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Abstract

The missing data issue is ubiquitous in health studies. Variable selection in the presence of 

both missing covariates and outcomes is an important statistical research topic but has been 

less studied. Existing literature focuses on parametric regression techniques that provide direct 

parameter estimates of the regression model. In practice, parametric regression models are often 

sub-optimal for variable selection because they are susceptible to misspecification. Flexible 

nonparametric machine learning methods considerably mitigate the reliance on the parametric 

assumptions, but do not provide as naturally defined variable importance measure as the covariate 

effect native to parametric models. We investigate a general variable selection approach when 

both the covariates and outcomes can be missing at random and have general missing data 

patterns. This approach exploits the flexibility of machine learning modeling techniques and 

bootstrap imputation, which is amenable to nonparametric methods in which the covariate effects 

are not directly available. We conduct expansive simulations investigating the practical operating 

characteristics of the proposed variable selection approach, when combined with four tree-based 

machine learning methods, XGBoost, Random Forests, Bayesian Additive Regression Trees 

(BART) and Conditional Random Forests, and two commonly used parametric methods, lasso 

and backward stepwise selection. Numeric results suggest that when combined with bootstrap 

imputation, XGBoost and BART have the overall best variable selection performance with respect 

to the F1 score and Type I error, while the lasso and backward stepwise selection have subpar 

performance across various settings. In general, there is no significant difference in the variable 

selection performance due to imputation methods. Guidance for choosing methods appropriate to 

the structure of the analysis data at hand are discussed. We further demonstrate the methods via a 

case study of risk factors for 3-year incidence of metabolic syndrome with data from the Study of 

Women’s Health Across the Nation.
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1 Introduction

Variable selection is an important statistical research topic concerning the identification of 

important predictors of an outcome variable. The building block of variable selection is the 

modeling of the covariate-outcome relationship. Traditionally, parametric models have been 

used to describe how the covariates are related to the outcome; and variables can be selected 

based on hypothesis tests between nested models or by optimizing a likelihood penalized 

for model complexity, typically using the Akaike or Bayesian information criterion. 

With parametric regression, the dependence structures among and distributional shapes of 

covariates need to be made explicit. Misspecification of these parametric forms will have 

an adverse effect on variable selection1. Considerable research has demonstrated advantages 

of variable selection based on flexible machine learning modeling techniques compared 

to methods relying on parametric regression1–6. In particular, nonparametric tree-based 

methods including Bayesian Additive Regression Trees (BART)7, Random Forests (RF)8 

and extreme gradient boosting (XGBoost)9 have attracted a lot of attention in the scientific 

literature. Tree-based machine learning methods mitigate the reliance on the parametric 

modeling assumptions and are more adept at capturing nonlinearities and interactions in the 

relationships among response and covariates7,10,11, and have been widely applied in health 

research2,12–17. Variable selection procedures for these nonparametric tree-based methods 

typically rely on the variable importance measure supplied by the model. For example, 

permutation-based1 or sequential stepwise approaches18 have been used to select a set of 

important covariates that would optimize a performance metric, e.g., classification accuracy 

for a binary outcome or the mean-squared-error for a continuous outcome. These procedures 

can better represent complex response surfaces but are “black-boxes” in the sense that the 

effects of covaraites on the outcome are not directly quantified1.

Missing data are ubiquitous in health care databases, and present substantial challenges to 

variable selection, as variable selection procedures need to be tailored to various missing 

data mechanisms and statistical approaches used for handling missing data under the specific 

mechanisms. There are three general missing data mechanisms: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR)19. When 

the missingness depend neither on observed data nor on the missing data, the data are said to 

be MCAR. In this situation, complete cases analysis would yield larger standard errors due 

to the reduced sample size but does not cause bias as the incomplete dataset is representative 

of the entire dataset20. More often the mechanism of missingness may depend on the 

observed data, and then the missing data are MAR given the observed data20. MAR allows 

prediction of the missing values based on the cases with complete data. In the situation 

where the missingness depends on the missing data, then the data are MNAR21. Sensitivity 

analysis22,23 is an approach recommended by the National Research Council21 to handle 

