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Abstract

INTRODUCTION: Increasing evidence suggests that metabolic impairments con-

tribute to early Alzheimer’s disease (AD) mechanisms and subsequent dementia.

Signals in metabolic pathways conserved across species can facilitate translation.

METHODS:We investigated differences in serum and brain metabolites between the

early-onset 5XFADand late-onset LOAD1 (APOE4.Trem2*R47H)mousemodels of AD

to C57BL/6J controls at 6months of age.

RESULTS:We identified sex differences for several classes ofmetabolites, such as glyc-

erophospholipids, sphingolipids, and amino acids. Metabolic signatures were notably

different between brain and serum in both mouse models. The 5XFAD mice exhib-

ited stronger differences in brain metabolites, whereas LOAD1 mice showed more

pronounced differences in serum.

DISCUSSION: Several of our findings were consistent with results in humans, show-

ing glycerophospholipids reduction in serum of apolipoprotein E (apoE) ε4 carriers

and replicating the serum metabolic imprint of the APOE ε4 genotype. Our work thus

represents a significant step toward translating metabolic dysregulation from model

organisms to human AD.
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Highlights

∙ This was a metabolomic assessment of two mouse models relevant to Alzheimer’s

disease.

∙ Mouse models exhibit broad sex-specific metabolic differences, similar to human

study cohorts.
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∙ The early-onset 5XFAD mouse model primarily alters brain metabolites while the

late-onset LOAD1model primarily changes serummetabolites.

∙ Apolipoprotein E (apoE) ε4 mice recapitulate glycerophospolipid signatures of

human APOE ε4 carriers in both brain and serum.

1 BACKGROUND

Alzheimer’s disease (AD) is the leading cause of dementia, character-

ized by the accumulation of amyloid plaques and tau fibrillary tangles

in the brain.1–3 Early-onset Alzheimer’s disease (EOAD, familial AD or

FAD) is often caused by mutations in genes coding for amyloid pre-

cursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2).4,5

Sporadic or late-onset AD (LOAD) is more common (> 95% preva-

lence), with symptoms arising after age 65.5,6 Its risk factors include

age, the apolipoprotein E (APOE) ε4 allele, and point mutations in trig-

gering receptor expressed on myeloid cells 2 (TREM2).3,7–10 Females

are at higher risk11,12 and comprise themajority of cases,13 and female

APOE ε4 carriers are at greater risk of developingADcompared tomale

carriers.14–16

Pathophysiological changes associated with AD begin decades

before clinical symptoms.11 Metabolic decline is among the earli-

est symptoms, with reduced glucose uptake in patients with mild

cognitive impairment (MCI).17 Furthermore, disruption in glucose

metabolism is associated with early mitochondrial dysfunction in

animal models and AD-affected individuals.18 Perturbations in

multiple metabolic networks such as lysine metabolism, tricar-

boxylic acid cycle, and lipid metabolism were reported in MCI

individuals compared to healthy individuals.19 This suggests that

metabolic dysfunction could play an important role in early disease

stages.

Metabolic dysregulation is one of the hallmarks of AD, and is known

to result from three major AD risk factors: age, APOE genotype in

European cohorts, and sex.20–23 A recent study in the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) identified the effects of sex

and APOE ε4 on metabolic alterations and AD biomarkers.12 Even

in mouse models of AD, changes in metabolic pathways related to

energetic stress were more pronounced in female mice compared

to males.19,24 However, the molecular mechanisms underlying these

sex-linked differences remain undetermined.

Heterogeneity in humans complicates the molecular study of dis-

ease mechanisms.25 For human studies, experimental design is often

limited by sample availability, reducing confidence in inferences.11

Animal models have been critical for understanding the develop-

ment and progression of AD and enable the study of disease-related

risk factors in a controlled environment.3,25 Inbred mouse models

of AD facilitate the collection of cross-sectional sampling at mul-

tiple ages and analysis of metabolic changes during various life

stages. Signals in conserved metabolic pathways could thus provide a

method to translate experimental findings in preclinical mouse mod-

els to humans.11 Transgenic mouse models with gene mutations for

APP and PSEN1 were widely used to investigate the biofluids and

brain metabolome and observed significant overlap in the affected

metabolic pathways identified in AD patients.26–28 However, these

mouse models were limited to fAD transgenic models that repre-

sent a small number of AD cases, and previous studies did not

interrogate the influence of sex-specific differences in metabolic

changes.

To fill this gap, we comprehensively profiled the serum and brain

metabolomesofAPOE4.Trem2*R47Hmice (a geneticmodel for LOAD),

the 5XFAD mice (a transgenic amyloid model), and C57BL/6J (con-

trol) mice at 6 months of age in both sexes. A total of 142 metabolites

were measured in both brain and serum, including glycerophospho-

lipids, sphingolipids, amino acids, biogenic amines, and acylcarnitines.

The LOAD1 strain carries two primary risk alleles, humanized APOE

ε4/ε4 and the homozygous Trem2*R47H variant on the C57BL/6J (B6)

background.29 The 5XFAD transgenic mice overexpress human APP

with three FAD mutations and human PSEN1 with two FAD muta-

tions on the B6 background.30 We investigated the sex differences in

metabolic effects for the 5XFAD and the APOE ε4/ε4 genotype in both

blood and serummetabolomes aswell as the correspondence between

brain and serummetabolite levels in mouse models. We compared our

findings to recent results fromADNI12 andRushReligiousOrder Study

and Memory and Aging Project (ROS/MAP) cohorts.31 All datasets

described in this study are available through the ADKnowledge Portal

(https://adknowledgeportal.synapse.org/).

