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Abstract

Although the central role of adequate blood flow and oxygen delivery is known, the lack of optimized imaging modalities to study placental
structure has impeded our understanding of its vascular function. Magnetic resonance imaging is increasingly being applied in this field, but gaps
in knowledge remain, and further methodological developments are needed. In particular, the ability to distinguish maternal from fetal placental
perfusion and the understanding of how individual placental lobules are functioning are lacking. The potential clinical benefits of developing
noninvasive tools for the in vivo assessment of blood flow and oxygenation, two key determinants of placental function, are tremendous. Here,
we summarize a number of structural and functional magnetic resonance imaging techniques that have been developed and applied in animal
models and studies of human pregnancy over the past decade. We discuss the potential applications and limitations of these approaches.
Their combination provides a novel source of contrast to allow analysis of placental structure and function at the level of the lobule. We outline
the physiological mechanisms of placental T2 and T2∗ decay and devise a model of how tissue composition affects the observed relaxation
properties. We apply this modeling to longitudinal magnetic resonance imaging data obtained from a preclinical pregnant nonhuman primate
model to provide initial proof-of-concept data for this methodology, which quantifies oxygen transfer and placental structure across and between
lobules. This method has the potential to improve our understanding and clinical management of placental insufficiency once validation in a
larger nonhuman primate cohort is complete.

Summary Sentence
Here we overview existing MRI data acquisition methods and demonstrate our intention to uniquely combine these capabilities with newly
developed analysis parameters in a translational animal model to advance our understanding of placental vascular function.
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Introduction

Magnetic resonance imaging (MRI) is a noninvasive method
of interrogating anatomy and morphology, providing exquisite
sensitivity to different tissue characteristics via contrast
(both exogenous and endogenous) mechanisms that can be
tuned via operator-specified instrument settings. Magnetic
resonance imaging has found application in virtually every
realm of biomedical imaging and organ systems. Over the
past several decades, increasing emphasis has been placed on
extending MRI from qualitative anatomic imaging, which
dominated radiological applications, into the functional
imaging domain, where the objective is the measurement and
quantification of physiological parameters. These functional
imaging methods have seen increasing application in fields as
diverse as neuroimaging, cancer, and cardiac imaging. In the
past decade, recognition of the importance of the placenta
as a dynamic organ that grows and evolves over gestation
and adapts to the needs of the developing fetus has spurred
heightened interest in the development of MRI methods to
detect aberrant placental development [1].

The placenta has a critical role in the delivery of oxygen
and an array of nutrients, hormones, antibodies, and other
biochemicals to the fetus, as well as the elimination of carbon
dioxide and other waste products from the fetal circulation.
Interrogating placental function is therefore essential for the
assessment of fetal and maternal health during gestation. In
the mature human placenta, the maternal-facing basal plate
abuts the endometrium, with the center of each of the 20–30
lobules located over the opening of a maternal spiral artery.
Maternal blood bathes the elaborately branched fetal villous

trees, each of which arises from a stem villus attached to
the deep surface of the chorionic plate, with each mater-
nal cotyledon occupied by several fetal villous trees [2–4].
Aberrant placental development has been linked with many
adverse obstetric outcomes, including fetal growth restriction
(FGR), preeclampsia, preterm labor, and stillbirth [5–8], and
is implicated in a host of chronic and adult-onset health
conditions, such as hypertension, diabetes, and dementia [9],
with lifelong consequences for the offspring.

The placenta is unique in that it supports two independent
circulations that do not mix: that of the fetus, which is
intra-capillary and within the placental tissue; and that of
the mother, which is (in humans) extra-vascular on arrival
at the placental interface; blood moves slowly through the
amorphous structure of the placental villous tissue within the
intervillous space [2]. Exchange of oxygen and nutrients is
maintained by passive diffusion or active transport across the
villous syncytiotrophoblast, which forms a generally imper-
meable layer between the high oxygen saturation maternal cir-
culation and the low oxygen saturation fetal circulation [10–
12]. Fetal and maternal blood thus see a different microvas-
cular environment; this can be leveraged in MRI as the tissue
properties are differentially affected, which facilitates analysis
of the two vascular compartments. Differences manifest as
variability in diffusion weighted imaging (DWI) properties
and differential measurements of T2 and T2∗, as described
below.