MNAR by assessing the impact of assumptions about the missing data on inference. In this 

paper, we focus on the mechanism of MAR, which is widely accepted in the biostatistical 

and health research, and imputation, a statistical technique for handing missing data that 

has gained wide popularity for its generality. Under MAR, statistical techniques for treating 

missing data such as the inverse probability weighting24 or the expectation-maximization 

algorithm25 have been used in combination of variable selection. However, these estimating 
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equations-based or likelihood-based approaches are usually customized to a specific variable 

selection procedure and are less amenable to general missing data patterns26. Wood et 

al.27 compared strategies for combining variable selection procedures and imputation for 

incomplete data. They focused on the backward stepwise selection approach based on the 

parameter estimates and their standard errors adjusted for imputation. Long and Johnson26 

proposed a general resampling approach that combines bootstrap imputation and stability 

selection28, which is based on randomized lasso, and used simulations to demonstrate that 

this approach had better performance compared with several existing methods for both low- 

and high-dimensional problems. Both studies rely on parametric modeling of the covariate-

outcome relationship.

Some tree-based methods have embedded algorithms for handling missing data. For 

example, BART and XGBoost can accommodate missing data in covariates by considering 

the missingness as a value in its own right in the tree splitting rules during model 

construction9,29. This technique is known as missingness incorporated in attributes (MIA). 

MIA does not require any assumptions or need for imputation, but cannot simultaneously 

address missing data in the outcome. Some RF based algorithms do not distinguish between 

outcome and covariates and can deal with missing values in both cases and at the same 

time. Examples of such algorithms30 include 1) “strawman imputation”, which imputes the 

missing values for continuous variables using the median of non-missing values and for 

discrete variables using the most frequently occurring non-missing values, 2) “on-the-fly-

imputation”, which simultaneously imputes data by randomly drawing a value from in-bag 

data while growing the forest and iterating for improved results, and 3) imputation algorithm 

called missForest (more detail in Section 2.3.2), which recasts the missing data problem as 

a prediction problem. Using simulations, Tang et al.30 recommended the imputation method 

missForest, which performed the best across various missing data settings. To the best of 

our knowledge, no previous research has investigated strategies for combining statistical 

techniques for missing data and variable selection procedures based on flexible tree-based 

machine learning methods.

In this paper, we investigate approaches to combining imputation and variable selection 

procedures for tree-based methods. We consider and compare four machine learning 

methods that have a proven track record: BART, RF, conditional random forests (CRF)31 

(a variant of RF utilizing conditional inference trees as base learners), and XGBoost, and 

two commonly used classical parametric regression based methods: the backward stepwise 

selection approach and lasso. Drawing strength from previous work by Long and Johnson26, 

we use bootstrap imputation32. It has been shown, when used with lasso, to be relatively 

insensitive to tuning parameter values in terms of variable selection, as well as the threshold 

value π that determines which variables should be selected, e.g., if they are selected in at 

least πM imputed datasets. Motivated by our case study, we focus on a binary outcome. 

However, all methods considered can be straightforwardly applied to a continuous outcome.

The rest of the paper is organized as follows. Section 2 describes the methods. In Section 

3, we conduct an expansive simulation to assess the practical operating characteristics of the 

methods. Section 4 illustrates the methods using data from the Study of Women’s Health 

Across the Nation, and Section 5 provides a discussion.
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2 Methods

2.1 Notation

Suppose we have n independently and identically distributed copies of data 

Y i, Xi , i = 1, …, n , where Y i is subject i’s binary outcome with 1 for case and 0 for control, 

Xi = Xi1, …, XiK  is a set of K potential predictors, either continuous or discrete. Both Y  and 

X can have missing values. Let Rk
X be the missing data indicator for Xk, with Rk

X = 1 if Xk

is missing and Rk
X = 0 if Xk is observed, k = 1, …, K, and RX = R1

X, …, RK
X . Similarly, let RY

be the missing data indicator for the outcome Y , with RY = 1 if Y  is missing and RY = 0
if Y  is observed. Let Q denote the nonlinear transformations and higher-order terms of the 

predictors X, and RQ be the corresponding missing data indicator. We use Z = X, Q, Y  to 

denote the full data, Zobs to indicate the observed components of Z and Zmis the missing 

components. The missing data indicator for the full data is R = RX, RQ, RY . Throughout, 

we assume that data are MAR, i.e., f R ∣ Z = f R ∣ Zobs .

2.2 Overview of variable selection methods in complete data

Variable selection has been widely studied from both the classical and Bayesian perspective. 