2 METHODS AND MATERIALS

2.1 Animal models

All animal models were obtained from The Jackson Laboratory. All

experiments were approved by the Animal Care and Use Committee

at The Jackson Laboratory. LOAD1mice (JAX #28709) carry a human-

ized version of the prominent APOE ε4/ε4 genetic risk factor for LOAD,
and a relatively rare deleterious variant R47H allele of the Trem2

gene,29 while the5XFADtransgenicmice (JAX#8730) overexpress five

FADmutations: theAPP(695) transgene contains the Swedish (K670N,

M671L), Florida (I716V), and London (V7171) mutations and the

PSEN1 transgene contains theM146L and L286V FADmutations.30,32

Cohort of male and female LOAD1, 5XFAD, and C57BL/6J (B6) control

mice were assayed for serum and brain metabolomics at 6 months of

age (Table 1).

https://adknowledgeportal.synapse.org/
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TABLE 1 Number of biological replicates for mouse serum and
brain tissuemetabolomics.

Female Male

5XFAD 12 13

LOAD1 13 10

C57BL/6J 14 12

Note: Serum and brain samples were obtained from the samemice.

2.2 Metabolomics data acquisition and processing

A uniform technical approach was used for both mouse and human

metabolomics processing. Full sample preparation and analysis

protocols are described on the AD Knowledge Portal (https://

adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?Study=

syn22313528). In brief, metabolites were measured with the targeted

AbsoluteIDQ-p180 metabolomics kit (Biocrates Life Sciences AG),

with an ultra-performance liquid chromatography-tandem mass

spectrometry (MS/MS) system (Acquity UPLC [Waters], TQ-S triple

quadrupole MS/MS [Waters]), which provides measurements of up

to 186 endogenous metabolites. Sample extraction, metabolite mea-

surement, identification, quantification, and primary quality control

(QC) followed standard procedures.33 In the serum metabolome, 27

metabolites were removed due to missing values in > 20% of samples

and four metabolites were excluded due to > 20% coefficient of

variation. In the brain metabolome, 20 metabolites were removed

due to missing values and one metabolite was excluded due to higher

coefficient of variation. After median-based batch correction, metabo-

lite concentrations were log2-transformed and missing values for 79

serum metabolites and seven brain metabolites were imputed using

kNN (k-nearest-neighbor, k= 10) method.34

2.3 ADNI and ROS/MAP metabolomics data

Processing of ADNI P180 measurements has been described in

detail.12 In brief, metabolites with> 20%missing valueswere excluded

and batch correction was performed using a cross-plate mean nor-

malization procedure using National Institute of Standards and

Technology standard plasma metabolite concentrations. Metabolites

having a coefficient of variation > 20% or an intraclass correlation <

65% in replicate samples were removed. Missing values were imputed

using minimum imputation (set to half of the plate-specific lower

limit of detection). Metabolite levels were log2-transformed and

multivariate sample outliers were excluded. Finally, metabolites were

adjusted for significant medication effects using stepwise backward

selection.

In ROS/MAP, brain and serummetabolites and samples with > 25%

missing values were filtered out. Quotient normalization was used to

correct for sample-wise variation across the metabolites.35 Metabo-

lite values were subsequently log2-transformed, and the remaining

missing values were imputed using kNN as for the mouse data. Data

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and meeting

abstracts and presentations. Several recent publications

have suggested metabolic dysregulation as a major hall-

mark in early stages of Alzheimer’s disease (AD). The

relevant studies are appropriately cited.

2. Interpretation: Our findings indicate that metabolomic

signatures were notably different between brain and

serum in the mouse models of AD. We were able to iden-

tify patterns of metabolic changes related to human AD

risk in our mouse models, which strengthen the trans-

lational utility of mouse models for studying metabolic

changes that appear in early-stage AD.

3. Future directions: The article proposes to investigate

metabolomics profiles of the late-onset mouse mod-

els over different extended ages to study progressive

metabolic changes associated with AD pathology. Our

findings suggest such aging studies can model the differ-

ent phases of metabolic disturbances that may occur in

human AD.

processing was performed using standardized pipelines in the toolbox

maplet.36

Mouse experiments were carried out following the human

assays in both ADNI and ROS/MAP, generated using the Biocrates

AbsoluteIDQ-p180 metabolomics kit. This ensured an identical

targeted quantification across species.

2.4 Principal component analysis

Weanalyzeda total of 142metabolites present inboth serumandbrain

metabolome from74samplesoriginating fromdifferentmousemodels.

We extracted the principal components using singular value decompo-

sition for both metabolomes separately and plotted results using the

ggplot2 visualization package in R.

2.5 Association analyses for the mouse
metabolomic data

Association analyses of AD risk factors with metabolite levels were

conducted using standard linear regression. The stratification variable

sexwas excluded as a covariate in the sex-stratified analyses.We trans-

formed covariate-adjusted effect sizes to sample size-weighted stan-

dardized effects (Cohen d). For identifying metabolic sex differences,

we used linear regression with metabolite levels as the dependent

variable and sex as explanatory variable. To adjust for multiple testing,

we used the threshold of Bonferroni significance of 9.09 × 10−4 as

https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?Studysyn22313528
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?Studysyn22313528
https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?Studysyn22313528
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determined in a recent study.12 We performed two-sample t tests

to identify significant sexual dimorphisms for metabolites with the

standardized effect sizes observed in the pooled mouse samples at

Bonferroni significance in B6, LOAD1, and 5XFAD mouse models.

To assess the significance of heterogeneity between strata, we used

methodology similar to the determination of study heterogeneity in

an inverse-weighted meta-analysis.37 We further provide a scaled

(0%–100%) index of percent heterogeneity, similar to the I2 statistic.

2.6 Association analysis for the ADNI cohort

Association analysis of the cerebrospinal fluid (CSF) amyloid beta

(Aβ)1-42 pathology with blood metabolite levels from the ADNI cohort

followed published protocols in Arnold et al.12 with a few adjust-

ments. We performed the multivariable linear regression analysis

using metabolite concentrations as the dependent variable to test

associations of the CSF Aβ1-42 pathology with concentrations of 139

blood metabolites in place of the logistic regression approach used by

Arnold et al.,12 ensuring consistencywith the approach used formouse

metabolomics data.

