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Subthalamic nucleus input-output
dynamics are correlated with Parkinson’s
burden and treatment efficacy
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The subthalamic nucleus (STN) is pivotal in basal ganglia function in health and disease. Micro-
electrode recordings of >25,000 recording sites from 146 Parkinson’s patients undergoing deep brain
stimulation (DBS) allowed differentiation between subthalamic input, represented by local field
potential (LFP), and output, reflected in spike discharge rate (SPK). Aswithmany natural systems, STN
neuronal activity exhibits power-law dynamics characterized by the exponent α. We, therefore,
dissected STN data into aperiodic and periodic components using the Fitting Oscillations & One Over
F (FOOOF) tool. STN LFP showed significantly higher aperiodic exponents than SPK. Additionally,
SPK beta oscillations demonstrated a downward frequency shift compared to LFP. Finally, the STN
aperiodic and spiking parameters explained a significant fraction of the variance of the burden and
treatment efficacy of Parkinson’s disease. The unique STN input-output dynamics may clarify its role
in Parkinson’s physiology and can be utilized in closed-loop DBS therapy.

Beta oscillations in local field potentials (LFP) and spiking activity (SPK) in
the subthalamic nucleus (STN) are considered the electrophysiological
hallmarkofParkinson’s disease (PD)1–6. LFP recordings, performedwithin a
week of electrode implantation, revealed many patients with peaks in low
beta (LoBeta, 13–20Hz), high beta (HiBeta, 20–35Hz), and both beta sub-
bands4. LoBeta oscillations are positively correlated with the severity of PD
motor symptoms, and their power is suppressed by treatment with anti-
parkinsonian medication or deep brain stimulation (DBS)1,4,5,7. Chronic
neuronal sensing and recording devices show beta activity as a consistent
long-term biomarker for Parkinson’s symptoms8–10. These cumulative stu-
dies underscore that beta LFP activity can be considered a biomarker for
PD’s motor symptoms.

Many centers utilize extracellular recording of spiking (action-poten-
tial) activity to assist in navigating to target brain regions during DBS
surgery11,12. The SPK can serve as a representation of the output from the
recorded neurons. In addition to SPK, LFP, specifically encompassing low
frequencies (e.g., from 0.1 to 70Hz), could be recorded in the brain’s
extracellular space. LFPs are probably generated by subthreshold (e.g.,
synaptic activity) modulation of the membrane potentials13 and, therefore,
can be used as a proxy for the input of the recorded structure. The exact

relationship of LFPs to the SPK in the STN of PD patients is still unclear.
Significant coherence was found between the LFP and SPK in the sub-
thalamic region3. Our group reported similar results in the MPTP non-
human primate model of PD14. However, a recent study reported that STN
periodic spike bursts commonly preceded the LFP beta oscillation (i.e., the
periodic bursts occur at the ascending phase of the LFP beta oscillation) and
that other neuronal firing activity had no relationship to the LFP15.

Neural oscillations have been extensively studied using advanced
methods in the time and frequency domains16–18. The traditional oscil-
lation bands are predefined based on the canonical frequency bands and
extracted by applying narrowband filtering. Typically, the power of a
frequency band is either the maximum or the total power within that
specific band. However, most physical and physiological phenomena
follow a power law (1/fα, f represents the frequency, α is the exponent, or
the slope of the power-frequency relationship in a log-log plot) rule19.
The power at each frequency band is a summation of the aperiodic (1/fα)
and periodic components20,21. Extracting the periodic oscillations and
aperiodic components from the signals of interest by Fitting Oscillations
and One Over F (FOOOF) analysis can overcome the limitation of tra-
ditional narrowband analyses20,22.
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This study investigated the relationship and differences between LFP
and SPK in the STN of PD patients undergoing DBS procedures. Utilizing
the FOOOF algorithm20, we dissected these signals into periodic and
aperiodic components to better understand their features. Our analysis also
extended to examining the potential of these newly characterized STN
physiological features as indicators for PDseverity and for the predictions of
the effectiveness of treatments.

Results
This study was conducted on PD patients underwent DBS implantation in
the STNduring 2016–2021 atHadassahMedical Center in Jerusalem, Israel
(Demographic and clinical details are described in Supplementary Table 1).
Electrophysiological recording of the STN activity and neighboring struc-
tures was done as part of the standard-of-care DBS navigation procedures.

All signalswere recordedwhen thepatientswere awake and in a stateof
rest. The LFP and SPK were obtained by offline filtering the raw data at
3–200Hz and300–6000Hz, respectively, using four-poleButterworthzero-
phase band-pass filters. The SPK was rectified1 to reveal the low-frequency
(<300Hz) oscillations in discharge rate (SPK, Supplementary Figs. 1, 2).

Based on our inclusion criteria, we included 308 out of 492 trajectories
from 146 patients and 25,822 and 27,130 recording sites of LFP and SPK,
respectively. We compared three subthalamic regions: the subregion pre-
ceding the STN, namely the internal capsule (Pre-STN), and themotor and
non-motor domains of the STN, previously identified as the dorsal lateral
oscillatory region (DLOR) and the ventral medial non-oscillatory region
(VMNR)1,23,24. Further details are shown in Supplementary Table 1.

The FOOOF algorithm20 decomposed the neuronal activity into
aperiodic and periodic components (Supplementary Fig. 1). The aperiodic
exponents were used to whiten the power spectral densities (PSDs) of the
LFP and the SPK activity for further analysis of the STN periodic
components.

The goodness of fit of the FOOOF analysis to the LFP and SPK
activity
Figure 1 depicts the STNLFP and SPKpopulationmean of the rawPSDs and
their aperiodic and periodic components. The goodness of fit of the FOOOF
analysis is assessedby theR2 and themeanabsolute error (MAE, error) values.
Optimally, R2 and error should be as close as possible to 1 and zero, respec-
tively. The R2 values of LFP are 0.99 ± 0.01 (mean ± SD) in the three STN
subregions. The R2 values of SPK are 0.64 ± 0.17, 0.89 ± 0.15, and 0.65 ± 0.17
in Pre-STN and motor and non-motor STN domains, respectively.

The lower R2 values in SPK can be attributed to its relatively lower
exponent values compared to LFP (Figs. 1, 2b). Our numerical simulations
(Supplementary Fig. 3) demonstrate that exponents nearing zero (as for our
SPK activity) result in reduced R2 values. Moreover, the R2 value tends to
grow as the absolute value of the exponent increases. The introduction of
periodic components diminishes the exponent’s impact on R2 values. This
explains why the R2 values of SPK in the STN motor domain with more
prominent periodic components (Figs. 1, 3) are higher than those in the two
other subregions. Significantly, the error remains unaffected across an
extensive spectrumof periodic power and exponent (α) values. Indeed, both
LFP and SPK have low error values in three STN subregions (error < 0.04).
We concluded that the FOOOF analysis yielded a robust fit for our data,
prompting us to proceed with a comparative analysis of the aperiodic and
periodic components within both STN LFP and SPK activity.

Significantdifferences inaperiodicparametersbetweenLFPand
SPK activity
The aperiodic parameters are offset and exponent20. LFP exhibits sig-
nificantly larger offsets than SPK in the three subregions (Figs. 1, 2a). There
is no significant difference in LFP offsets between subregions, while SPK
offsets in each subregion are similar but significantly different (Supple-
mentary Table 2).

Additionally, the exponents of LFP and SPK also differ significantly
(2.20 ± 0.40 and 0.11 ± 0.22, respectively, Fig. 2b). The exponents of LFP

and SPK resemble those of Brown noise (α = 2) and White noise (α = 0),
respectively. LFP exponent in the pre-STN is significantly larger than that in
the two subthalamic regions (Supplementary Table 2).

