/7
https://doi.org/10.3233/JAD-220846
https://doi.org/10.1155/2020/7807856
https://doi.org/10.1212/WNL.0000000000000964
https://doi.org/10.1001/JAMANEUROL.2014.1173
https://doi.org/10.1123/japa.16.4.369
https://doi.org/10.3389/FNAGI.2021.697528/FULL
https://doi.org/10.3389/FNAGI.2021.697528/FULL
https://doi.org/10.3389/FNAGI.2022.771214
https://doi.org/10.1212/WNL.0000000000010946
https://doi.org/10.1212/WNL.0000000000010946
https://doi.org/10.1016/J.NICL.2018.05.002
https://doi.org/10.1016/J.NICL.2018.05.002
https://doi.org/10.1016/J.NEUROIMAGE.2013.08.048
http://refhub.elsevier.com/S2213-1582(24)00060-3/h0390
http://refhub.elsevier.com/S2213-1582(24)00060-3/h0390
http://refhub.elsevier.com/S2213-1582(24)00060-3/h0390
http://refhub.elsevier.com/S2213-1582(24)00060-3/h0390
http://refhub.elsevier.com/S2213-1582(24)00060-3/h0390
http://refhub.elsevier.com/S2213-1582(24)00060-3/h0390
https://doi.org/10.1162/JOCN_A_01562
https://doi.org/10.1162/JOCN_A_01562
https://doi.org/10.1016/J.JSHS.2023.08.001
https://doi.org/10.1016/J.JSHS.2023.08.001
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1002/ALZ.12950
https://doi.org/10.1016/J.BBR.2022.114108
https://doi.org/10.1016/J.SMRV.2017.06.010
https://doi.org/10.1016/J.SMRV.2017.06.010
https://doi.org/10.3233/JAD-215258
https://doi.org/10.3233/JAD-215258
https://doi.org/10.1002/ACN3.51120
https://doi.org/10.1001/JAMANEUROL.2013.4258
https://doi.org/10.1093/SLEEPADVANCES/ZPAB015
https://doi.org/10.1523/JNEUROSCI.3067-17.2018
https://doi.org/10.1523/JNEUROSCI.3067-17.2018
https://doi.org/10.1002/ACN3.397
https://doi.org/10.1002/ACN3.397
https://doi.org/10.1152/JN.00338.2011
https://doi.org/10.3389/FNAGI.2018.00410
https://doi.org/10.1371/JOURNAL.PONE.0247225
https://doi.org/10.1371/JOURNAL.PONE.0247225
https://doi.org/10.1016/J.NEUROBIOLAGING.2023.02.001
https://doi.org/10.1111/J.1365-2869.2008.00638.X
https://doi.org/10.1111/J.1365-2869.2008.00638.X


NeuroImage: Clinical 43 (2024) 103621

12

Varma, V.R., Dey, D., Leroux, A., Di, J., Urbanek, J., Xiao, L., Zipunnikov, V., 2017. Re- 
evaluating the effect of age on physical activity over the lifespan. Prev. Med. 101, 
102. https://doi.org/10.1016/J.YPMED.2017.05.030. 

Voss, M.W., Weng, T.B., Burzynska, A.Z., Wong, C.N., Cooke, G.E., Clark, R., Fanning, J., 
Awick, E., Gothe, N.P., Olson, E.A., Mcauley, E., Kramer, A.F., 2016. Fitness, but not 
physical activity, is related to functional integrity of brain networks associated with 
aging HHS Public Access. Neuroimage 131, 113–125. https://doi.org/10.1016/j. 
neuroimage.2015.10.044. 

Walker, K.A., Gross, A.L., Moghekar, A.R., Soldan, A., Pettigrew, C., Hou, X., Lu, H., 
Alfini, A.J., Bilgel, M., Miller, M.I., Albert, M.S., Walston, J., 2020. Association of 
peripheral inflammatory markers with connectivity in large-scale functional brain 
networks of non-demented older adults. Brain Behav. Immun. 87, 388. https://doi. 
org/10.1016/J.BBI.2020.01.006. 

Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., Zhou, C., 2021. Segregation, 
integration, and balance of large-scale resting brain networks configure different 
cognitive abilities. e2022288118 PNAS 118 (23). https://doi.org/10.1073/ 
PNAS.2022288118/SUPPL_FILE/PNAS.2022288118.SD01.CSV. 

Wei, J., Hou, R., Xie, L., Chandrasekar, E.K., Lu, H., Wang, T., Li, C., Xu, H., 2021. Sleep, 
sedentary activity, physical activity, and cognitive function among older adults: The 
National Health and Nutrition Examination Survey, 2011–2014. J. Sci. Med. Sport 
24 (2), 189–194. https://doi.org/10.1016/J.JSAMS.2020.09.013. 

Wig, G.S., 2017. Segregated Systems of Human Brain Networks. Trends Cogn. Sci. 21 
(12), 981–996. https://doi.org/10.1016/J.TICS.2017.09.006. 

Winer, J.R., Morehouse, A., Fenton, L., Harrison, T.M., Ayangma, L., Reed, M., Kumar, S., 
Baker, S.L., Jagust, W.J., Walker, M.P., 2021. Tau and β-Amyloid Burden Predict 

Actigraphy-Measured and Self-Reported Impairment and Misperception of Human 
Sleep. J. Neurosci. 41 (36), 7687. https://doi.org/10.1523/JNEUROSCI.0353- 
21.2021. 

Won, J., Callow, D.D., Pena, G.S., Gogniat, M.A., Kommula, Y., Arnold-Nedimala, N.A., 
Jordan, L.S., Smith, J.C., 2021. Evidence for Exercise-Related Plasticity in Functional 
and Structural Neural Network Connectivity. Neurosci. Biobehav. Rev. 131 
(October), 923–940. https://doi.org/10.1016/j.neubiorev.2021.10.013. 

Won, J., Nielson, K.A., Smith, J.C., 2023. Large-Scale Network Connectivity and 
Cognitive Function Changes After Exercise Training in Older Adults with Intact 
Cognition and Mild Cognitive Impairment. Journal of Alzheimer’s Disease Reports 7 
(1), 399. https://doi.org/10.3233/ADR-220062. 

Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., 
Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M., 
2013. Sleep Drives Metabolite Clearance from the Adult Brain. Science (New York, 
N.Y.) 342 (6156), 373–377. https://doi.org/10.1126/SCIENCE.1241224. 

Zhang, Z., Chan, M. Y., Han, L., Carreno, C. A., Winter-Nelson, E., Wig, G. S., & (ADNI), 
for the A. D. N. I. (2023). Dissociable effects of Alzheimer’s Disease-related cognitive 
dysfunction and aging on functional brain network segregation. Journal of 
Neuroscience, JN-RM-0579-23. https://doi.org/10.1523/JNEUROSCI.0579-23.2023. 
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