2.7 Correlation analysis

First, we performed the multivariable linear regression analysis using

metabolite concentrations of 70 glycerophospholipids (PC species)

as dependent variables to determine the effect of APOE ε4 in serum

metabolomics data from mouse, ADNI, and ROS/MAP carriers. We

also fit a multivariable linear regression model for brain metabolomics

data from mouse models and ROS/MAP individuals to measure the

effect of APOE ε4 on glycerophospholipids (PCs) levels. For serum and

brain metabolomics data from mouse models, we used the 5XFAD

genotype and male sex as a covariate. For serum metabolomics data

from the ADNI cohort, we used pathological CSF Aβ1-42, age, male

sex, cohort, and body mass index (BMI) as covariates. For serum

metabolomics data from the ROSMAP cohort, we used pathological

amyloid levels, fasting status, age at visit, sex, education, and BMI as

covariates. For brain metabolomics data from the ROS/MAP cohort,

we used pathological amyloid levels, age, sex, education, and BMI as

covariates. Finally, we measured the Pearson correlation between

effects of APOE ε4 on glycerophospholipids (PCs) metabolite levels in

human and mouse models. We also measured Pearson correlations

between the effects of APOE ε4 presence on glycerophospholipids

(PCs) metabolite levels in mouse serum and brainmetabolomes.

3 RESULTS

3.1 Sex is a separator in both serum and brain
metabolome

Principal component analysis indicated serum metabolites separated

samples by sex of the mice along the first principal component (45% of

total variance),whereasweobserveda slight gradient of discrimination

by genotype along the second principal component (13% of total vari-

ance; Figure 1A). Specifically, LOAD1 mice were segregated from B6

and 5XFAD mice. In brain metabolomes, principal component analysis

did not reveal any clear separation between groups (sex or genotype).

However, a gradient of discrimination separated 5XFAD samples from

B6 and LOAD1 samples along the first principal component (46% of

total variance), whereas most of the male and female samples were

separated along the second principal component (Figure 1B). Overall,

this suggested global sex-specific differences in both serum and brain

metabolomes.

3.2 Sex-associated differences significantly differ
in AD mouse models

Next, we investigated sex-specific associations of metabolites in all

mice together, aswell as in eachmousemodel (B6, LOAD1, and5XFAD)

separately. We then tested whether these sex-specific differences

were altered in LOAD1 and 5XFAD mice compared to B6 mice to

determine strain-specific sex differences.

Throughout this article, metabolites belonging to glycerophospho-

lipid (phosphatidylcholines and lyso-phosphatidylcholines) classwill be

referred to as PC. In addition, ethers containing glycerophospholipids

(PCs) will be denoted by PC ae Cx:z, diacyl-PCs will be denoted by

PC aa Cx:z, and acyl containing lyso-phosphatidylcholines will be

denoted as lysoPC a Cxy:z. Sphingomyelins will be denoted as SM

Cxy:z and hydroxy sphingomyelins will be denoted as SM (OH) Cxy:z.

Metabolites belonging to acylcarnitines class will be denoted as Cx

or Cxy:z.

3.2.1 Mouse serum metabolome

In the complete cohort (N = 74), 73 out of 142 metabolites were

significantly associated with sex after multiple testing corrections

(P < 9.09 × 10−4) while adjusting for genotypes (Figure 2A, Table S1

in supporting information). Fifty-six of these metabolites had higher

levels in males, and 17 metabolites had higher levels in females

(Figure 2B). The majority of glycerophospholipids (PCs) were more

abundant in male mice, while levels of a few amino acids (alanine,

isoleucine, serine, and threonine) and the majority of sphingolipids

(SMs) were more abundant in female mice (Figure 2B, Table S1).

Notably, 54 of these sex-specific associations were also observed in

a recent study from the ADNI cohort.12 Further, stratification by

genotypes revealed that 13 of the 73 metabolites showing signifi-

cant sex differences in the complete cohort were also significant in

each of the three genotypes (B6, LOAD1, and 5XFAD) separately,

whereas 14 metabolites showed no significant difference in any geno-

type (Table S1, Figure 2A). Significant sex differences limited to one

genotype were found for three metabolites (lyso-phosphatidylcholine

acyl C20:4 [lysoPC aC20:4], SM [OH]C24:1, asymmetric dimethylargi-

nine [ADMA]) in LOAD1mice, for twometabolites (C3-DC [C4-OH], PC
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F IGURE 1 Principal components analysis of serum and brainmetabolomes frommousemodels of Alzheimer’s disease. A, In the serum
metabolome, we observed a slight gradient of discrimination of the LOAD1 samples fromB6 and 5XFAD samples along the second principal
component. B, In the brainmetabolome, we found a gradient of discrimination of the 5XFAD samples fromB6 and LOAD1 samples along the first
principal component.

ae C30:1) in the 5XFADmice, and for 21metabolites in B6mice. Every

significant sex difference found in each genotype alonewas also signifi-

cant in the full cohort except one: PC aa C38:4 showed a significant sex

difference only in the LOAD1 genotype, with higher levels in females

(Table S1).

Further, comparisons of beta estimates for sex between 5XFAD

and B6 groups showed significant effect heterogeneity (PHET < 0.05)

for five metabolites (C18:1, C18:2, PC aa C34:2, PC aa C36:2, asym-

metric dimethylarginine [SDMA]). All five metabolites reversed their

direction of abundance change between sexes in the 5XFAD mice

compared to B6 mice. Notably, none of these metabolites showed

significant sex-specific differences either in combined mouse samples

or separated by genotypes. Similarly, comparisons of beta estimates

for sex between LOAD1 and B6 groups showed significant effect

heterogeneity (PHET < 0.05) for 31 metabolites, out of which 23

were glycerophospholipids and three were amino acids (valine, argi-

nine, and phenylalanine; Table S2 in supporting information). Most

of these metabolites had opposite changes in direction between

sexes in LOAD1 compared to B6 controls. These observations

indicated that sex differences in serum metabolite levels were sig-

nificantly affected in the late-onset AD model compared to control

mice.