We also examined the correlation between the aperiodic parameters
of STN neuronal activity (Supplementary Fig. 4). A robust and sig-
nificant positive correlation exists between the exponent and offset
parameters within a signal type (i.e., LFP or SPK) in all recording areas.
The correlation is strongest in the STN motor domain. Finally, recent
clinical studies have increasingly adopted bi-polar differential recording
techniques, frequently presenting LFP PSDs that deviate from the
expected 1/f2 behavior7–9. Several factors contribute to this divergence,
including inherent patient variability25, variations in impedance mis-
match among lead contacts26, and the potential implementation of high-
pass filters in certain investigations. Moreover, the spatial correlation of

Fig. 1 | Robust differences in aperiodic and periodic components of subthalamic
LFP and spiking (SPK) population activity. Left. The population average LFP
Power SpectralDensity (PSD, a) and its aperiodic (b) and periodic components (c) in
three STN sub-regions. Right, same as the left subplot, but for the spiking (SPK)
activity. Gray/red/blue lines indicate the pre-STN and STN motor and non-motor
domains, respectively. Their corresponding shade lines indicate SEM. Colored cir-
cles above the x-axes represent the frequencies at which there was a significant
difference between the pre-STN and STN motor domain (gray), between the STN
motor and non-motor domains (red), and between the STN non-motor domain and
pre-STN (blue). Significance was calculated using the Wilcoxon rank sum test and
the Bonferroni correction (p < 0.05/3 = 0.0167). Vertical dashed lines denote the
20 Hz frequency point. See also Supplementary Figs. 3–7.
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LFP aperiodic parameters, can result in a flattened PSD pattern after the
application of differential operations in bipolar recordings.

Significant differences in periodic (oscillatory) components
between LFP and SPK activity
The bottom subplots of Fig. 1 depict the FOOOF-derived population
average periodic activity of LFP and SPK in three STN subregions. Beta
oscillations in LFP are observed in the three subregions, while in SPK, they
only exist in the motor subdomain. LFP HiBeta (20–33Hz) oscillations in
the motor STN are significantly higher than in the two other subregions.
There is no significant difference in LFP LoBeta oscillations between the
three subregions. The Pre-STN usually points to the internal capsule (white

matter). The LFP in Pre-STN probably represents the volume conductance
originating fromthe cortex, the globuspallidus, and the STN27–30. TheLFP in
STNmay also be affected by these structures, aswell as by the LFP generated
by neurons in STN27–30. Nevertheless, most of the volume conductance is
probably from the cortex, because of the cellular and gross anatomy
(spherical shell around the subcortical structures)30. These may be why the
beta oscillations appear in the monopolar LFP raw recording in the three
STN subregions.

SPK has a reduced beta power than LFP. Additionally, the frequency
distributionofbetaoscillations inSPKis shifted to the left relative to theLFP.
LFPalso shows theta andalphaoscillations in the three subregions. Still, SPK
demonstrates theta oscillations only in the STN motor domain, and no
robust oscillations are found in the Pre-STN and the STN non-motor
domain.

The efficacy of the analysis techniques and the reliability of the
physiological phenomena
To ensure that the distinctions in aperiodic and periodic components
between LFP and SPK are not attributable to artifacts stemming from the
rectification of the SPK signal (Supplementary Fig. 1c), we additionally
subjected theLFPsignal to rectification for validation (SupplementaryFig. 5,
and SupplementaryTables 3, 4). The rectified LFPhas robust goodness offit
of FOOOF analysis (R2 ~ 0.99, error < 0.05). The aperiodic parameters of
non-rectified and rectified LFPs don’t reveal significant qualitative differ-
ences. No significant qualitative differences exist between non-rectified and
rectified LFP PSDs at the beta frequency range (>13Hz). However, rectified
LFP has higher periodic power in theta and alpha frequency bands than
non-rectified LFP. This is in line with previous studies demonstrating that
full-wave rectification of EMG demodulates and enhances underlying low-
frequency components of the signal (“carrying” frequencies), which may
not be observed in the original signal due to the greater power of higher-
frequency components of the signal31.

We used a numerical simulation to verify further that our observed
shift in the center frequency of beta oscillations in SPK compared to LFP is
not due to our data processingmethods.We simulated Brown noise signals
to whichwe added betamodulation and spikes (Supplementary Fig. 6). The
simulation demonstrates that LFP rectification smooths the power dis-
tribution in the beta region but doesn’t change the center frequency. After
adding Poisson-distributed spikes following a threshold crossing, the offset
and the exponent of the simulated LFP don’t change. Band-pass
(300–2000Hz) filtering of the wide-band signal leads to the loss of the
low-frequency components. However, full-wave rectification reinstated the
low-frequency (20Hz) oscillatory component. These results reveal, in line
withourprevious studies32, that spikesdon’t affect theLFPbehavior and that
rectification (absolute operator) of the spiking (>300Hz) activity exposes
the behavior of the discharge rate of the spikes.

SupplementaryFig. 7 shows thedifferences between the envelopeof the
discharge rate (SPK, as used in the DBS physiological navigation
algorithms33,34 and this study) versus the analog broadband (3–9000Hz)
neuronal activity that includes both the LFP and the extracellularly recorded
raw SPK. The broad-band neuronal signal can bewell represented by power
law distribution with exponent values higher than 2. However, such broad-
band presentation of the neural activity masks the low-frequency oscilla-
tions that characterize the LFP and the discharge rate of the STN in the
Parkinsonian state. This underscores the importance of analyzing the LFP
and SPK signals separately, as is done in the remainder of this paper.

Whitened and Z-normalized spectrograms reveal a highly dis-
tinctiveandstabledistributionofLFPandSPKbetaoscillations in
the STN motor domain
When neuronal activity is recorded over several recording sites, we can use
spectrograms to represent the activity as a function of the distance to the
estimated location of the target1 or to average the spectrogram over the
distance to get the average power spectrum density. To overcome the
confounding effect of the power-law behavior of the neuronal data, we used

Fig. 2 | Significant differences in aperiodic parameters of LFP and spiking (SPK)
activity in the subregions of the subthalamic nucleus. a The aperiodic offset
parameter of LFP and SPK in three STN sub-regions. b As (a), but for the aperiodic
exponent parameter. The pre-STN and the STNmotor and non-motor domains are
shown in gray, red, and blue, respectively. The contour of the violin plots shows the
distribution of the data. The white circle shows the median. The horizontal gray line
represents the mean. The gray vertical bold lines span from the 25th to the 75th
percentiles of the sample, and the length of this line is the interquartile range. The
lowest and highest whiskers of the violin plots are values that are 1.5 times the
interquartile range below the 25th percentile and above the 75th percentile. The
N-way analysis of variance was used to analyze the difference in aperiodic para-
meters. The P(Signal), P(Subregion), and P(Signal*Subregion) represent the statistical prob-
ability for a significant difference in offset or exponent values between LFP and
spiking (SPK) activity, for a difference of offset or exponent values between the three
STN subregions, and for the interaction effect of offset and exponent values between
the signal types and sub-regions. Detailed results ofmultiple comparisons are shown
in Supplementary Table 2. See also Supplementary Figs. 3–7.
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the FOOOF exponents to whiten the signals (in frequency and time
domains) at the level of each recording site (Supplementary Figs. 1, 2). The
average population spectrograms in Fig. 3a are shown before (raw, i.e.,
classical spectral analysis) and after whitening in the frequency domain.
Unlike the raw spectrogram, the whitened LFP spectrogram demonstrates
clear beta oscillations.However, the beta oscillations in the pre-STN suggest

that LFP STNbeta oscillations are confounded by volume conductance (the
major source is probably from cortical activity)27. Robust intrinsic LFP
HiBeta periodic activity in the STNmay become visible after the removal of
volume conductance activity. We used z-score normalization based on the
pre-STN activity for each frequency bin to minimize the volume con-
ductance effects (Fig. 3b).
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In sharp contrast with the LFP, the raw SPK spectrograms are less
affected by volume conductance. Notably, the whitened SPK spectrogram
displays both LoBeta and HiBeta oscillations in the STN motor domain
(Fig. 3a, b). Additionally, the whitened spectrograms were stable for each
STN subdomain, and suggest that LFP and SPK have different distributions
of beta oscillations in the STN motor subregion. This is also verified by
whitening in the time domain (Supplementary Fig. 8).