In primates, maternal blood is supplied to the placenta via
spiral arteries perfusing a sinus intervillous space rather than a
capillary network. These spiral arteries pair with fetal villous
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Figure 1. (A) Real-world mapping of identified placental lobules.
Photograph of term placenta (basal side shown) with delineated placental
lobules and color-coding shown overlaid. (B) Schematic diagram of the
placenta demonstrating the anatomy of the two disks, the anastomoses,
and lobules.

trees in functional cotyledons, with dozens of these cotyledons
making up the complete placenta. Many of the placental MRI
methodologies that have been applied to human pregnancies
to date permit quantification of some aspects of placental
perfusion, but with limited validation and do not account for
the unique primate placenta structure. The nonhuman primate
(NHP) provides a strong translational research animal model
system for pregnancy studies due to the long gestational
period, similar placentology, fetal physiology, and fetal growth
trajectory [13]. Placentation in rhesus monkeys and humans
is alike in several aspects, such as villous tree structure, the
presence of an intervillous space, and the transformation of
uterine spiral arteries as part of the establishment of the
hemochorial placenta [14]. One key difference in structure is
that macaques typically have a bidiscoid placenta rather than
a single disk; the umbilical cord inserts into the primary disk,
and anastomoses (bridging vessels) supply the fetal circulation
to the structurally independent secondary disk [15]. The two
disks function together as one unit but are anatomically
distinct both on imaging and post-delivery gross inspection
(Figures 1 and 2).

Although noninvasive MRI techniques have been estab-
lished to a high level of sophistication for diagnostic imaging
of fetal congenital and structural anomalies, the use of placen-
tal MRI is less well established. The following techniques are
among those most developed.

Dynamic contrast-enhanced MRI (DCE) is a technique
that makes use of an exogenous maternally delivered con-
trast injection to measure maternal-placental blood flow and
intervillous volume [16–18]. In animal models, paramagnetic

gadolinium-based contrast agents that shorten T1 and T2
relaxation times are widely used [17]. Their application to
the human placenta, however, is very limited due to concerns
about the safety of these contrast agents in pregnancy, as
they cross the placenta and accumulate in fetal tissues and
have been associated with rheumatologic and inflammatory
conditions and stillbirth when used after the first trimester.
Iron-based paramagnetic contrast agents, which were first
developed for the treatment of anemia, are also under investi-
gation [19, 20].

Diffusion-weighted imaging and intra-voxel incoherent
motion DWI (IVIM-DWI) are used to probe the villous
microstructure, feto-placental microvasculature, and feto-
placental blood volume [21–24].

Blood-oxygenation-level dependent MRI is an example of
endogenous contrast that has been validated by our group
in the NHP [25] and applied to human pregnancy studies
[26] and has been used to measure the placental response to
hyperoxia [17, 27–32]. Increasing maternal inhaled oxygen
concentration has no safety concerns and is simple to perform
during imaging.

Transverse relaxation-based image contrast is tightly cou-
pled to blood oxygen concentration, such that average T2 [33]
and T2∗ [26, 32, 34, 35] measurements both depend on the
concentration of deoxyhemoglobin.

Other techniques, including arterial spin labeling [36, 37]
and hyperpolarized gas imaging [38], have also been used
and show promise for future developments in placental assess-
ment.

Despite the proliferation of techniques, many of these
measurements are difficult to interpret in terms of specific
aspects of placental physiology [1]. Commonly reported
whole-placenta average diffusivity, T2 and T2∗ values are
not able to represent the complexity of the placental structure
and do not explicitly measure oxygenation or blood flow,
although some progress has been made in this area [39]. This
is important as the function of each placental lobule may
vary widely depending on its position, maturation, or even
acquired damage through hemorrhage or infarction. Data
acquisition techniques for these various MRI modalities are
largely mature, but methods for analysis and interpretation of
these data in the placenta remain incomplete. Approaches to
coherently integrate multiple data sources in a self-consistent
pipeline are also currently unavailable. Most significantly,
placental MRI methods for assessment of perfusion and
oxygen transport remain to be rigorously validated, and as
a result, clinical applications of MRI for characterization of
placental function remain largely phenomenological rather
than quantitative.