3.2.2 Mouse brain metabolome

Next, we investigated sex-specific associations of metabolites and

sex-associated differences in brain metabolomes of mouse models.

In the complete cohort (N = 74), 34 out of 142 metabolites were

significantly associated with sex after multiple testing correction

(P < 9.09 × 10−4) when adjusting for genotypes (Figure 2C, Table

S1). A total of 15 metabolites had higher levels in males including 10

glycerophospholipids, 4 sphingolipids (SMs), and 1 biogenic amine,

while 19 metabolites had higher levels in females including 9 glyc-

erophospholipids, 4 amino acids, and 6 acylcarnitines (Figure 2D, Table

S1). Stratification by genotypes revealed 14 of the 34metabolites with

significant sex differences were significant in at least one of the geno-

types (B6, LOAD1, and 5XFAD) when analyzed separately, whereas 20

showed no significant sex difference in any genotype. Significant sex

differences limited to one genotype were found for four metabolites

(C18:1, PC aa C32:3, PC ae C36:4, t4-OH-Pro) in LOAD1 mice, for

threemetabolites (C18, PC aa C40:4, PC ae C36:5) in the 5XFADmice,

and for four metabolites (PC ae C42:2, SM C24:0, SM [OH] C22:1, SM

[OH]C24:1) in the B6mice. Significant sex differences for twometabo-

lites (spermidine and spermine) in5XFADand sevenmetabolites (PCae

C30:0, PC aeC30:1, PC aeC30:2, PC aeC34:0, PC aeC36:0, SMC16:0,

and SM C18:0) in B6 were not significant in the full cohort (Table S1,

Figure 2C).

Comparisons of beta estimates for sex between 5XFAD and B6

groups showed significant effect heterogeneity (PHET < 0.05) for

29 metabolites, which include 21 PCs (most of which were ester-

containing PCs), 5 SMs, and 3 biogenic amines (Table S3 in supporting

information). All but two metabolites showed a change in direction

of abundance between sex (higher levels in females compared to

males) in the 5XFADmice compared to B6mice. Similarly, comparisons

of beta estimates for sex between LOAD1 and B6 groups showed

significant effect heterogeneity (PHET < 0.05) for 13 metabolites,

which included 9 glycerophospholipids (the majority of which were

ether-containing PCs), 2 long-chain acylcartines (C16:1, C18:2), 1

biogenic amine (SDMA), and 1 hydroxy-SM (SM [OH] C22:1; Table S3).
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(A) (B)

(C) (D)

F IGURE 2 Sex-metabolite associations in mousemodels.We identifiedmetabolites significantly associated with sex in the full mouse cohort
after multiple testing corrections (P< 9.09 × 10−4) while adjusting for genotypes and each of the three strains (B6, LOAD1, and 5XFAD). A, An
UpSet plot showing intersection between sex-associated serummetabolites across full cohort (ALL) and each of the three strains. Horizontal bars
on the left represent number of metabolites significantly associated with sex and vertical bars represent number of sex-associatedmetabolites
shared across full cohort and each of the three genotypes. Each black dot represents the group and connecting lines represent the group being
compared. In serummetabolome, we found 73 out of 142metabolites significantly associated with sex in the full cohort. Every significant sex
difference found in each genotype alone was also significant in full cohort except one that showed significant sex difference in only LOAD1
genotype. B, Pie charts representing classes of alteredmetabolites in each sex in the full cohort for serummetabolome. Colors in each chart
represents distinct classes of metabolites (red: acylcarnitines, blue: amino acids, green: biogenic amines, purple: glycerophospholipids, and orange:
sphingolipids). Themajority of glycerophospholipids weremore abundant in malemice, while amino acids and sphingolipids weremore abundant
in female mice. C, An UpSet plot showing intersection between sex-associated brainmetabolites across full cohort and each of the three strains. In
the brainmetabolome, we found 34 out of 142metabolites to be significantly associated with sex in the full cohort. D, Pie charts representing
classes of abundant metabolites in each sex in the full cohort. The sphingolipids weremore abundant in malemice, while amino acids and
acylcarnitines weremore abundant in femalemice.

All but three metabolites exhibited a change in direction of abundance

between sexes (higher levels in females compared to males) in LOAD1

mice compared to B6mice. Moreover, three metabolites (PC aa C38:6,

PC ae C32:1, PC ae C44:6) showed significant heterogeneity in both

5XFAD and LOAD1 mouse models compared to controls. In summary,

we found that sex differences in brain metabolite levels varied by

genotype inmousemodels, withmore pronounced effects in 5XFAD.

Moreover, we identified 19 metabolites that showed sex-specific

differences in both serum and brain metabolomes in the combined

analysis of all mice. Notably, none of the metabolites showed sex dif-

ferences in both serum and brain metabolomes of the LOAD1 mice,

while only one metabolite, PC aa C40:4, showed sex differences in

both serum and brain metabolomes of the 5XFAD mice. Levels of

PC aa C40:4 were higher in males and females in serum and brain

metabolomes, respectively.

3.3 Sex-stratified associations of metabolites
with AD risk factors

Next, we investigated the association of metabolites with AD risk

factors and whether sex modifies the associations between AD risk
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factors and metabolite concentrations. We tested for associations of

5XFAD and LOAD1 genotypes with concentrations of each of the 142

metabolites in both serum and brain metabolomes from the same 74

individual animals. We did this in the full cohort and separately in

each sex using multivariable linear regression, followed by analysis of

heterogeneity of effects between sexes. Allmetabolite–genotype asso-

ciations were deemed significant, which fulfilled at least one of the

three criteria as described in Arnold et al.12: (1) associations Bonfer-

roni significant (at a threshold of P < 9.09 × 10−4) in the full cohort,

(2) associations Bonferroni significant in one sex, (3) associations that

showed suggestive significance (P < 0.05) in one sex coupled with

significance for effect heterogeneity between female and male effect

estimates. These significant associations were further classified into

homogeneous (metabolites with similar effects in their association to

the risk factors for both sexes), heterogeneous (metabolites with dif-

ferent effects in both sexes leading to significant heterogeneity), and

sex-specific effects (effects thatwereBonferroni significant in only one

sex with significant effect heterogeneity between males and females).