Lower peak beta frequency in SPK relative to LFP in the average
PSDs of the STN motor domain
Following the demonstration of stable (over distance in each STN sub-
region) periodic components in the SPK and LFP spectrograms (Fig. 3a, b),
we moved to quantitative analysis of the average (population) whitened
PSDs in the three STN subregions (Fig. 3c). In the STN motor domain,
whitened LFP and SPK have clear beta oscillations.Whitened LFP has peak
beta power in HiBeta, while whitened SPK is in the LoBeta range.

SPK beta oscillations were detected only in the STN motor domain,
whereas LFP beta oscillations appeared in all STN subregions. We, there-
fore, applied z-score normalization based on the pre-STN activity to reduce
the confounding effects of volume conductance on the STN LFP activity
(Fig. 3d). The Z-normalization minimized the beta oscillations outside of
the STNdomain. The locations of the peak beta power inwhitened LFP and
whitened SPK are still above and below the 20 Hz (HiBeta-LoBeta dividing
line), respectively. The beta oscillations in whitened LFP in the STN non-
motor domainmay be influenced by several factors. One potential source is
the STN’s motor domain, where the crossover of oscillations could stem
fromthe imprecise demarcationof theboundariesbetweenSTNsubregions.
This lack of precision in distinguishing themotor and non-motor transition
zones within the STN could be due to the limitations of the current sub-
regional detection algorithms, coupledwith the anatomical nuances of these
gradually transitioning subregions29,34. Volume conduction from the STN’s
motor domain and pre-STN may also contribute to the beta oscillation in
the STN’s non-motor domain.

The frequencies of beta oscillations are different across patients.
However, they are stable along a single STN trajectory and for different
trajectories of the same patients1. To further explore the relationship
between the frequencies of whitened LFP and whitened SPK beta oscilla-
tions, we calculated their beta center frequencies (βCFs) for the STNmotor
subregion of each trajectory (Fig. 4a). The raster displays of the same tra-
jectory LFP and SPK βCFs reveal a robust tendency towards the right-lower
half (LFP βCF > SPK βCF). LFP βCF is significantly higher than SPK βCF,
and there is a larger fractionof pairswhoseLFPβCF ismoreprominent than
their corresponding SPK βCF. We also estimated βCF in PSDs normalized
by frequency and distance (i.e., Z-normalization by the pre-STN activity).
The SPK βCF is relatively downshifted more, and the percentage of sites
with LFP βCF larger than SPKβCF increases after the z-score normalization
(Fig. 4b).

Figure 4c, d shows βCFs from simultaneously recorded LFP and SPK
signals of single sites in the STN motor domain calculated from the PSDs
normalized by frequency and Z-score, respectively. At the level of the single
recording site (n = 9147), SPK βCF also tends to shift downward relative to

LFP βCF. Typical examples are shown at Fig. 4e.Whitening in the temporal
domain yields similar results (Supplementary Fig. 9).

We have also calculated the regular and whitened magnitude-squared
coherence (Supplementary Fig. 2) of the simultaneously recorded (in the
same recording site) LFP and SPK to estimate their frequency overlap and
synchronicity (Supplementary Fig. 10). The coherence in the beta frequency
band is higher in the STN motor domain than in the other subregions. No
significant difference exists between regular andwhitened coherences in the
two STN subregions. Thus, the distribution of LFP and spiking beta oscil-
lations overlapped in the STNmotor domain (in linewith Fig. 3 and the data
along the diagonal in Fig. 4a–d).

The broader and asymmetric distribution of population SPK and
LFP beta oscillations reflects a wide distribution of narrow and
symmetrical frequency oscillations at single sites
The broad and asymmetric distribution of LFP and SPK beta oscillations
(Fig. 3) may reflect different scenarios. It could result frommany single-site
oscillations with similar wide and asymmetric PSD (Fig. 5a-left) or broad
and asymmetric distribution of single siteswith narrow and symmetric PSD
(Fig. 5a-Right). The finding of the downshift between LFP and SPK βCFs
(Fig. 4) is consistent with both scenarios. We, therefore, calculated the half-
bandwidths and half-sidewidths at the half-height of the beta peaks in 9147
sites (from the STNmotor domain of 308 trajectories), where both LFP and
SPK beta oscillations were simultaneously detected (Fig. 5b and Supple-
mentary Fig. 11).

In the raw power spectral densities, the population half-bandwidths of
LFP are narrower than that of SPK. After aligning each PSD to its corre-
sponding βCF, the population half-band widths of both LFP and SPK
activities exhibit similar half-band widths. For both LFP and SPK, beta
oscillations are symmetric in both aligned populations and single sites.
Similar results were obtained for the 1/4 and 3/4 height bandwidths (Sup-
plementary Figs. 11, 12). Thus, the downshift of beta oscillation frequency
from LFP to SPK reflects a population downshift of narrow and symmetric
SPK PSDs compared to LFP PSDs in the STN (Fig. 5c).

Subthalamicaperiodicparametersandspikingactivity explained
a significant fraction of the variance of the burden of Parkinson’s
disease and the efficacy of its treatment
Thedissectionof theneural activity into aperiodic andperiodic components
has revealed new features of the neuronal activity in the STN motor sub-
domain of Parkinson’s patients. However, the relative contribution of these
features to the burden and the clinical efficacy of dopamine replacement and
DBS therapies have not yet been explored. To determine how well demo-
graphic and neuronal parameters, as well as various non-mutually exclusive
parameter/predictor groups/families (including demography, aperiodic
components, periodic components, LFP features, SPK features, and LFP-
SPK comparisons), predict clinical symptoms and therapeutic effects in
patients, we employed a battery of regression models. These regression
models range from simple linear regression (Fig. 6a) to more complex
general linear regression (general linear model (GLM) fitting) with various
interaction orders (zeroth-order interaction of members in a parameter

Fig. 3 | Raw and whitened averaged spectrograms and power-spectrum densities
(PSD) reveal differences in beta frequency distribution andpeak beta oscillations
between LFP and spiking (SPK) activity in the motor domain of the subthalamic
nucleus. a Raw and whitened spectrograms of LFP and SPK are normalized by the
total amount of power in the tested frequency range (3–70 Hz) for each tested
recording site (normalization by frequency). b The raw and whitened spectrograms
are normalized by frequency (as in (a)) and by the power in the pre-STN domain per
each frequency bin (normalization by distance). The spectrograms in the second and
fourth columns of (a, b) are whitened in the frequency domain (Eq. (2), pwelch-
FOOOF-whitening). The x-axis is the normalized distance (ND, normalized STN
length from entry to exit equals 1). The entrance and exit of STN are represented by 0
and 1, respectively. The negative values on the x-axis indicate the pre-STN region.
The y-axis is the frequency on a linear scale. The color scale of the power spectral

density normalized by frequency (a) indicates the percentage power of the frequency
bin out of total power. The color scale of the power spectral density normalized by
frequency and distance (b) represents the deviation from the mean value of the first
ten depths in pre-STN (z-score, standard deviation unit). cThePSDs of LFP and SPK
are normalized by frequency in three sub-regions. d As in (c) but normalized by
frequency and by distance (Pre-STN activity). The dark and light lines indicate the
LFP and SPK in the pre-STN (gray) and the STNmotor (red) and non-motor (blue)
domains, respectively. Their corresponding shade lines indicate SEM. The black
circles above the X-axes indicate frequencies at which there were significant dif-
ferences (Wilcoxon rank sum test) between LFP and spiking activity. The horizontal
(a, b) and vertical (c, d) magenta dashed lines are the referenced line of 20 Hz. See
also Supplementary Fig. 8.

https://doi.org/10.1038/s41531-024-00737-8 Article

npj Parkinson’s Disease |          (2024) 10:117 5



family is shown in Fig. 6b; first-order interaction of each two members in a
parameter family in Fig. 6c; higher-order interaction of each three and four
(all) members in a parameter family in Fig. 6d).