Here, we outline the physiological mechanisms of T2 and
T2∗ decay in the placenta and devise a model of how tis-
sue composition affects the observed relaxation properties.
T2∗ decay is rapid, comprising inhomogeneities of both the
magnetic field and local tissue composition, facilitating fast
imaging in the presence of motion, and is thus applicable to
imaging a dynamic organ, such as the placenta, where motion
may be caused by maternal breathing and fetal movement.
Dephasing due to magnetic field inhomogeneities can be
recalled with a spin-echo; there is no a priori reason for T2
∝ T2

∗
, hence the two decay rates may contain different tissue

information. We apply this modeling to longitudinal data
obtained from a preclinical pregnant NHP model. These com-
bined image acquisition and data modeling methods quantify
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Figure 2. Example imaging data and fitted parametric mapping. (A–E) Example images from a DCE-MRI time-series showing contrast agent arrival (no
scale). (F–J) Parametric mapping from DCE-MRI, including bolus arrival time (0–150 s) and segmentation; color-coded by lobule, see Figure 1. Panels
(K–O), as for (F–J) with color-coded segmentation overlaid. Panels (P–T) show parametric maps from quantitative MRI for T2 (0–200 ms), T2∗
(0–200 ms), ADC (0-4 × 10-3 mm2s-1), IVIM perfusion fraction (f , 0-1), and T2∗/T2 ratio. Panels (U–Y), as for (P–T) with segmentation overlaid.

oxygen transfer and placental structure across and between
lobules, with potential to improve clinical management of
placental insufficiency once validation studies in a larger NHP
cohort are complete.

Methods

All experimental protocols were approved (Protocol
#IP0001389) by the Institutional Animal Care and Use
Committee (IACUC) of the ONPRC, and all procedures
contributing to this work complied with the ethical standards
of the relevant national guides on the care and use of
laboratory animals from the Animal Welfare Act and were
enforced by the United States Department of Agriculture.

Data and image acquisition

We acquired data from a single pregnant rhesus macaque over
four gestational age (G) time points (days) corresponding to
G83, G100, G134, and G153 (where the term is G165 days).
Immediately following the last imaging study at G153, the
pregnancy was delivered by cesarean section surgery for pla-
centa collection, which included gross examination, mapping
of lobules, weights, and measures, and extensive placental
sampling for later use.

Magnetic resonance imaging studies were performed on
an NHP-dedicated 3 T Siemens TIM-Trio scanner (Erlangen,
Germany) using a circularly-polarized transmit, 15-channel
receive radiofrequency (RF) “extremity” coil (QED, Cleve-
land, OH). Animals were maintained under constant anes-
thesia via an intravenous infusion of propofol along with
cisatracurium, a paralytic agent, to eliminate residual motion
from respiration. All imaging was performed during expira-
tory breath holding, achieved by temporarily suspending ven-
tilation. Physiological monitoring of pulse rate, arterial blood
oxygen saturation, and end-tidal CO2 partial pressure was
performed throughout each imaging study, with no deviations
from normal ranges observed in these parameters.

After localization of the placenta and acquisition of T2-
weighted half-Fourier acquisition single-shot turbo spin-echo
anatomic images in the coronal and axial planes, axial 2D
multislice spoiled gradient echo (SPGR) images (TR = 418 ms,
flip angle = 30◦, 256 × 72 matrix, 0.75 mm isotropic in-plane
spatial resolution, 1.5 mm slice thickness) spanning the entire
uterus were acquired at six in-phase echo times (TE = 4.92,
9.84, 19.68, 29.52, 36.90, and 44.28 ms) with monopolar
readout gradients.