A large body of work rests on the assumption taking the shape of parametric models, in 

which the outcome is explicitly specified in a linear functional form of the covariates. If 

the parametric form is incorrectly specified, the variable selection results may be erroneous. 

For example, noise variables may be selected and important variables excluded. In practice, 

correctly specifying a parametric model in the presence of complex nonlinear functional 

relationships between the predictors and response is difficult. However, nonparametric 

methods are flexible to approximate functional forms of arbitrary complexity, thus mitigate 

the parametric assumptions and attendant errors in variable selection. In this article, we 

focus on tree-based methods, examples of which include BART, RF, CRF and XGBoost. 

The tree-based methods use the internals of the classification and regression tree (CART) 

structure. A CART model starts with a single root node containing all observed data. A 

splitting rule, involving a splitting variable Xk and a split point c, is chosen for the root 

node. The data in the root node are then divided into two groups – daughter nodes – based 

on whether Xk ≥ c or Xk < c. This procedure is then sequentially performed on each of the 

daughter nodes until some stopping criteria have been met, leading down to the terminal 

nodes. See Breiman et al.10 for a detailed description of the CART. An ensemble of CART 

models can overcome the instability of single trees and improve prediction accuracy.

2.2.1 Bayesian Additive Regression Trees—BART is a Bayesian sum-of-trees 

model with a regularizing prior to keep the individual tree effects small7. For a binary 

outcome, BART uses probit regression,

Pr Y = 1 ∣ X = x = Φ f x = Φ ∑
j = 1

m
g x; Tj, ℳj ,

(1)
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where Φ ⋅  is the standard normal cumulative distribution function, Tj denotes the jth 

regression tree with v terminal nodes, each of which has a parameter μjv representing 

the mean response of the observations in the dth terminal node d = 1, …, v , and 

ℳj = μj1, …, μjv ; and g x; Tj, ℳj  is the value obtained by dropping the vector of covariates 

x down the tree Tj and reporting the mean response μ associated with the terminal node 

in which x falls. The Tj, ℳj  are treated as parameters in a formal statistical model. To 

avoid overfitting and limit the contribution of each Tj, ℳj , a regularizing prior is put on 

the parameters, and the posterior is computed using Markov chain Monte Carlo (MCMC). 

At each iteration of the MCMC algorithm, each tree may grow or shrink in size, with its 

parameters Tj, ℳj  possibly swapped with another pair without changing the f. This lack of 

identification leads to a stable MCMC algorithm. A detailed overview of the BART model 

can be found in Chipman et al.7 and Bleich et al.1.

Variable selection for BART draws on a permutation-based inferential approach1. The 

BART model outputs the “variable inclusion proportions” of each predictor variable: the 

proportion of times each predictor is chosen as a splitting rule divided by the total 

number of splitting rules appearing in the model. The variable inclusion proportions can 

be used to rank variables in terms of relative importance, but do not provide guidelines for 

variable selection. Bleich et al.1 proposed a nonparametric approach to establish thresholds 

for the variable inclusion proportions for a variable to be deemed as important. This 

approach is based on permutation of the response variable and averages out the chance 

capitalization that may occur in a single data set. Specifically, P  permutations of the 

response vector are created, Y 1
*, …, Y P

*. The BART model will then be fitted to each of 

the permuted response vectors Y p
* and the original predictor variables X1, …, XK . From the 

BART run using each permuted response Y p
*, we retain the variable inclusion proportions, 

pk, p
*  for each predictor Xk. Denote the vector of all variable inclusion proportions from 

the pth permuted response by pp
*, then the “null” distribution of the variable inclusion 

proportions across all P  permutations can be computed, p1
*, …, pP

* , for the variable inclusion 

proportions p from the real response Y . Three thresholding procedures of varying stringency 

are proposed to select important variables. The least stringent strategy is a “local” 

threshold: select predictor Xk if pk exceeds the 1 − α quantile of the permutation null 

distribution of pk, pk, 1
* , …, pk, P

* . The most stringent strategy is a “global max” threshold: 

first calculate pmax, p
* = max p1, p

* , …, pK, p
* , the largest variable inclusion proportion across all 

predictor variables in permutation p, and then only select Xk if pk exceeds the 1 − α
quantile of the distribution of pmax, 1

* , …, pmax, P
* . The intermediary strategy is a “global SE” 

threshold: calculate the mean mk and standard deviation sk of variable inclusion proportion 

pk
* for predictor Xk across all permutations, and find the smallest global multiplier C* such 

thatC* = inf
C ∈ ℝ+

∀k, 1
P ∑p = 1

P 1 pk, p
* ≤ mk + Csk > 1 − α . The predictor Xk is only selected if 

pk > mk + C*sk. In our simulations (Section 3), we used the local threshold as the other two 

thresholds were found to be too stringent for our study settings. We refer to Bleich et al.1 for 

more detail on the permutation-based variable selection approach.