BothR2 andAkaike InformationCriterion (AIC)were used to evaluate
the goodness of GLM fitting. The R2 indicated the predictive capability and
higher R2 values suggested a stronger predictive capability. The AIC

manifested the model fitting and complexity. Lower AIC values indicated a
more favorable balance betweenmodelfit and complexity. For patientswith
akinetic/rigid, the simple linear regression of each parameter (Fig. 6a) and
zeroth-order interaction of parameter family (Fig. 6b) demonstrated that
STN aperiodic and spiking parameters had a relatively better predictive
capability of PD severity and therapy effectiveness. The predictive capability

Fig. 4 | Downshift of the center frequency of beta
oscillations of spiking (SPK) activity compared to
LFP within the motor subdomain of the sub-
thalamic nucleus. a, b Raster display, violin dis-
tribution, and the fraction of down- and up-shift of
LFP and SPK center frequency of beta oscillations
(βCFs) of STN trajectories. c, d As in (a, b), but the
unit of βCFs is a single recording site. The βCFs are
obtained from the frequency-normalized power
spectra in the (a, c) subplots and from the frequency-
and distance-normalized power spectra in the (b, d)
subplots. The dark dashed lines on the left panel of
(a, b) are the diagonal lines (at which x= y). The
violins in themiddle panel of (a, b, c, d) demonstrate
the distribution of βCFs of LFP and SPK. The sig-
nificance levels shown in the violin plots were cal-
culated using the Wilcoxon signed rank test. In the
right panel, the red arrows indicate the percentage of
SPK βCFs thatwere upshifted (left) and downshifted
(right) compared to the corresponding LFP βCFs.
e shows the raw signals of three examples (LFP βCF
is larger than, equal to, or smaller than SPK βCF,
from left to right). The examples shown in (e) are
marked in the corresponding colors (red, green, and
blue) on the left panel of (a, b). RL raw LFP, RS raw
SPK, βL β frequency band of LFP, βS β frequency
band of SPK. See also Supplementary Figs. 9, 10.
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of DBS therapy from aperiodic parameter families was enhanced using the
first-order interactionGLMfitting. Thisfittingmodel also decreased itsAIC
value (Fig. 6c). The first-order interaction GLM fitting increased the ability
of aperiodic family predicting the PD severity but also increased the com-
plexity of fitting (Fig. 6c). However, the contribution of these two parameter
families was relatively weakened with the higher-order interaction GLM

fitting (Fig. 6d). PD severity and DBS therapy had the strongest response to
LFP family and aperiodic family in the first-order interaction GLM fitting,
respectively (Fig. 6c). Our results also demonstrated that the demographic
andneuronal parametershadabetter ability topredict theDBS therapy than
to predict the PD severity and the dopamine therapy in different level fitting
(Fig. 6b–d).Roughly, theneuronal parametersweremore effective topredict
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the burden and the treatment outcome of the disease than the demographic
parameters (Fig. 6b–d).

The regression analysis yielded different results for patients with aki-
netic/rigid symptoms vs. tremor-dominant patients, for the different pre-
dicted variables (e.g., Parkinson’s severity, dopamine, and DBS efficacies),
and for the various models (Supplementary Figs. 13–16). This is probably
due to gaps in our data, intrinsic variability, and noise in our database.
However, our results are in line with previous studies6. Nevertheless, the
different regression models used here indicate a significant role for the
aperiodic and SPK features and their interactions in predicting the Par-
kinson’s burden and the efficacy of dopamine replacement and DBS
efficacy.

Discussion
In this study, we highlighted the differences and relationship between LFP
and the discharge rate (SPK) of STN neurons in Parkinson’s patients by
separating STN neuronal activities into aperiodic and periodic
components20. We found that the LFP exponent resembled Brown noise
(α=2) whereas the SPK exponent is close to the White noise (α = 0). In the
periodic components, we unexpectedly found that the beta center fre-
quencies (βCFs) were downshifted in SPK relative to LPF in the STNmotor
region. This shift was not caused by a change in an asymmetric broadband
distribution of neuronal beta oscillations. Instead, our results indicate a
different distribution of symmetric, narrow-band oscillations of STN LFP
and SPK activities. Finally, different regression models reveal that the new
features of the STN neural activity (e.g., aperiodic components and LFP-
SPKdifferences) are correlatedwith the Parkinson’s burden and the efficacy
of dopamine replacement and DBS therapy.

We found that the LFP displays power-law behavior. The power is
inversely and linearly related to the frequency in log-log plots, i.e., there is 1/
fα scaling of thepower21. The exponent canbe affected bymany factors13, one
of which is the relative contribution of excitation and inhibition (E/I
ratio)22,35. However, detailed quantitative anatomy of the relative number
and their somatic/dendritic location of STN synaptic input is still
missing36,37. Additionally, the E/I balance reflects the physiological efficacy
of the synaptic inputs, which is significantly affected by the frequency and
pattern of discharge of the GPe38 and probably of cortico-STN neurons.
Thus, our results showing different exponent values in pre-STN and STN
domains cannot be easily framed with the suggested relationships with the
E/I ratio. Our results could be explained by the degree of neuronal expen-
diture. Greater neural expenditure causes flatter slopes (smaller
exponent)39,40. In PD, the activation of the basal ganglia is profoundly
altered, and STNactivity is significantly elevated14.We, therefore, expect the
LFP exponent in STN to be smaller than that in Pre-STN. There are other
possible explanations for our results, and future studies should explore the
neuronal/metabolic correlates of the exponent to address this question.

The SPK of a neuron is a train of action potentials (spikes). To mini-
mize thedurationof thephysiological navigationduring theDBSprocedure,
we record the multi-unit activity of the STN. To do so, we filtered the raw

signals with the 300–6000Hz bandpass filter and then rectified the SPK by
the absolute operator32, resulting in a SPK signal indicating the neuronal
discharge rates of the total activity recorded by our electrodes. This differs
from most previous studies that have used the SPK (e.g., 300–3000Hz) of
well-isolated single neurons37,38, however, at the price of masking low-
frequency oscillations31.

Studies reported the aperiodic offset correlates with both neuronal
population spiking and the related fMRI blood-oxygen-dependent
signal41,42. In our current study, SPK offsets are significantly smaller than
LFP offsets in the three subregions, and the SPK offsets are significantly
larger in STN than in Pre-STN (Fig. 2a and Supplementary Table 2).
Additionally, there is no significant difference in LFP offsets between sub-
regions, while SPK offsets are significantly different (Fig. 2a and Supple-
mentary Table 2). This is consistent with the previous studies. Because LFP
is more likely the result of slow sub-threshold currents (primarily post-
synaptic potential) of a large neuronal population within several milli-
meters, and SPK is usually considered as the action potentials emitted by
nearby neurons13.

SPK exponents are around zero, which resembles the characteristics of
a random process (white noise). This is in line with the Poisson-like dis-
tribution of SPK43, the tendency to a flat spectrum of cortical and pallidal
units44,45, and the demonstration that thePSDof the aggregate of spike trains
(with Poisson pattern and refectory period) has a flat spectrum, resembling
that of white noise46. White noise background probably enables a better
signal-to-noise ratio of the SPK responses to external or internal events.We,
therefore, suggest that the background activity of the STN (as of many
structures in the nervous system) is probably random to maximize the
system’s information capacity and the signal-to-noise ratio of the evoked
activity. In any case, the possible mechanism, biological significance, and
application of the aperiodic parameters of STN SPK require further study,
such as exploring their prediction of the STN subregions for better detection
of DBS targets.