Two-dimensional multislice diffusion-weighted spin echo
planar images (EPI) were acquired at multiple echo times and
with multiple diffusion b-values as follows: b = 0/200 for 10
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echo times (TE = 60, 80, 100, 120, 140, 160, 180, 200, 220,
280 ms) and TE = 67/120/180 ms for eleven b values (b = 0,
10, 20, 30, 40, 60, 80, 100, 200, 400, 800). These images were
all acquired with a spatial resolution of 1.56 × 1.56 × 3.1 mm.

Subsequently, 3D SPGR images were acquired in the coro-
nal plane (TR = 5.1 ms, TE = 2.46 ms, 1.25 mm isotropic
spatial resolution, flip angles of 2◦, 3◦, 5◦, 10◦, 25◦, and
35◦), also covering the entire uterus, to allow estimation of
T1 (longitudinal relaxation time) with the variable flip angle
(VFA) method. Immediately after acquisition of VFA data,
150 volumes of 3D SPGR images were acquired for DCE-
MRI (TR = 2.66 ms, TE = 1.14 ms, flip angle = 20◦, using
TWIST undersampling with an acquisition time per frame of
2.74 s), with the field of view matched to the VFA images
and a spatial resolution of 1.25 × 1.25 × 2.0 mm. Five baseline
images were acquired prior to sequential intravenous injection
of 0.2 mL of ferumoxytol (Feraheme, AMAG Pharmaceu-
ticals) followed by 1.2 mL of gadoteridol contrast reagent
(Prohance, Bracco Diagnostics Inc., Princeton, NJ, USA) at a
rate of 20 mL/min using a syringe pump (Harvard Apparatus,
Holliston, MA, USA).

Model-fitting
DCE-MRI analysis

Bolus arrival times can be measured from DCE-MRI placental
analysis. The time to peak is a reliable measure of bolus
arrival time and can be inferred from the time at which the
peak gradient occurs [see Figure 2A–E showing the bolus
passage at different times, and Figure 2G showing the relative
estimated bolus arrival time (darker is earlier)]. The resulting
maps can be used to delineate individual placental cotyle-
dons (Figure 2H) and also provide some information about
bolus speed (Figure 2I) and direction (velocity, Figure 2J). The
lobule appearance is matched to information on placental
lobule position mapped at cesarean section delivery, which
in turn links to pathology (see Placental segmentation and
registration). Correspondences between arrival time maps
across gestational age allow the tracking of lobules at multiple
gestational ages.

Apparent diffusion coefficient

Apparent diffusivity is measured with a log-linear fitting of the
signal decay curve with increasing diffusion weighting. The
basic equation for a single diffusion compartment is:

S
(
b
) = S0 exp

(−b ADC
)

.

The apparent diffusion coefficient (ADC) represents how
quickly the MR signal decays with diffusivity. Signal is lost
rapidly in high diffusion regions, such as fluid (amniotic
fluid or cerebrospinal fluid) and less rapidly in cell-dense
regions (placental tissue or cerebral white matter). Hence, the
ADC represents some marker of cellular or structural density
(Figure 2R).

T2 relaxometry

Estimates of T2 can be found by fitting a single-exponential
decay curve to data from multiple echo times. If sufficient
echo times are sampled, it is possible to fit multi-compartment
models [21]. In this work, we have data from two echo times,
which is fitted by a simple model inversion to simultaneously
estimate the baseline signal S0 and the decay time T2. For two

echo times [t1, t2] and two signal measurements [S1, S2]:

T2 = (t2 − t1) / log (S1/S2) .

T2 has been found to be sensitive to tissue structure and
oxygenation and has been shown to vary between different
tissue compartments (fluid, maternal blood, fetal blood, and
white and gray matter) (Figure 2P).

T2∗ relaxometry

Similar to Apparent diffusion coefficient section, estimates of
T2∗ can be found by fitting a single-exponential decay curve
to data at multiple echo times. For multiple echo times, the
T2∗ can be estimated by log-linear least-squares fitting. The
basic equation for a T2∗ decay is:

S (t) = S0 exp
(−t/T2∗) .