We compared our findings in mouse models to recent results from the

ADNI cohort,12 and therefore examined the association ofmetabolites

with each genotype for our mice cohort using similar methods.

3.3.1 Mouse serum metabolome

In the mouse serum metabolome, we identified 83 metabolites signifi-

cantly associated with the LOAD1 genotype, while only 7 metabolites

were significantly associated with the 5XFAD genotype (Table S4 in

supporting information, Figure 3A). Among the LOAD1 genotype-

associated metabolites, we found 32 metabolites (24 PCs and 8 SMs)

with homogeneous associations (Figure 3A, top panel). Next, we identi-

fied seven associations with heterogeneous effects: one acylcarnitine

(C16-OH), one biogenic amine (alpha.AAA), and four amino acids

(isoleucine, phenylalanin, tyrosine, and valine) have larger effect size in

males, whereas ADMA showed stronger associations with females (all

I2 > 50%). Further, male-specific effects were seen for 36 metabolites

associated with LOAD1, which included 32 PCs, 3 SMs, and 1 acylcar-

nitine (C14:1-OH) (Figure 3A, top panel). Overall, serum levels of these

significant metabolites were reduced in LOAD1 mice compared to

B6 controls, except for the four amino acids (isoleucine, phenylalanin,

tyrosine, and valine) and one biogenic amine (alpha.AAA).

For 5XFAD, we found five metabolites with heterogenous effects

(Figure 3A, bottom panel): acylcarnitines (C18:1, and C18:2) showed

stronger associationswith females, whereas PC aaC34:2, PC aaC36:2,

and one biogenic amine (SDMA) yielded stronger associations with

males (all I2 > 50%). Onemale-specific effect was seen for PC ae C38:1

with significant negative association with 5XFAD.

Another metabolite (PC aa C32:1) met the Bonferroni threshold

for males but failed to meet the threshold for sex effect heterogene-

ity. Serum levels of these 5XFAD-associated metabolites were also

reduced in 5XFAD mice compared to B6 controls, except for one

biogenic amine (SDMA). Further, we did not observe female-specific

effects for anymetabolite associated with either genotype.

3.3.2 Mouse brain metabolome

In the mouse brain metabolome, we identified 12 metabolites signifi-

cantly associated with LOAD1, while 65metabolites were significantly

associated with the 5XFAD genotype (Table S4, Figure 3B). Out of 12

metabolites associated with LOAD1 (Figure 3B, top panel), two had

homogenous effects (PC aa C42:4, PC ae C34:3) with strong positive

associations. Next, we identified six associations with heterogeneous

effects: acylcarnitine (C18:2) and biogenic amine (SDMA), with larger

effect size in males, whereas PCs (PC aa C28:1, PC ae C40:1, PC ae

C44:6) andonehydroxy sphingolipid (SM [OH]C22:1) showed stronger

positive associationwith females (all I2 >50%). Further, female-specific

effects were seen for three ether-containing PCs (PC ae C32:1, PC

ae C34:0, PC ae C36:0), with significant positive correlations with

the LOAD1 genotype. Levels of these significant metabolites with

homogenous and female-specific effects were increased in LOAD1

mice compared to B6 controls, while levels of metabolites with het-

erogenous effects were reduced in males and increased in females.

Overall, we observed increased levels of these metabolites in female

LOAD1mice compared to female B6.

Out of 65 metabolites associated with the 5XFAD genotype

(Figure 3B, bottom panel), we found 19 metabolites with homoge-

nous effects, which includes 15 PCs, 1 SM (SM C16:1), 1 amino acid

(lysine), and 2 biogenic amines (creatinine and t4-OH-Pro). Six PCs

and one hydroxy sphingolipid (SM [OH] C22:2) showed heterogenous

effects with stronger positive associations with females (I2 > 50%).

We also identified 30metabolites with female-specific effects: 21 PCs,

7 SMs (including four hydroxy SMs), 1 biogenic amine (putrescine),

and 1 acylcarnitine (C18; Figure 3B, bottom panel). Levels of these

5XFAD-associated metabolites were higher in 5XFAD mice compared

to B6 controls. Male-specific effects were also seen for two biogenic

amines (spermidine, spermine), with strong negative associations with

5XFAD.

Upon comparing these brain associations to associations in the

serum metabolome, we observed that out of 65 metabolites associ-

ated with 5XFAD in the brain metabolome, only 3 metabolites were

associated with serum in 5XFAD, while 43 were associated with serum

in LOAD1. This suggests that AD-related effects present in different

tissues in the different mouse models. Similarly, out of 12 metabo-

lites associated with LOAD1 in the brain, 10 were associated with

LOAD1 and 2 were associated with 5XFAD in serum. Metabolites

commonly associated with either genotype across serum and brain

metabolomes were generally glycerophospholipids and sphingolipids.