LFP more likely represents slow sub-threshold currents (primarily
post-synaptic potentials) of a large neuronal population and is considered a
proxy of the ‘input’ to the local neural network13. LFP beta oscillations in the
STN of PD patients are possibly: (1) generated within STN through the
network functional connectivity, i.e., driven by the STN afferent
inputs3,7,47,48; (2) generated by the STN neurons themselves (intrinsic
properties and subthreshold somatic activity)15; (3) generated by the volume
conductance of LFP from other locations (such as the cortex)28,30. LFP and
SPK beta oscillations aren’t always simultaneously present in the same
recording electrode28. In addition, the amplitude of beta oscillations in LFP
in the STN motor domain is higher than that of STN SPK oscillations3,28

(Figs. 1, 3). These results support the notion thatmono-polar recorded STN
LFPmainly results from afferent inputs and volume conductance. Notably,
amajor fraction of the volume conductance is from the cortex, which is also
a significant source of STNafferents (the hyper-direct pathway). Thus, there
is a significant overlap of the possible sources of STN LFP activity, and the
STN LFP can be used as a proxy for STN input.

Fig. 5 | The distribution of beta oscillations of LFP and spiking (SPK) activity in a
single site is narrower than the population distribution of beta oscillation in the
STN DLOR. a The potential scenarios for generating population-wide power
spectral density (PSD): the population broad and asymmetric PSD might be caused
by the broad and asymmetric PSDs in single sites (the left panel) or the broad and
asymmetric distribution in single sites with narrow and symmetric PSDs (on the
right panel). b The population half-band width of LFP and SPK beta oscillations in
the motor domain of the subthalamic nucleus. The first and second orange/purple
bars indicate the half-band width of LFP/SPK before and after the alignment to the
peak beta frequency, respectively. The LFP (left panel) and SPK (right panel)
spectrograms are whitened in the frequency domain, and their frequencies are
shifted to the peak beta frequency. The color scale in the first and second rows of the
spectrograms indicates the percentage of total power and the standard deviation
from the mean value of the first ten depths in pre-STN (z-score), respectively. The

power spectrum densities are the averaged spectrum of LFP (dark red line) and SPK
(light red line) in the STN motor domain. Their corresponding shade lines indicate
SEM. The power spectrum is normalized by frequency (upper subplot) and by
frequency and distance (lower subplot). On the right, the violin plots depict the
distribution of half-band widths of LFP and spiking beta oscillations (4.10 ± 2.34 Hz
vs 4.40 ± 2.62 Hz (mean ± SD), respectively) in each recording site. The Wilcoxon
signed-rank test was used for pairwise comparison of half-band widths between LFP
and spiking activity. c The potential mechanism for the downshift of beta center
frequency in SPK (the right panel) relative to LFP (the left panel). The black dashed
arrow lines (left panel) indicate a lesser impact, and the black bold arrow lines (right
panel) represent a greater impact of single-site PSD on population PSD. The hor-
izontal or verticalmagenta dashed line is the reference line of the peak beta frequency
(ΔFrequency = 0 Hz) in subplot (b), or the reference line of the 20 Hz in subplot (c).
See also Supplementary Figs. 11, 12.

https://doi.org/10.1038/s41531-024-00737-8 Article

npj Parkinson’s Disease |          (2024) 10:117 8



We can consider the STN SPK as reflecting the ‘output’ (since the
fraction of interneurons in the basal ganglia structures is negligible)32,49.
Parkinson’s pathologic mechanismmay, therefore, be better understood by
exploring the ‘input-output’ or LFP-SPK relationship in the STN. Previous
studies indicate that in the STN of PD: (1) the firing of neurons is phase-
locked to LFP beta oscillations3,15; (2) the power of LFP is coherent with that

of SPK in the beta frequency band50; (3) the beta phase of LFPmodulates the
amplitude of the LFP high-frequency oscillations (HFO, 200–500Hz).
However, most of these studies were conducted on a small number of
patients, and the aperiodic components of the STN activitymight confound
their analysis of periodic phenomena. Finally, these studies are in line with
our finding of a sizeable fraction of neurons with similar frequency of LFP

https://doi.org/10.1038/s41531-024-00737-8 Article

npj Parkinson’s Disease |          (2024) 10:117 9



and SPK oscillations (trajectories/units close to the diagonal in Fig. 4 and
SupplementaryFig. 9) and theLFP-SPKcoherence (Supplementary Fig. 10).

Our study shed light on the STN input-output question, revealing a
downshift of the βCFs of periodic oscillations from LFP (input) to SPK
(output). This is correct even after z-score normalization to remove the
volume conducted LFP activity. The downshifted βCFs between SPK and
LFP suggest a non-linear input-output transformation of STN beta oscil-
lations. The STN neurons encode and integrate their inputs from the cer-
ebral cortex, thalamus, and GPe and then construct their outcome as SPK
(i.e., information filtering). While LFP may be equally affected by all
synaptic inputs, the SPK is more affected by excitatory synapses and
synapses close to the soma. This is a possible source of the non-linearity that
causes the βCF downshift toward the low-beta range in this input/output
encoding/decoding STN process (Fig. 5c). That is, STN spikes can be dis-
sociated from LFP51. Finally, we expect that the STN SPK, which drives the
central and output structures of the basal ganglia, rather than LFP beta
oscillations, to underly PD clinical symptoms.

The LFP and SPK in the STN of 146 PD patients were separated into
periodic and aperiodic components using the FOOOFalgorithm.We found
the exponent of LFP resembled Brown noise, and the exponent of the
discharge rate (SPK) was similar to white noise. We also found that the
center frequency of beta periodic activity in the STN motor domain is
downshifted in SPK compared to LFP. This downshift wasn’t caused by an
asymmetrical and broad-band distribution of beta oscillations in a single
STN recording site. Rather, it probably reflects the unique input-output
relationships of STN neurons. Finally, the differences between the periodic
and aperiodic components of the STNLFPandSPKsubthalamic activity are
correlatedwith the burden and the treatment efficacy of Parkinson’s disease.
Future generations ofDBSnavigationandadaptiveDBSalgorithmsmayuse
these new features to optimize treatment in the spatial and temporal
domains.

There are several caveats in our study worth noting. Firstly, this is a
single-center study. Although the number of patients is bigger than in
similar studies, our data still has limits and gaps. Secondly, the results were
obtained from Parkinson’s patients undergoing DBS procedures. There are
no signals from healthy individuals as a control group, or from Parkinson’s
patients at early or late stages of the disease. Third, it’s difficult to distinguish
between power law and log-normal behaviors based on our limited (one-
two orders) frequencies (x-scale) tested. Other methods for estimating the
exponent and enabling the detection of other features (e.g., knee) in the log-
log plots were not tested here52. Finally, the frequency range tested started at
3 Hz, and lower frequency (Delta) oscillations were not included. However,
the large number of patients and recording sites used in this study support
the validity of the STNnon-linear input-output relationship. This improved
understanding of STN pathophysiology and the LFP-SPK beta downshift
biomarker will likely pave the way for better adaptive DBS therapy. Future,
much larger studies (with the number of patients in the range of thousands
and more) should be done to verify the relationships between the neuronal
parameters and the clinical symptoms and therapeutic efficacy. Overall, our

results demonstrated that the neuronal parameters more effectively predict
the outcome of DBS therapy than those of the demographic, including pre-
operative dopamine treatment parameters53,54. Future studies should
investigate whether this suggests distinct mechanisms of action between
pharmacological treatments and DBS.