The T2∗ is found by the log-linear fitting of log(S(t)) =
log(S0) – t ∗ (1/T2∗) (where S0 is generally different between
the sections above). T2∗ has been found to be highly sensitive
to changes in maternal oxygenation [27, 40] (Figure 2Q).

IVIM fitting

Intra-voxel incoherent motion (IVIM) modeling assumes a
model with two exponential decay components [41, 42]. The
additional exponential component is used to capture signal
decay that is too rapid to be described by ordinary Brownian
motion and is ascribed to “perfusion” effects. In this case,
linear model fitting is not possible, but non-linear modeling
allows the extraction of a perfusion fraction. The standard
IVIM model is as follows:

S
(
b
) = S0

[
f exp

(−d∗ b
) + (

1 − f
)

exp
(−d b

)]

where f represents a “perfusion” volume fraction of rapid
signal decay (Figure 2S) and the fraction (1-f ) represents the
volume fraction of signal undergoing ordinary diffusion by
temperature-dependent Brownian motion. This model can
be biased if the T2 of the different compartments varies
substantially [22].

Villous ratio = T2/T2∗

Here, we present the results of the simple ratio above, to
investigate how the proportionality of T2 and T2∗ changes
within each lobule and with gestational age. Since T2 > T2∗ in
biological material, this ratio is always greater than one. T2∗
decay is rapid, comprising magnetic field inhomogeneities as
well as local tissue composition inhomogeneities. Dephasing
due to magnetic field inhomogeneities can be recalled with a
spin-echo, and this slower T2 decay rate is thus less sensitive to
local geometric features that influence the magnetic field, such
as large vessels (Supplemental Figure S1). There is no a priori
reason for T2 ∝T2∗; hence, the two decay rates may contain
different tissue information, and thus their combination may
provide a novel source of endogenous contrast (see Figure 2T).

Placental segmentation and registration

Co-registration is a challenging prospect between EPI and
SPGR, but intra-acquisition motion can be corrected by stan-
dard methods, and inter-acquisition methods appear relatively
robust with respect to gross placental anatomy [43] assessed

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioae035#supplementary-data
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through placental examination after birth. Figure 1 shows the
lobule segmentation for primary and secondary disks for one
animal. The same color-coding is used in all subsequent figures
to identify individual lobules.

Segmentation is carried out for the latest gestational
age (G153) on the DCE bolus arrival time image. These
lobules are visually matched to the post-delivery image in
Figure 2. Affine, followed by non-rigid image registration
(niftyreg) [44], is used to map this segmentation to each
earlier gestational age. Manual correction is used to preserve
the lobule correspondence and to correct any residual
misalignment with these earlier bolus arrival time images.
This process ensures that we can establish a longitudinal
correspondence during pregnancy between lobules within one
subject.

Results

Parameter variability
Between primary and secondary disks

The macaque placenta ordinarily has two discrete disks. The
umbilical cord inserts into the primary disk and is connected
to a secondary disk via fetal chorionic bridging vessels. Typ-
ically, the secondary disk is smaller in volume, but there is
substantial variability in the relative proportions [15]. The
MR properties of each disk can be interrogated. We found
no difference in segmented lobule volume or any of the
five lobule-average MR parameters between the primary and
secondary disks at any gestational age or in any parameter
under Bonferroni correction for the 24 independent tests (four
gestational time points, five MRI parameters, and volume)
(Figure 3), suggesting no difference in the in vivo tissue prop-
erties of the primary and secondary disks. This is impor-
tant for establishing how best to carry out subsequent post-
delivery assessments of placental tissue.

Between segmented lobules

Each placental disk contains a discrete number of functional
units, referred to as cotyledons or lobules, typically fewer
than 10 per disk [15]. The lobule is the working unit of a
primate placenta and so it is important to establish how tissue
properties vary between these interchangeable units. Lobule
segmentation in this animal revealed nine identifiable units,
four on the primary disk, and five on the secondary disk.
Figure 4 shows how tissue properties vary between the two
disks. Some variability does exist, but broadly, the parameter
distributions of each functional unit are indistinguishable for
this normal placenta. Each lobule is color-coded according to
its position identified in Figure 1.