Some amino acids such as valine and isoleucinewere significantly asso-

ciated with the LOAD1 genotype in serum metabolome with larger

effect size in males (Figure 3C-D, Table S3), while two amino acids

(lysine and arginine) and five biogenic amines (spermidine, spermine,

creatinine, putrescine, and t4-OH-Pro) were specifically significantly

associated with 5XFAD in brainmetabolome. Notably, levels of the sig-

nificantly associatedmetabolites were higher in the brainmetabolome

and reduced in the serum metabolome compared to respective con-

trols. We compared the effect of LOAD1 on glycerophospholipids

(the largest class of metabolites in panel) levels for serum and
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F IGURE 3 Metabolite associations with LOAD1 and 5XFAD genotype stratified by sex inmousemodels. Bar charts (A-B) showing
classification of significant metabolite–genotype associations into three types of effects: homogeneous (metabolites with similar effects in their
association to the risk factors for both sexes), heterogeneous (metabolites with different effects in both sexes leading to significant heterogeneity),
and sex-specific effects (effects that were Bonferroni significant [P< 9.09× 10−4] in only one sex with significant effect heterogeneity between
males and females). Different colors in the bar chart represent distinct classes of metabolites (acylcarnitines: red, amino acids: blue, biogenic
amines: green, glycerophospholipids: purple, and sphingolipids: orange). A, Distribution of serummetabolites significantly associated with LOAD1
(top panel) and 5XFAD (bottom panel) strains. In serum, we identifiedmoremetabolites significantly associated with LOAD1 than 5XFAD. B,
Distribution of brain metabolites significantly associated with LOAD1 and 5XFAD genotypes. In the brainmetabolome, we identifiedmore
metabolites significantly associated with 5XFAD genotype then LOAD1 genotype. C-D, Boxplots showing levels of valine and isoleucine levels for
stratification by sex across each of the three strains (B6, LOAD1, and 5XFAD). Male and female groups are plotted in separate panels, with strains
distinguished by color (light blue: B6, dark blue: 5XFAD, green: LOAD1). Levels of these amino acids in serummetabolomewere significantly higher
(P< 0.05) in male LOAD1 compared tomale B6 controls.
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F IGURE 4 Correlation between human andmousemetabolomic signatures in APOE ε4 carriers. APOE ε4 effects on glycerophospholipids
levels weremeasured betweenmouse and humanmetabolomes with Pearson correlation (R) and statistical significance. Each point is an effect
estimate for a single glycerophospholipid species. A, Mouse serum and brain effects showing significant negative correlation in LOAD1mice. B,
ADNI human andmouse serum effects showing significant positive correlation. C, ROS/MAP human andmouse serum effects showing significant
positive correlation. D, ROS/MAP human andmouse brain effects showing significant positive correlation. ADNI, Alzheimer’s Disease
Neuroimaging Initiative; APOE, apolipoprotein E; ROS/MAP, Religious Orders Study RushMemory and Aging Project.

brain metabolomes and observed a significant negative correlation

(r=−0.31, P= 0.01) between tissues (Figure 4A).

3.4 Comparison of mouse metabolome profile to
human metabolome study

Next, we compared our results to human metabolomic profiles from

two independent studies: (1) the ADNI cohort, for which we have

serum metabolomics data from 1517 participants12 and (2) the

ROS/MAP,31 forwhichwe had p180metabolites data fromboth serum

and brain from 92 participants.

3.5 The ADNI cohort

We investigated whether serum metabolites reported to be signifi-

cantly associatedwith ADbiomarkers in the ADNI cohorts12 were also

associated with AD risk factors in mouse serum metabolome. Arnold

et al.12 used multivariable logistic regression to measure associations

of pathological Aβ1-42 with metabolite concentrations as explanatory

variables. For uniformity with our mouse data analysis, we re-assessed

the association analysis for the ADNI human serum metabolomics

data using a multivariable linear regression approach using metabolite

concentrations as the dependent variable to test associations of the

CSF Aβ1-42 pathology with concentrations of 139 serum metabolites.

We recovered the same metabolites significantly associated with CSF

Aβ1-42 pathology as reported in the study.12

Interestingly, we observed that four metabolites significantly asso-

ciated with CSF Aβ1-42 pathology (PC ae C44:4, PC ae C44:5, PC ae

C44:6, and valine) were also significantly associated with the LOAD1

genotype (Table S3). Three out of these four metabolites (PC ae C44:4,

PC ae C44:5, and PC ae C44:6) also showed Bonferroni-significant

associations with pathological CSF Aβ1-42 in APOE ε4 carriers.12 Fur-

ther, we noticed a similar decrease in these metabolite levels in serum

of APOE ε4 carriers (without CSF Aβ1-42 pathology), as we have seen

in LOAD1 mice that carry the ε4 variant but do not exhibit amy-

loid plaques (Figure 5). However, none of the significant associations

reported for pathological CSF Aβ1-42 was significantly associated with
the 5XFAD genotype inmouse serummetabolome.

Furthermore, we measured correlations between the effects of

APOE ε4 on glycerophospholipid levels in serum metabolomics from
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(A)

(B)

(C)

(D)

F IGURE 5 Levels of metabolites significantly associated with CSF Aβ1-42 pathology in humans and LOAD1 genotype inmousemodels.
Boxplots showing levels for serummetabolites significantly associated with both LOAD1 genotype inmousemodels (left panels) and CSF Aβ1-42
pathology in human subjects (right panels). In humans, subjects were stratified by sex, APOE ε4 carriers, and CSF Aβ1-42 pathology andmouse
models were stratified by sex and genotypes. In left panels themousemodel’s genotype specificity is illustrated by a color scale (light blue: B6, dark
blue: 5XFAD, light green: LOAD1). In right panels stratification is illustrated by a color scale (light blue: without CSF Aβ1-42 pathology without
APOE ε4 carriers, dark blue: CSF Aβ1-42 pathology without APOE ε4 carriers, light green: APOE ε4 carriers without CSF Aβ1-42 pathology, dark
green: APOE ε4 carriers with CSF Aβ1-42 pathology). Levels of (A) phosphatidylcholine acyl-alkyl C44:4 (PC ae C44:4); (B) phosphatidylcholine
acyl-alkyl C44:5 (PC ae C44:5); and (C) phosphatidylcholine acyl-alkyl C44:6 (PC ae C44:6). Levels of thesemetabolites are reduced in serum of
LOAD1mice (left panels) (that carry the ε4 variant but do not exhibit amyloid plaques) as well as in serum of APOE ε4 carriers in humans (without
CSF Aβ1-42 pathology) (right panels). D, Levels of valine are increased in serum of LOAD1malemice (left panel) in a similar fashion to APOE ε4
carriers in humans without CSF Aβ1-42 pathology (right panel). Note that mouse data are identical to those in Figure 3C. Aβ, amyloid beta; APOE,
apolipoprotein E; CSF, cerebrospinal fluid.
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the ADNI cohort and mouse models. We found a significant positive

correlation (r = 0.31, P = 0.008) between the effects of APOE ε4 on

glycerophospholipid levels in human and mouse serum, suggesting

a similar decrease in the serum of APOE ε4 carriers compared to

non-carriers (Figure 4B).