Methods
Patients
Patients with PD underwent DBS implantation in the STN during
2016–2021atHadassahMedicalCenter in Jerusalem, Israel (Supplementary
Table 1). The patients had to be offmedications starting the night before the
DBS surgery. Inclusion criteria included clinically established PD, eligibility
forDBS procedure, and available intraoperative electrophysiological data in
the STN. Additionally, these patients consented to the operative procedure
and signed informed consent. Patients were evaluated using the Unified
Parkinson’s Disease Rating Scale (UPDRS) III both off and on medication
before surgery, and on DBS postoperatively. In addition, the neurologist
qualitatively evaluated theDBSoutcomeabout 1 year after surgery, basedon
their subjective grading of the clinical status (+2: Excellent;+1: Very good;
0: Satisfactory; −1: Insufficient; −2: Poor). This retrospective study was
approved by the Institutional Review Board (IRB) of the HadassahMedical
Organization, Jerusalem, Israel (0339-21-HMO). Patient consent for data
use was waived by the IRB due to the retrospective nature of this study.

Electrophysiological recordings
Datawere acquiredwithNeuroOmega systems (AlphaOmegaEngineering,
Ziporit Industrial Zone, Nof HaGalil, Israel). In each hemisphere, two
microelectrodes (Alpha Omega Engineering) were simultaneously inserted
along the planned trajectory, targeting the STN in the central and posterior
Ben Gun positions, 2mm apart. In rare cases, only one microelectrode was
used in the central position due to the patient’s anatomy indicating a higher
risk of encountering blood vessels along the planned trajectory. All signals
were recorded while the patients were awake, at rest, and off medications
(overnight washout). The raw signal was sampled at 44 kHz and band-
passed from 0.07 to 9000Hz using a hardware 2 and 3-pole Butterworth
filter, respectively.We began recording at 10mm above the target, lowering
the electrode 400 µm and 100 µm steps, before and in the STN areas,
respectively. We recorded the neural activity for four seconds, after 2 s of
stabilization, at each site until we exited the STN. Further details on
microelectrode recordings anddata acquisition canbe found inourprevious
papers33.

Trajectory selection
The length of STN and the subregional state sequence were detected based
on the evaluative results of real-time recorded neuronal signals using the
HiddenMarkov Model (HMM). Finally, 308 trajectories were included for
analysis out of a total of 492microelectrode trajectories recorded during the
relevant period (January 2016 - June 2021). The selection criteria included:
(1) the chosen trajectory contained the pre-STN, and the STN motor and

Fig. 6 | Evaluating predictive factors for pre- and post-operative clinical scores in
patients with Parkinson’s disease. a The predictive relationship (R2) between
individual predictors and responses (The pre-operative UPDRS III scores off
dopamine replacement therapy (DRT Off), its percentage change due to pre-
operative medication (DRT Per), and its percentage change due to DBS (DBS Per),
and their corresponding Akaike Information Criterion (AIC, lower values indicate
more probable fitting models). The individual predictors are levodopa daily
equivalent dose (LD), age (Ag), disease duration (DD), gender (Gd), LFP beta center
frequency (LCF), SPK beta center frequency (SCF), LFP beta peak power (LP), SPK
beta peak power (SP), the difference between LCF and SCF (LSCF), LP and SP (LSP),
LFP offset (LO), SPK offset (SO), LFP exponent (LE), SPK exponent (SE), the
difference between LO and SO (LSO), and LE and SE (LSE). Predictor families are
categorized as follows: Demography (DeF, red), Aperiodic (ApF, bright green),
Periodic (PeF, blue), LFP (LFPF, cyan), SPK (SPKF, magenta), and the LFP-SPK
differential (LSF, light purple). The elements of the predictor families are given in the

top-right legend. b Goodness-of-fit (R2) and AIC for zeroth-order interaction of
members in a predictor family. The color-coding matches (a). This represents the
independent actions of the constitute members in a predictor family (like the for-
mula and schematic diagram shown on the top of subplot (b). X1, X2, X3, and X4

indicate the four members in a family). c R2 and AIC for first-order interaction of
members in a predictor family. This general linear model integrates the interaction
of each twomembers in a family, and theirfitting formula and schematic diagram are
demonstrated on the top of subplot (c). d R2 and AIC of higher-order general linear
model fitting. The higher-order fitting indicates the integration of the interaction of
each three members and the interaction of all (four) members in a family. The
corresponding fitting formula and schematic diagram are demonstrated on the top
of subplot (d). The predictor families in subplots (c, d) are identical to those in (b),
and colors correspond to the predictor families in (a). See also Supplementary
Figs. 13–16.
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non-motor subregions; (2) each subregion was longer than one millimeter.
The results reported here were similar when only the trajectories of the
implanted leads were kept per hemisphere (n=225 trajectories).

Signal pre-processing
The LFP and spiking discharge rate (SPK) signals were obtained by pro-
cessing the raw data offline (Supplementary Fig. 1). The LFP was obtained
by applying a zero-phase digital 4th order band-pass Butterworth filter with
cutoff frequencies 3–200Hz (MATLABR2020b) to the raw signal.We used
a zero-phase digital 4th-order band-pass Butterworth filter of 300–6000Hz
to obtain the spiking signal. Following this step, we rectified the spiking
signal by applying the absolute operator and then subtracted the mean (of
the rectified signal) to get the SPK signal.

Normalized root mean square (NRMS)
For each recordingdepth, theRMSof both theLFPand the SPK signalswere
calculated using Eq. (1)

xRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where xRMS is the RMS value of this site, N is the number of samples in the
time signal and xn is the nth value of the time signal. We normalized the
RMS values for each trajectory by dividing each RMS value by the average
RMSvalueof thefirst ten sites (presumed tobe anunbiasedestimationof the
baseline activity in the white matter).

Outlier removal
If the value of RMS was more than 3 interquartile ranges above the upper
quartile or below the lower quartile, the signal in this recording site was
considered an outlier and was removed from analyses. The outliers were
detected and excluded from the spiking and LFP signals based on their
respective RMS.

Power spectral density (PSD)
The PSD was estimated from both LFP and the SPK signals in each
recordingdepth (site) using theWelchmethod (MATLABR2020b’s pwelch
function), with a Hamming window of 2 s (resulting in a frequency reso-
lution of 0.5 Hz), 50% overlap, and frequency range from 3 to 70 or 200 Hz.
Any site that was shorter in duration than 1.5 times the window size (i.e.,
<3 s)was excluded from the analysis. The PSDvalues of frequencies affected
by the power-line noise (within 2Hz of the 50 Hz frequency and its har-
monics) were replaced by themean value of the closest non-affected values.
Substituting the values affected by the power-line noise by linear inter-
polating the closet values resulted in similar results.

The PSD was normalized either by frequency or by frequency and
distance. For each recording depth, each PSD value was divided by the total
power of the frequency range from 3 to 200Hz to create a normalized by
frequency PSD (NPSD). This normalization overcomes the effects of
changes in total power (RMS) and reports the power per frequency as % of
total power. Additionally, the mean value and the deviation of NPSD from
the mean value of the first 10 depths in pre-STN were calculated for each
frequency bin and used to normalize the LFP and SPK data by frequency
and distance (Z-score).

FOOOF analysis
We used the fitting oscillations & one over f (FOOOF) algorithm20 to
separate neural power spectra into aperiodic and periodic components. We
translated the FOOOF code fromPython toMATLAB language.We added
one fitting parameter (peak_width_limits_per) to avoid overfitting in high
frequency. Each LFP and SPK PSD was fitted with the following settings:
peak_width_limits = [0.8, 12], peak_width_limits_per = [0.02, 0],
max_n_peaks = 6, min_peak_height = 0.05, peak_threshold = 2, aper-
iodic_mode = “fixed”. Aperiodic (offset and exponent) and periodic (center

frequency, power, andbandwidth) featureswere extracted fromtheLFPand
the SPK signals across the frequency range from 3 to 70Hz. This frequency
range was chosen to avoid the contamination of the low frequency artifact
(<3Hz) from heart rate, breathing or other sources, and to limit the inac-
curate fitting in a broad range of frequencies.