Whole placenta distributions

Figure 5 shows the distribution of parameter values across all
segmentations for all lobules and both disks. Distributions
are generally unimodal. Due to the nature of the physical
properties, negative values cannot occur for any of these
markers. This means that the distributions are non-normal in
appearance. The gamma distribution represents a reasonable
distribution that maintains this non-negative property (shown
overlaid). Normal distributions fit reasonably to ADC values,
which have a tight positive distribution but are inappropriate
for modeling either T2 or T2∗.

Parameter changes within a lobule

Bolus arrival time as measured on DCE-MRI is a good indica-
tion of distance through a cotyledon. Lobules do not typically
have a simple geometric arrangement (i.e., spherical), and
so this represents a way to investigate how imaging prop-
erties vary within a lobule, independent of center-of-mass
or Euclidean distance. Figure 6 shows how key quantitative
imaging parameters vary with bolus arrival time through each
lobule. Each lobule is color-coded according to its position
identified in Figure 1 with the line of best fit shown.

Parameter changes through gestation

Figure 7 shows how imaging properties for each cotyledon
change with increasing gestational age. Of note, the diffusion
properties of ADC and IVIM perfusion fraction are relatively
invariant with gestational age, but both T2 and T2∗ show
strong decreases with gestational age, commensurate with
what is known about placental oxygenation with gestation
in primates. The overall trend lines (gray) in Figure 7 demon-
strate high significance and a high negative correlation with
gestational age for both T2 and T2∗ (but not for the remaining
MRI parameters). Figure 8 shows the relationship between
T2 and T2∗, according to gestational age. There is evidence
that the relationship between T2 and T2∗ varies through
gestation. This may thus represent a novel marker of placental
maturation, allowing an analysis of the separable effects of
reversible and irreversible dephasing and their comparison to
microstructural changes from ADC measurements.

Discussion

We have shown that quantitative imaging properties vary
both within and between lobules across gestational age in
the NHP placenta, a highly relevant animal model for human
pregnancy. Our capability to delineate placental lobules and
to use DCE-MRI to define a spatial–temporal relationship of
imaging parameters through the lobule and across gestation is
novel and demonstrates a proof-of-concept that may allow us
to develop new systematic advances in placental imaging. Our
preliminary results show that between lobule and between
disk variability is low in this healthy macaque pregnancy and
that substantial relationships are seen with gestational age,
particularly in both T2 and T2∗, in contrast to diffusion-
derived parameters. We also demonstrated that the ratio of
T2/T2∗ is itself a potential future marker of placental function
and maturation, allowing the separation of reversible and irre-
versible dephasing, and hence, the possible differentiation of
the physiological effects giving rise to this difference. Although
this ratio changes with gestational age, for this single animal,
it remains fairly constant both within and between individual
lobules.

The motivation for this work is the observation that the
maternal and fetal blood compartments have different, but
overlapping, diffusion, and relaxation properties. If the acqui-
sition parameters sample these signal decay curves sufficiently,
it is possible to disentangle the respective signal contributions
from the separate blood pools. We anticipate that combin-
ing IVIM-DWI and T2/T2∗ will provide a clinically relevant
method for measuring feto-placental oxygenation across a
broad range of fetal oxygen saturations relevant to human
FGR and that this methodology will be able to disentan-
gle oxygenation changes from gestational tissue maturation
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Figure 3. Comparison of quantitative mapping from MRI for lobules identified as primary disk (cyan) and secondary disk (red). Rows correspond to
gestational age at MRI A-E 83 days, F-J 100 days, K-O 134 days, P-T 153 days.