3.6 ROS/MAP cohort

Next, we carried out multivariable linear regression analysis on

ROS/MAP serum and brain metabolomics data using metabolite

concentrations of glycerophospholipids as dependent variables to

measure the effects of theAPOE ε4genotype versus otherAPOE alleles.
We then assessed the correlation between APOE ε4 effects on glyc-

erophospholipid levels in serum metabolomics data from ROS/MAP

carriers and APOE ε4 mouse models (i.e., LOAD1 mice). We observed

a significant positive correlation (r = 0.44, P = 0.0001) between the

effects of APOE ε4 on glycerophospholipids levels in human andmouse

serum, suggesting a similar decrease in the glycerophospholipids in

serum of APOE ε4 carriers compared to non-carriers (Figure 4C).

We also measured the correlation between the effects of APOE ε4
on glycerophospholipids levels in brain metabolomics data from

ROS/MAP and mouse model carriers and found a significant positive

correlation (r = 0.40, P = 0.0008; Figure 4D), suggesting an increase in

the same metabolites in the brain that was consistent across humans

and mice. We also compared the effects of APOE ε4 on glycerophos-

pholipids levels from human serum and brain metabolomes in the

ROS/MAP cohort, but we did not observe a significant negative

correlation (r = 0.11, P = 0.4) as we observed in mouse models. In

summary, we observed the same effect directions in humans and mice

from both serum and brain metabolites when compared separately,

while human serum-to-brain comparisons may suffer from limited

power.

4 DISCUSSION

4.1 Summary

In this study, we have systematically investigated alterations in abun-

dances of 142 metabolites in the serum and brain metabolome of the

5XFAD amyloid mouse model and a more recently created LOAD1

(APOE4.Trem2R47H) mouse model with LOAD genetics. We assessed

the sex differences for metabolic associations in each mouse model

and investigated changes in sexual dimorphisms of metabolic levels

compared to B6 control mice. A complex pattern of sex and geno-

type effects was observed, with the most significant effects occurring

in the brain of 5XFAD mice and serum of LOAD1 mice. To assess the

translational relevance of the mouse models, we compared our find-

ings to recent metabolomic studies from two human cohorts.12,31 We

observed similar glycerophospholipid signatures in human and mouse

APOE ε4 carriers in both brain and serum.

4.2 The two mouse strains exhibit distinct
sex-specific biology, both with potential relevance to
dementia

Overall, we observed distinct sex differences for the two mouse

strains. Significant sexual dimorphism of serum metabolic levels was

observed in LOAD1mice carrying the APOE ε4/ε4 variant. In the serum
metabolome,we observed thatmost glycerophospholipidswere signif-

icantly associated with males and showed elevated levels compared

to females, while few sphingomyelins and amino acids were more

abundant in females. Multiple serum metabolites with significantly

higher levels in B6 (controls) females (specifically amino acids includ-

ing valine and arginine) showed reduced levels in female mice carrying

APOE ε4/ε4 (LOAD1) compared to their male counterparts, while other

metabolites such as glycerophospholipids and some long chain acyl-

carnitines showed reduced levels in male mice carrying APOE ε4/ε4
compared to females. Brainmetabolomes showedmore significant sex-

ual dimorphisms in 5XFAD mice and brain metabolites such as some

biogenic amines, glycerophospholipids, and sphingomyelins that had

greater abundance in B6 males showed higher levels in the 5XFAD

females. This suggests that metabolic sex differences changed owing

to presence of the APOE ε4/ε4 allele and 5XFAD transgene. However,

amino acids such as alanine, serine, threonine, and tryptophan exhib-

ited significant increased levels in both brain and serummetabolomeof

femalemice compared tomalemice in all three strains,while someglyc-

erophospholipids were significantly elevated in the brain and serum

metabolome of male mice compared to female mice in all strains. We

note that all mice were 6 months of age, unlike the human samples

from aged individuals, and that sex-specific metabolite profiles may

evolve differently with aging. These results suggest that even though

bothmousemodels are intended for use inADresearch, the two strains

have different sex-specific biology with potentially distinct relevance

to dementia.

4.3 The LOAD1 mouse model is appropriate for
the study of AD metabolite biology

Our analysis of both brain and serum metabolomes from each animal

suggests distinct tissues of action for the two genetic constructs.

Sex-stratified metabolite associations with genotypes identified that

serum metabolites were more significantly associated with LOAD1

genotype, while brain metabolites were more significantly associated

with 5XFAD. These outcomes are potentially due to 5XFAD amyloid

accumulation primarily affecting the brain while the APOE ε4/ε4 in

the LOAD1 strain affects lipid metabolism, potentially throughout

the body. Notably, we identified a heterogenous association of valine

in the LOAD1 genotype, with reduced levels in female mice but

increased levels in males. Studies have associated the reduced level of

valine in serum with cognitive decline and brain atrophy in AD,38 and

also suggested valine as a marker for increased female vulnerability

to AD.12,38 We also observed increased levels of biogenic amine
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putrescine, specifically in the brain of female 5XFAD. As significant

increased levels of putrescine have been reported in brain tissue from

AD patients,39 similar elevations were also observed in the APP/PS1

mice at 6 months of age,26 suggesting Aβ causes upregulation of

polyamine uptake and increased ornithine decarboxylase activity,

which leads to increased polyamine synthesis,40,41 which in turn

causes dysfunction of the N-methyl-D-aspartate receptor leading to

the neuronal excitotoxicity which occurs in AD.42 Two other biogenic

amines (spermidine, spermine) also exhibit increased but insignificant

level in the 5XFAD female brain. Pan et al.26 reported that putrescine

precedes both spermidine and spermine in the biochemical pathway

and observed significant increase in both spermidine and spermine

in female brain at later time point. This suggests that our relatively

young mice (6 months of age) may exhibit more significant changes

in these biogenic amines at later ages. The metabolite asymmetric

dimethylarginine (ADMA), which is an endogenous inhibitor of nitric

oxide synthase, has been found to be higher in plasma from AD

patients.43 Inhibition of endothelial nitric oxide synthesis by ADMA

impairs cerebral blood flow, which may contribute to the development

of AD.43 We also observed a significant positive association of ADMA

with female LOAD1 in serummetabolome, suggesting that the LOAD1

mousemodel is appropriate for the study of relevant AD biology.