The FOOOF aperiodic components of each recording site and signal
type were used in the whitening procedures detailed below. Finally, we used
Spearman’s Rho (correlation coefficient) to calculate the relationship
between the aperiodic components (offset and exponent) of LFP and SPK in
the three STN subregions. The correlation coefficient of the same aperiodic
parameters pair of simultaneously recording sites (2mm horizontal dis-
tance) was computed both before and after 100 shuffling iterations.

Frequency domain whitening procedures
In each recording site, the PSD values from 3 to 70Hz were whitened by
multiplying each power by its frequency to the power of alpha as in Eq. (2):

pwi
¼ poi � f i

α ð2Þ

Where pwi
is the whitened power at the ith frequency, poi is the original

power at the ith frequency bin, fi is the ith frequency, and α is the aperiodic
exponent calculated by applying FOOOF to the PSD data20. This whitening
method was used for both LFP and spiking PSD (Supplementary Fig. 1f).
The corresponding whitened PSDs are called “whitened LFP PSD” and
“whitened SPK PSD”, respectively. This whitening method will be referred
to as “whitening in the frequency domain (pwelch-FOOOF-whitening)”.

Time-domain whitening procedure
Classical whitening is done in the frequency domain, as detailed in the
previous section.We alsowhitenour data in the time domain (https://www.
mathworks.com/matlabcentral/fileexchange/65345-spectral-whitening).
We applied the time-domainwhitening technique to both the LFP and SPK
signals (Supplementary Fig. 2). We first multiplied the time domain signal
by an n-point symmetric Hannwindow (where n is the length of the signal)
to diminish spectral leakage. The Fourier transform of thismultiplied signal
was then obtained with a fast Fourier transform (fft, MATLAB R2020b).
Themagnitude andphase of each elementwere extracted from this signal by
computing the absolute value and the angle, respectively. The magnitude
values, in the frequency range from 3 to 70Hz, were then whitened
by multiplying each magnitude by its frequency to the power of alpha as
in Eq. 3:

mwi
¼ moi

� f iα ð3Þ

Where mwi
is the whitened magnitude at the ith frequency bin, moi

is the
original magnitude at the ith frequency, fi is the ith frequency, and α is the
aperiodic exponent calculated from FOOOF on the magnitude data20. The
modified signal was then transformed back to the time domain using
MATLAB’s inverse fast Fourier transform function (ifft,MATLABR2020b)
to obtain the whitened signal, henceforth referred to as the “whitened LFP
signal” and the “whitened SPK signal” (Supplementary Fig. 2e1, e2). The
whitened PSD was then estimated from the whitened signal in each
recording depth using the Welch method (MATLAB R2020b, pwelch).
Henceforth, we will refer to this method as whitening in the time domain
(FFT-FOOOF-whitening-iFFT-pwelch).

Coherence analysis
The coherence analysis between the LFP and rectified spiking signals of the
same microelectrodes was estimated using the magnitude squared coher-
ence function (MATLAB R2020b) with a Hamming window of 2 s
(resulting in a frequency resolution of 0.5 Hz) and 50% overlap. We show
the coherence function over a frequency range from 3 to 70Hz (Supple-
mentary Fig. 2d). We performed the same coherence analysis on the whi-
tened LFP and SPK signals using the same parameters, except that we
limited the frequency range from 3 to 70Hz already at the stage of the time-
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domain whitening since the value of aperiodic exponent (alpha) was
obtained at this range (Supplementary Fig. 2f).

Delimitating STN subregions
The Hidden Markov Model (HMM) algorithm was used to automatically
detect the STN borders and subregions based on the spiking signal and the
accuracy of this method was confirmed in our previous publication33. We
used these results to define the regions in both the SPK and LFP analyses
(Supplementary Fig. 1e1, e2). The HMM algorithm enforces sharp transi-
tions between regions. To maximize the reliability of our subregion defi-
nition, we chose to exclude the 0.5mmnearest to the border of each region,
thereby establishing “safe boundaries”. Thus, in the STN motor and non-
motor subregions, we excluded 0.5mm nearest to the detected borders of
both entry and exit. For the pre-STN, we excluded the final 0.5 mm pre-
ceding the exit. Our previous study indicated the subregion transition
detection reliability is up to 100% when limiting Hits to error <2mm and
not smaller than 86% when error <1mm. Therefore, the reliability of our
subregion definition was larger than 86%.We averaged the PSD within the
safe boundaries in each subregion. These averaged PSD from 3 to 70Hz
were used for the FOOOF analysis (Supplementary Fig. 1f).

Testing the effects of the values of aperiodic and periodic com-
ponents on the goodness of fit of the FOOOF algorithm
We simulated (based on the function (y = αx+ b)) 3–70Hz spectrawithout
Gaussian periodic elements using aperiodic exponent (α) ranging from
−0.25 to 2.25 (Supplementary Fig. 3 left subplots). The aperiodic offset was
set to equalα, in linewith ourfinding of a positive linear correlation between
the offset and the exponent (Supplementary Fig. 4). We also simulated
spectra with Gaussian periodic elements using the same aperiodic para-
meters (Supplementary Fig. 3, right subplots). In this situation, three peri-
odic Gaussian elements with mean, standard deviation, and amplitude
values of 18 ± 5Hz and 1.5 log10(power), 25 ± 8Hz and 3 log10(power), and
35 ± 5Hz and 2 log10(power), respectively were added. Finally, a random
noise with Gaussian distribution was added to each spectrum to achieve
mean absolute error (range from 0.005 to 0.145).

FOOOF analysis was applied to those simulated spectra to obtain their
R2 and MAE values. R2 values were transformed using inverse hyperbolic
tangent. We repeated the above process for each permutation and combi-
nation of offset, α, and noise 20 times. R2 and MAE values were averaged,
and their corresponding standard deviations were calculated. The averaged
and the standard deviations of the R2 values were back-transformed using
hyperbolic tangent. Only the average values are shown in Supplementary
Fig. 3.

Simulation of LFP and SPK activity modulated by Brown noise
and β oscillations
We used the dsp.ColoredNoise function (MATLAB 2021a) to generate a
Brown noise signal with a length of 8192 samples (simulating a 2-second
signal with a sampling rate of 4096 samples per second).We applied a high-
pass 2nd order Butterworth filter with a 0.1 Hz cutoff to imitate our patient
data, which are real-time high-pass filtered at this frequency. We removed
the first and last 2048 samples, leaving only the 4096 middle samples to
avoid filter edge effects. We simulated the β signal by creating a 1-s
(4096 samples per second) sine wave at 20Hz with an amplitude of
0.5*SD(x) (where x is the Brownian noise signal). We added the beta signal
to the Brown noise signal to create a beta-modulated signal. We then rec-
tified the beta-modulated signal (i.e., took the absolute value of the signal)
and subtracted the mean of the rectified signals (Supplementary Fig.
6a–d, left).

For the LFP and the SPK activity simulations (Supplementary Fig. 6f–i,
left subplots), we defined a high amplitude beta signal, with an amplitude of
1.2*SD(x) to create a threshold at which the spikes would ride on the beta
peaks rather than being influenced by low-frequency activity due to the
Brownnoise.Weadded thishighamplitudeβ signal to theBrownnoise signal
(x) to generate the high amplitudeβmodulated “membrane potential” signal.

We then defined the spike threshold as the 60th percentile of the high
amplitude beta signal. In the regions where the amplitude of the high
amplitude βmodulated signal exceeded the threshold, we added simulated
spikes. The added spikes follow a Poisson distributed probability with a
mean of 6 spikes per beta peak. The spike signal was defined as a vector of
zeros of the same length as the original signal, with zeros replaced by ones at
the time stampswhere spikes were generated. The spikesweremultiplied by
3*max (high amplitude beta signal) and added to the high amplitude beta-
modulated brown noise signal. This signal was then band-pass filtered with
a 6th-orderButterworthfilter at 300–2000Hz. Finally, thefiltered signalwas
rectified by taking the absolute operator.