Hu et al. Page 5

Stat Methods Med Res. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.2 Random Forests—The RF method generates a distribution of trees, each 

constructed on a bootstrap sample. This process is known as bagging, short for bootstrap 

aggregation, first developed by Breiman as one of the earliest ensemble techniques33. To 

reduce correlation among bootstrapped trees and improve the prediction accuracy of the 

ensemble model, Breiman8 unified an algorithm called RF, which considers a random 

subset of predictors for each split in the tree-building process on each bootstrap sample. 

Certain observations of each bootstrap sample are left out and not used for fitting the tree 

model. These samples are called out-of-bag (OOB) samples and can be used to evaluate the 

predictive performance of the RF model.

RF supplies the OOB variable importance score, describing the relative impact of each 

predictor variable on the model’s predictive accuracy. The score of each predictor variable 

is calculated by permuting that variable’s values in the OOB sample while keeping all 

other variables the same, and recording the difference in prediction accuracy between the 

permuted and original data. Many variable selection procedures for RF are based on the 

combination of variable importance and model selection, in particular in the family of the 

“wrapper” methods. In this article, we use an approach that is based on recursive elimination 

of variables and has been widely used in the biomedical research.

Following Díaz-Uriarte and De Andres18, we iteratively fit a series of RF models. In each 

iteration, a new forest is built after a fraction of predictor variables are discarded with the 

smallest variable importance scores. The variable importance scores are not recalculated in 

each iteration to avoid potential overfitting. The OOB error rates from all the fitted RF are 

recorded. The selected set of variables is the smallest number of variables whose OOB error 

rate is within u standard errors of the minimum error rate of all RF models (the standard 

error is computed from the exact binomial distribution with the rate parameter being the 

minimum error rate). Setting u = 0 corresponds to selecting the set of variables that leads to 

the smallest error rate; and setting u = 1 is similar to the “1 s.e. rule” commonly used in the 

classification literature. We use u = 1 in our simulations (Section 3) and case study (Section 

4).

2.2.3 Conditional Random Forest—CRF is a variant of the RF model with the 

conditional inference trees of Hothorn et al.31 as base learners. In a conditional inference 

framework, statistical hypothesis tests are utilized to conduct an exhaustive search across the 

predictor variables and the possible split points of these variables. For a candidate split, a 

statistical test with a p-value computed is used to evaluate the between-group difference for 

the two nodes generated by the split. A threshold for statistical significance is used as the 

stopping criterion to determine whether additional splits should be performed. Like CART 

trees, conditional inference trees can be bagged. In constructing the ensembles, observations 

are sampled according to probabilities specified by the weights. The CRF also differs from 

RF in the aggregation scheme. The CRF algorithm averages observation weights extracted 

from each of the conditional inference trees rather than direct predictions as RF. For variable 

selection using CRF, we also employ the recursive backward elimination approach as used 

for RF, based on the variable importance score and OOB error rate outputted by CRF. 

Hothorn et al.31 and Strobl et al.34 argued that computation of variable importance is biased 
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in favor of variables with many potential cutpoints in RF; on the contrary, the conditional 

inference trees used in CRF are unbiased.

2.2.4 Extreme Gradient Boosting—The XGBoost method draws on the idea of 

gradient boosting9. Boosting is a process in which a weak learner is boosted into a strong 

learner. Friedman et al.35 connected boosting to a forward stagewise additive model that 

minimizes a loss function and brought forth a highly adaptable algorithm, gradient boosting 

machines. Specifically, a gradient tree boosting model uses m additive functions to predict 

the outcome,

Pr Y = 1 ∣ X = x = ϕ x = ∑
j = 1

m
fj x ,

(2)

where f = wq x  is a tree structure with decision rules q that map an observation x to a 

terminal node, and w represents the weights associated with terminal nodes. Each tree 

contains a continuous score on each of the terminal nodes. For a given x, we will drop x
down each of the m boosted trees until it hits a terminal node of each tree, and calculate the 

final prediction for x by summing up the scores (given by w) in the corresponding terminal 

nodes across the m trees, i.e. ∑j = 1
m fj(x) in equation (2). The idea of gradient boosting is to 

minimize the loss function ℒ ϕ = ∑i l yi, ŷi , where ŷi and yi are respectively the predicted 

and observed outcome for the ith individual in the data. For classification, l yi, ŷi = exp −yiŷi

is an exponential loss function (differentiable convex) that measures the difference between 