4.4 The 5XFAD amyloidogenic mouse is a
relevant model for acylcarnitine alterations in AD

We identified both female-specific and heterogeneous increases in

sphingomyelins in the brain metabolome of 5XFAD mice. Sphin-

gomyelins are precursors for ceramide production and their accumu-

lation suggests the induction of apoptosis, further driving neurodegen-

eration by increasing Aβ biosynthesis and promoting gamma-secretase

processing of amyloid precursor protein.44–46 Higher levels of sphin-

gomyelins and glycerophospholipids in 6-month-old mouse brains are

indicative of early neurodegeneration and loss of membrane functions.

Acylcarnitines have important functions in the brain such as mito-

chondrial function, energetics, and neurotransmission and have been

linked with AD-related pathology.12,47,48 We observed a significant

female-specific association of higher levels of acylcarnitine C18 with

the 5XFAD, suggesting sex-specific accumulation of long-chain fatty

acids in females. Increased levels of C18 have been also previously

reported in MCI patients with CSF Aβ1-42 pathology.47 These find-

ings suggest the 5XFAD amyloidogenic mouse as a relevant model for

acylcarnitine alterations in AD.

4.5 Serum biomarkers are informative, but their
effects in the brain cannot be directly extrapolated

Glycerophospholipids (PCs and LysoPCs) are the major class of com-

plex lipids playing essential roles in neural membrane formation and

intraneuronal signal transduction.49 We identified that serum levels of

glycerophospholipids were reduced in LOAD1 mice compared to B6

controls, while levels of these metabolites in the same animals were

greater in bothmale and female brains of LOAD1 and 5XFADmice.We

also compared the LOAD1 genotype effects on glycerophospholipid

levels between serum and brain metabolomes and observed a signif-

icant negative correlation. This suggests a correspondence between

brain and serum glycerophospholipid levels, but a negative rather than

positive correlation. Similar patterns of contrast concentration level

of glycerophospholipids in brain and blood metabolome were also

observed in the APP/PS1 mouse.26 These findings imply that although

the serum biomarker is informative, effects in the brain cannot be

directly extrapolated from those in blood.

4.6 The translational utility of mouse models for
metabolomic studies of AD

Weobserved translational relevance for these results in twohumanAD

studies. Our observed effect of LOAD1 on serum glycerophospholipids

levels was significantly correlated with serum effects of the APOE ε4
variant in ADNI, showing a similar decrease in the samemetabolites in

serum of APOE ε4 carriers compared to non-carriers and indicating a

serum-based effect of APOE genotype. We also identified Bonferroni-

significant associations of PC ae C44:4, PC ae C44:5, and PC ae C44:6

with APOE ε4 genotype in mouse models as in the ADNI cohort with

consistent effect directions. While all three PCs showed homozygous

associations in the ADNI cohort, in mice only PC ae C44:5 showed

a homogeneous effect, while associations of PC ae C44:4 and PC ae

C44:6 were male specific. We also confirmed tissue-specific effects of

the LOAD1 genotype on metabolite levels for APOE ε4 carriers in the

ROS/MAPcohort, finding significant correlations between carriers and

LOAD1mice in bothbrain and serummetabolome.Altogether, this sug-

gests similar effects of the APOE ε4 variant in mouse models to those

observed in human AD carriers. However, we did not observe consis-

tent sex differences betweenmice and humans. Contrary to themouse

models, PCs were higher in female humans and amino acids were (with

few exceptions like serine and glycine) higher inmales.12 Despite these

dissimilarities of some sex differences, we still observed an overlap in

associations with mouse genotype and the related human phenotypes,

which indicates that the sex differences do not mask associations on

the phenotypic/genotypic level. This suggests that, while there is a dif-

ference in the metabolic patterns for sex in mice and humans, there is

translational utility in mousemodels for metabolomic studies of AD.

5 CONCLUSION

In conclusion, metabolomic signatureswere notably different between

brain and serum in two mouse models of AD at 6 months of age. The

early-onset 5XFAD mice exhibited stronger effects in brain, whereas

the late-onset LOAD1 mouse showed more pronounced effects in

serum. These findings are consistent with the high levels of neu-

ropathology in 5XFAD mouse brains and the modifications of serum

biomarkers in LOAD1 mice. We were able to identify patterns of
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metabolic changes related to human AD risk in our mouse models.

These findings strengthen the utility of mouse models for studying

metabolic changes that occur in human AD at early stages. How-

ever, there are some limitations in this study. First, we evaluated

metabolomic data from only 6-month-old mice, which did not allow

to study of progressive metabolic changes associated with AD. Stud-

ies using transgenic APP/PS1 mice observed that metabolic changes

associated with AD pathology appeared first in the brain and later in

blood.26 Therefore, it will be interesting to investigate metabolomics

profiles of the LOAD1 and other late-onset mouse models over differ-

ent extended ages to study progressive metabolic changes associated

with AD pathology. We have also used a targeted approach, poten-

tially missing broader alterations in mouse model metabolomes. Our

findings suggest such aging studies can model the different phases of

metabolic disturbances whichmay occur in human AD.
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