Figure 4. Comparison of quantitative mapping from MRI for individual lobules across both primary and secondary disks. The four rows correspond to
gestational age at MRI: A-E 83 days, F-J 100 days, K-O 134 days, P-T 153 days. Color-coding corresponds with Figure 1.
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Figure 5. Comparison of quantitative mapping from MRI for whole placenta properties. The four rows correspond to gestational age at MRI: A-E 83
days, F-J 100 days, K-O 134 days, P-T 153 days. Results of normal and gamma distributions for fitting are shown overlaid.

Figure 6. Variation of quantitative imaging parameters for each lobule with bolus arrival time as measured from DCE-MRI. The four rows correspond to
gestational age at MRI: A-E 83 days, F-J 100 days, K-O 134 days, P-T 153 days. Color-coding corresponds with Figure 1.



A. Melbourne et al., 2024, Vol. 110, No. 6 1073

Figure 7. Variation of quantitative imaging parameters, A) ADC, B) T2, C) T2∗, D) IVM-f and E) T2/T2∗ ratio for each lobule with gestational age.
Color-coding corresponds with cotyledon position in Figure 1.

Figure 8. A) Variation of T2 and T2∗ with gestational age. Inset panels (C–E) show the independent parameter maps for ADC, T2, and T2∗. Color-coding
corresponds with cotyledon position in Figure 8B.

changes. For clinical application, systemic maternal contrast
agents should be avoided due to concerns about their safety
and potential adverse impact on fetal growth and devel-
opment. The combination of IVIM-DWI and T2/T2∗ is a
non-invasive method that allows separate measurement of
the maternal and fetal compartments [39]. The simultaneous
development of an optimized image acquisition protocol will
support clinical adoption of these techniques.

There are limitations to the use of this experimental design.
Although the NHP placenta is close to the human placenta in
form and function, it does not recapitulate several pathologies
that appear unique to humans, such as placental insufficiency
leading to FGR, pre-eclampsia, and placental attachment dis-
orders, such as placenta accreta. Nonetheless, the transfer
of oxygen and nutrients to the fetus from an extra-vascular
maternal space to a fetal capillary network is highly relevant.

Both the NHP and human placenta have discrete placental
lobules, but our expectation is that these may be harder to
characterize in humans due to their higher number, between
20 and 30 [2] compared to the 5–10 in the NHP placenta. The
advantage of the preclinical NHP model is that it enables us
to characterize individual lobule performance and to validate
this experimentally. Analysis at the level of the lobule repre-
sents a distinct shift in how human placental imaging can be
interpreted. The use of MRI for fetal and placental assessment
will remain limited due to the cost and complexity of the
procedure in comparison to ultrasound. However, the research
capabilities of MRI and the ability to comprehensively study
the structure and function of tissue will undoubtedly translate
to new surrogate markers that can be obtained from more
widespread ultrasound. Our use of DCE-MRI with exogenous
contrast agents is made possible by the preclinical model.
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Dynamic contrast-enhanced MRI is widely considered the
gold standard for vascular and perfusion imaging in MRI.
Using the NHP model, we have performed two prior safety
studies to demonstrate minimal transplacental transfer of
gadolinium chelate to the fetus [45], with barely detectable
levels in juvenile animals exposed to maternal gadolinium
twice during mid to late gestation [46]. Nevertheless, our
results shown here, describing links between DCE-MRI and
other imaging contrasts, give us one possibility of moving
away from gadolinium-based image contrast, which would be
favorable for translation to human placental MRI implemen-
tation.

We have already demonstrated success in translating our
NHP MRI and analysis tools to human pregnancies, both in
women with normally grown fetuses and those with FGR due
to placental insufficiency [47]. Furthermore, our work with
T2∗ has already demonstrated high discriminatory power in
prospectively identifying human pregnancies at risk of adverse
pregnancy outcomes, such as pre-eclampsia and small gesta-
tional age [26]. Recent human studies using the combination
of IVIM-DWI and T2/T2∗ have provided a physiological
explanation for the known causative link between maternal
supine sleeping and late gestation stillbirth, whereby supine
position has an additive effect on the reduced fetal oxygen
supply seen in FGR compared with normal pregnancies, ren-
dering fetal oxygen supply even more insufficient [27, 48].
These studies support the generation of a validated quanti-
tative model for joint IVIM-DWI and T2/T2∗ relaxometry,
which could significantly improve assessments of perfusion
and potentially characterize fetal oxygen saturation in vivo.
There are several possible clinical use cases for this approach,
as suggested below.