ŷi and yi, ∀i ∈ 1, …, n . The XGBoost algorithm adds a term Ω fj  to the loss function ℒ ϕ
of the traditional gradient tree boosting to penalize model complexity. The revised loss 

function for XGBoost is

ℒ ϕ = ∑
i = 1

n
l yi, yi + ∑

j = 1

m
Ω fj ,

(3)

where Ω(f) = γT + 1
2λ ∥ w ∥2 , T  is the number of terminal nodes in a tree, ∥ w ∥ represents 

the ℓ2 norm of terminal node weights, γ and λ are tuning parameters governing further 

partitioning of the predictor space. The penalty term Ω f  helps to smooth the final learnt 

weights w to avoid overfitting. XGBoost uses two additional techniques, shrinkage and 

column subsampling, to further prevent overfitting. Shrinkage scales newly added weights 

by a factor after each step of tree boosting, as in traditional gradient tree boosting. The 

column subsampling technique is borrowed from the RF algorithm, which selects a random 

subset of predictors for split in each step of tree boosting9.

To the best of our knowledge, there is no principled method to variable selection using 

XGBoost. We propose to leverage the variable importance score provided by XGBoost 

and apply the recursive feature elimination procedure used for RF to select important 
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predictors with XGBoost. Since XGBoost does not have OOB samples, in our simulation 

study (Section 3), we evaluate the model classification error on a 50% hold-out set for 

n = 1000 and using 5-fold cross-validation for n = 250.

2.2.5 Least absolute shrinkage and selection operator—Shrinkage methods are 

frequently used for variable selection by regularizing the coefficient estimates. The lasso 

is among the most popular shrinkage methods36. Variable selection via lasso for a binary 

outcome is by maximizing a penalized version of the log-likelihood of a logistic regression,

max
β0, β

∑
i = 1

n
yi β0 + β⊤xi − log 1 + eβ0 + β⊤xi − λ ∑

k = 1

K
βk ,

(4)

where β0 is the intercept term of the logistic regression model, and β corresponds to a vector 

of coefficients of X. Criterion (4) is concave, and a solution of β0, β  can be found using 

nonlinear programming methods. The ℓ1 penalty in (4) has an effect of forcing some βk’s to 

be exactly equal to zero when the tuning parameter λ is sufficiently large. In this sense, the 

lasso selects the best subset of predictors and hence performs variable selection.

2.2.6 Backward Stepwise Selection—Classical variable selection is usually 

implemented through recursive procedures such as forward, backward, and stepwise 

selection. Both backward and forward selection methods have drawbacks, and stepwise 

selection provides a compromise. The backward stepwise selection starts with a model 

with all potential predictors. The backward selection process removes from the model the 

predictor that has the least impact on the fit (e.g., at α significance level). The forward 

selection process checks whether removed variables should be added back into the model 

(e.g., at α2 significance level, α2 = α 1 − ϵ  for ϵ small). There are other stepwise selection 

procedures that use Z-score or the Akaike information criterion for the inclusion and 

deletion processes37. In this paper, we use the same procedures described in Wood et al.27, 

which are based on statistical testing.