The simulation PSDswere obtained by generating 1000 samples of the
time domain signals of each type described above, estimating the spectral
density of each using a periodogram (MATLAB 2021a) with a Hamming
window of 1 s and NFFT = 4096. We performed a log10 transform on the
resultant frequency domain signals and frequencies and averaged the results
across the 1000 samples. The PSD results are plotted in Supplementary Fig.
6a–i on the right.

Alignment of PSDs and spectrograms to the beta center
frequency
The averaged PSD within the STN motor domain of each trajectory was
used to detect the highest peak beta between 13 and 33Hz. The frequency of
this peakwas defined as beta center frequency (βCF). The frequency of each
site of this trajectory was shifted, so the resulting βCF equals 0 Hz. This
alignment enables us to assess the relative distribution of power around the
center frequency. The alignment to the βCF was applied to LFP and SPK
PSDs and spectrograms, as well as to their coherence functions and
coherograms (Fig. 5, andSupplementaryFigs. 8, 10).Weusedboth averaged
trajectoryPSDand single site PSD to align to the center frequency.Using the
average PSD of a trajectory enhances the estimate’s accuracy since the
frequency of beta oscillations along a single trajectory DLOR is highly
stable1.

Calculating bandwidths of beta oscillations
We used the normalized PSD (NPSD) to find the highest beta peak and its
location from 13 to 33Hz. Half the highest peak prominence (half-highest-
prom) was used as the reference height for width measurement. The half-
bandwidthwas calculated by finding the distance between the half-highest-
promand the left and right flanks of the beta oscillation. The powers around
the half-highest-prom and their corresponding frequencies were used for
linear fitting to get the left and right edges of the half-band width. The
distance between the left (or right) edge and the location of the highest beta
peak was called half-band-half-side width (Supplementary Fig. 11). The
bandwidthswere calculated at three levels. At the single site level (n = 9147),
we calculated the bandwidths of beta oscillation separately for each site. At
the level of a single trajectory (n = 308), we averaged the NPSD within the
STN motor domain of each trajectory and calculated the beta bandwidth
from the averaged NPSD. At the population level (n = 1), we used the
average of the NPSD within the STN motor domain of all trajectories to
calculate the beta oscillation bandwidth. A similar procedure was done for
the 1/4 height and 3/4 height bandwidths and their half-side bandwidths.

Evaluating predictive factors for the burden and treatment effi-
cacy of Parkinson’s disease
Linear Regression and Generalized Linear Models (GLMs) were fitted to
estimate the predictive value of individual and combined predictor families
on response (predicted) variables: UPDRS III score off dopamine replace-
ment therapy before surgery (DRT Off), the UPFRS III difference and
percentage change due to medication before surgery (DRT Diff and DRT
Per), UPDRS III change due to DBS after surgery (DBS Diff and DBS Per),
and the subjective evaluation of the neurologist of theDBS outcome about 1
year after surgery (DBS Eva). Many studies reported a lack of correlation
between Parkinson’s tremor symptoms and the akinetic/rigid symptoms
and the effect of therapy (worse for DRT, better for STN DBS). We,
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therefore, divided our patient cohort into akinetic/rigid and tremor-
dominant patients. We did several prediction models for the akinetic/rigid,
the tremor, and the whole groups (Fig. 6 and Supplementary Fig. 13). In the
akinetic/rigid group: thenumber of observations for theUPDRS III pre- and
post-op is 45 and 30 patients, respectively; the number of observations for
the neurologist’s evaluation of the DBS effect is 60 patients. In the tremor
group, there are 54 observations for DRTOff, 53 each for the DRTDiff and
DRTPer, 32 each for theDBSDiff andDBS Per, and 66 observations for the
DBSEva. For thewhole group, the observation counts are as follows: 100 for
DRT Off, 99 for both DRT Diff and DRT Per, 62 for each of DBS Diff and
DBS Per, and 129 for DBS Eva.

The individual predictors are levodopa daily equivalent dose (LD), age
(Ag), disease duration (DD), gender (Gd), LFP beta center frequency (LCF),
SPK beta center frequency (SCF), LFP beta peak power (LP), SPK beta peak
power (SP), the difference between LCF and SCF (LSCF), LP and SP (LSP),
LFP offset (LO), SPKoffset (SO), LFP exponent (LE), SPKexponent (SE), as
well as the difference between LO and SO (LSO), and LE and SE (LSE).

Predictor familiesweredefinedasDemography (DeF, consistingofLD,
Ag, DD, and Gd), Aperiodic (ApF, consisting of LO, SO, LE, and SE),
Periodic (PeF, consisting of LCF, SCF, LP, and SP), LFP (LFPF, consisted of
LO, LE, LCF, and LP), SPK (SPKF, consisting of SO, SE, SCF, and SP), and
the difference between LFP and SPK (LSF, consisting of LSCF, LSP, LSO,
and LSE). All predictive and responsive variables were done with
Z-normalization before the model fitting.

Modeling was done at different levels: individual predictors (Eq. (4),
Fig. 6a); zeroth-order interactions of members in a family (Eq. (5), Fig. 6b
and Supplementary Figs. 13–16); first-order interactions of each two
members in a family (Eq. (6), Fig. 6c and Supplementary Figs. 13–16);
higher-order interactions of each three or fourmembers in a family (Eq. (7),
Fig. 6d and Supplementary Figs. 13–16).

y ¼ ax þ b ð4Þ

y ¼ a1x1 þ a2x2 þ a3x3 þ a4x4 þ b ð5Þ

y ¼ a1x1x2 þ a2x1x3 þ a3x1x4 þ a4x2x3 þ a5x2x4 þ a6x3x4 þ b ð6Þ

y ¼ a1x1x2x3 þ a2x1x2x4 þ a3x1x3x4 þ a4x2x3x4 þ a5x1x2x3x4 þ b

ð7Þ

Here, the x indicates individual predictors (LD, Ag, DD,Gd, LCF, SCF,
LP, SP, LSCF, LSP, LO, SO, LE, SE, LSO, or LSE). The y indicates response
variables (DRT Off, DRT Diff, DRT Per, DBS Diff, DBS Per, or DBS Eva).
The x1, x2, x3, and x4 indicate the members in a predictor family.

The estimates of the goodness-of-fit (R2), the AIC, the statistical sig-
nificance of the GLM fitting model (Model P value), the prediction quality
(Coefficients), and the statistical significance of the coefficients (Coeffi-
cients’ P value) were calculated. All the values are shown in Fig. 6 using bar
graphs for representative cases and in Supplementary Figs. 13–16 for all
models, four normalization methods and the three groups of patients
(akinetic-rigid, tremor dominant, and all). Both R2 and AIC are used to
evaluate the goodness of GLM fitting. HigherR2 values suggested a stronger
predictive capability. Lower AIC values indicated a more favorable balance
between model fit and complexity. The statistical significance of the fitting
model was represented by Model P value. The statistical significance of
coefficients was represented by Coefficients’ P value, with lower values
indicating better predictors. Statistical significance was set up at p < 0.05.

Statistical analysis
Statistical analyses were performed using MATLAB (R2020b). If not spe-
cified, the data were presented as means ± standard deviation (SD) or
means ± standard error of the mean (SEM), and statistical significance was
set at p < 0.05. We used the Bonferroni correction to correct for multiple
comparisons. We used the two-tailed Wilcoxon rank sum test to compare

the PSD in each frequency point (Figs. 1, 3, 5, and Supplementary Figs. 5, 7,
8, 10). The two-tailed Wilcoxon signed-rank test was used for pairwise
comparison of beta center frequency and half-band width (Figs. 4, 5, and
Supplementary Figs. 4, 9–12). The N-way analysis of variance was used to
analyze the difference in aperiodic parameters between LFP and SPK(Fig. 2,
Supplementary Fig. 5, and Supplementary Tables 2–4).
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