Fetal growth restriction

In the case of FGR mediated by placental insufficiency char-
acterized by maternal villous malperfusion (MVM), poor
maternal blood flow leads to poor perfusion to the intervillous
space. These pregnancies present with abnormal uterine artery
(UtA) Doppler waveforms, a small placenta, the presence of
infarcts, and histologic abnormalities of the placental villi,
including syncytial knot formation and distal villous hypopla-
sia [49]. Fetal blood oxygenation is low. In combination, this
suggests that the maternal to fetal oxygen difference is large
but with a low oxygen gradient since oxygen de-saturation is
likely to occur progressively through the villous tree. T2 and
T2∗ are both likely to be low in FGR with a characteristic
gradient through placental lobules. Fetal vascular malperfu-
sion may also present, either alone or in combination with
MVM, where portions of the placental villous tree lack fetal
vascular perfusion due to thrombus or cord occlusion. MRI
assessment may be helpful here to determine how placental
function is affected by poor fetal perfusion.

Poor oxygen transfer

Fetal growth restriction can also present despite normal UtA
Doppler waveforms, with a diagnosis of massive perivillous
fibrinoid deposition or chronic histiocytic intervillositis
(CHI). Both conditions are rare but serious and are associated
with recurrent late miscarriage, stillbirth, and FGR. An
inflammatory disorder is believed to underlie these rare
placental syndromes [50]. In the case of CHI, maternal
blood is delivered to the intervillous space, but inflammatory
processes with dense cellular infiltrates prevent oxygen

transfer across the trophoblast. Fetal blood oxygenation is
again low as in FGR, but in this case the theoretical oxygen
gradient is steeper since oxygen extraction is impeded. T2 and
T2∗ are likely to be low as in FGR, but T2∗ is predicted to be
differentially lower because of the enhanced oxygen gradient
enhancing reversible dephasing in the maternal blood. A
marker of placental structure sensitive to oxygen transfer and
inflammation could provide new clinical avenues for testing
new treatments in these conditions.

Poor oxygen carrying capacity (fetal anemia)

The effect of hematocrit on relaxation is important [2]. Since
relaxation is dependent on the presence of deoxyhemoglobin,
in the case of fetal anemia, a low hematocrit level in the
fetus will limit the effect of deoxygenated fetal blood on
the maternal blood pool. Both fetal and maternal T2 mea-
surements will be theoretically higher, although this may be
complicated by the ability of fetal blood cells to pick up
oxygen and higher flow rates. Immediately after a fetal blood
transfusion, hematocrit will rise and oxygen saturation will
reach a short-term stable state. Imaging immediately before
and after fetal transfusion should thus decouple differences
in T2 and T2∗ since the maternal blood properties should be
largely unaffected, and any effect on maternal blood would
thus be caused by the influence of the change in fetal blood
magnetic properties [51].

Conclusion

We have demonstrated the integration of in utero MR relax-
ometry and diffusion-weighted imaging in the NHP to quan-
tify inter-lobule differences in tissue properties. This new
combination of MRI methodologies and data modeling will
provide a platform for future studies to investigate the rela-
tionships between placental blood flow and oxygenation with
placental structural development, how it is altered by current
therapeutics, and the investigation of emerging interventions
in humans that attempt to modify abnormal placentation
and mitigate adverse effects on the fetus. Once validated in
our ongoing larger NHP cohort, this imaging methodology is
anticipated to be highly amenable to subsequent optimization
for clinical translation and may allow the effect of oxygena-
tion changes to be investigated at an intra-placental level.
Improved noninvasive diagnostics to identify pregnancies at
risk of adverse outcomes due to placental dysfunction may
allow for modification of clinical management plans.
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