2.3 Variable selection with missing data

2.3.1 Generating missing data—To accurately mimic realistic missingness problems, 

we use the multivariate amputation approach described in Schouten et al.38 It has been 

shown that stepwise univariate amputation procedure – generating missing values for one 

variable at a time – may not appropriately control the missingness percentage and may lead 

to an inflated observed data skewness when the missing data proportion increases38. The 

multivariate amputation procedure generates any missing data scenario precisely as desired 

with respect to the missingness percentage and the missing data mechanism. In addition, 

the degree of skewness in the observed data is not sensitive to the number of amputated 

variables. These operating characteristics allow for valid and fair evaluations of variable 

selection methods in the presence of missing data.
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The multivariate amputation procedure first randomly divides the complete data into a 

certain number (can be one) of subsets based on the assumed number of missing data 

patterns. The size of these subsets may vary. The use of subsets allows the specification 

of any missing data pattern for any subgroups while establishing the desired missingness 

percentage in the merged data. For example, in our case study (Section 4), participants 

with certain characteristics may be reluctant to answer questions related to their dietary 

habits, which will lead to joint missingness in all dietary variables (e.g., dietary intakes 

of isoflavones, lignans or coumestrol)39. This missingness characteristic can be emulated 

by generating joint missingness in several variables in a subset of data. The weighted sum 

scores are then calculated for individuals in each subset to amputate the data. Specifically, 

the weighted sum score for an MAR predictor Xk and individual i of a subset follows

wssxk, i = Xiw1 + Qiw2 + Y iw3, w1, w2, w3 ∈ ℝ

(5)

where w1, w2 and w3 are respectively a vector of user-specified weights for the untransformed 

versions of the predictors Xi, transformed versions of the predictors captured in Qi

and the outcome Y i. Note that the weights are the same for individuals in the same 

subset (assumed to have the same missing data pattern). To induce MAR, a zero weight 

is assigned to the predictor that will be amputated. For example, if Rk
X = 1, then the 

weights for Xk and its nonlinear transformation and higher order terms will be set to 

zero; while nonzero weights will be assigned to the other predictors and their nonlinear 

counterparts X−k
s ⊆ X−k, Q−k , on which p Rk

X ∣ X−k
s  depends. A logistic distribution function, 

Pr Rk
X = 1 = logit−1 g X−k

s  is then applied on wssi to compute the missingness probability, 

which is used to determine whether the data point becomes missing or not. Different g ⋅
functions can be used to create different missing data patterns. For example, the standard 

logistic function g x = 1/ 1 + e−x  generates a right-tailed type of missingness, that is, 

individuals with high weighted sum scores will receive a high probability of being missing; 

g x = − a + x − b ∀a ∈ ℝ+, b ∈ ℝ creates a both-tailed missingness type giving higher 

missingness probabilities to individuals with extreme weighted sum scores40. Putting all the 

subsets together, we will have a complete data set with desired missingness characteristics.

2.3.2 Variable selection in bootstrap imputed data—Following Long and 

Johnson26, we first conduct bootstrap imputation – originally developed by Efron32 – before 

variable selection. Wood et al.27 investigated methods for combining multiple imputation 

and the backward stepwise variable selection. Their recommended approaches relied on 

combined inference about parameter estimates to consolidate variable selection results. 

These approaches, however, are not amenable to machine learning modeling techniques 

as the parametric functional forms are not required in machine learning models. Another 

popular approach is to perform variable selection on each of the M imputed datasets, 

and then select predictors if they appear in at least πM models. Results in Wood et al.27 

show that this approach, when combined with multiple imputation, can be sensitive to 

the threshold value π. The numerical studies in Long and Johnson26 suggest that when 
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combined with bootstrap imputation and stability selection, this approach can be relatively 

insensitive to π and tuning parameter values used in variable selection. Stability selection is 

a general variable selection approach based on resampling or subsampling for fully observed 

data28. In stability selection, the randomized lasso is applied to each random sample (by 

random subsampling or resampling) of the observed data, and important predictors are 

selected based on the variable selection results from all random samples using a threshold π. 

We investigate the operating characteristics of bootstrap imputation used in conjunction with 

machine learning based variable selection procedures. The bootstrap imputation procedure is 

described as follows:

1. Generate B bootstrap datasets {Z b , b = 1, …, B}, each of which has a missing 

indicator R b  corresponding to the observed data Zobs b
.

2. Conduct imputation for each bootstrap data set {Z b , R b } using an imputation 

method of choice. The imputed and complete datasets are denoted by 

{Zimp b
= (Y (b), X b ), b = 1, …, B}.

A single imputation is performed for each bootstrap sample. We use two methods for 

imputation in Step 2: (i) the standard imputation program using the R package mice41, 

and (ii) RF based imputation algorithm using the R package missForest42. Imputation via 

mice uses the iterated chained equations approach43, which requires specifying conditional 

models for each incomplete variable given all other variables and drawing imputations by 

iterating over the conditional distributions. The missForest approach imputes data by 

growing a forest and regressing each variable that has missing values in turn against all 

other variables and then predicting missing data for the dependent variable using the fitted 

forest30. The missForest method has been shown to have a better imputation performance 

than the parametric mice approach44. We investigate whether imputation via nonparametric 

missForest can improve variable selection with missing data over parametric mice. 

Variable selection via each of the methods considered will be performed for all b = 1, …, B

bootstrap imputed datasets. Denote by Ŝ b
 the selected set of predictors on the bth bootstrap 

imputed data. Then the final selected set of predictors Ŝπ ⊆ X is

Ŝπ = Xk :Πk ≥ π ,

(6)

where Πk = (1/B)∑b = 1
B 1 Xk ∈ Ŝ b

 and π ∈ 0, 1  is a fraction threshold for selecting a 

predictor. Higher values of π correspond to more stringent rules for selecting the important 

variables, whereas lower values of π can lead to larger sets of selected variables, which may 

include noise predictors. In our simulations (Section 3), We explore the performance of all 

methods considered using the threshold values from the fine resolution grid on the interval 

[0, 1].
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2.4 Performance metrics

Each of the methods considered will be compared on the ability to select predictor variables 

that are truly associated with the outcome, or useful predictor variables. We use the 

following five performance metrics commonly used in the variable selection literature1,27.

1. Precision = TP
TP + FP , where TP and FP are respectively the number of true positive 

and false positive selections. The precision of a variable selection method is the 

proportion of truly useful predictors among all selected predictors.

2. Recall = TP
TP + FN , where FN is the number of false negative selections. The recall 

of a variable selection method is the proportion of truly useful variables selected 

among all useful variables. This is sometimes referred to as the power in the 

literature27.

3. F1 = 2 Precision ⋅ Recall
Precision + Recall . The F1 measure is the harmonic mean of precision and 

recall, balancing a method’s ability to avoid selecting irrelevant predictors 

(precision) with its ability to identify the full set of useful predictors (recall).

4. Type I error. A variable selection method’s Type I error is defined as the mean 

of the probabilities that the method will incorrectly select each of the noise 

predictors.

A good method should have high values of precision, recall and F1, and low Type I 

error (which may differ from the nominal significance level used in some model selection 

procedures)27.

2.5 Software implementation

The multivariate amputation procedure was conducted using the ampute function in the 

R package mice38. Parametric imputation was performed using the R package mice41. 

We used the default methods: predictive mean matching for numeric variables and logistic 

regression imputation for binary variables. Iterative series of predictive models were used. In 

each iteration, each specified variable in the dataset is imputed using the other variables in 

the dataset. The number of iterations was set as five and the number of imputations was set 

to be one (since we use bootstrap imputation). The nonparametric imputation was performed 

using the R package missForest42. The default settings were used: the maximum number 

of iterations to be performed = 10, the number of trees = 100, and mtry (the number of 

randomly selected variables for splitting) = K. We used the R package bartMachine to 

perform variable selection for BART. For the BART models, we used 1100 draws with the 

first 100 discarded as burn-in. The permutation distribution was obtained from 100 BART 

model constructions. To implement variable selection using RF, the R package varSelRF 

was used18. We used the cforest function in the R package partykit11 to fit the CRF 

models. To build RF and CRF models for recursive elimination of predictors, we used 5000 

trees for the first full model and 2000 trees in each iteration step. The fraction of variables 

from those in the previous forest to exclude at each iteration was set to vars.drop.frac 

= 0.1, mtry (the number of randomly selected variables) was set at K and default 
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values for other tuning parameters (e.g., nodesize =1 and maxnodes was not specified to 

allow trees to be grown to the maximum possible for RF; minbucket = 7, minsplit = 

20 for CRF) were used. The XGBoost models were fitted using the xgboost function in 

the R package xgboost45; the max number of tree boosting iterations was set to nrounds 

= 200 and the fraction of variables to be excluded in each iteration was set as 0.1. We 

implemented the lasso using the R package glmnet46. The tuning parameter lambda was 

selected as the largest value such that the mean cross-validated deviance was within one 

standard error of the minimum deviance. R codes to implement stepwise selection and 

our proposed variable selection algorithms using XGBoost and CRF, and to replicate our 

simulation studies are provided in the GitHub page of the first author https://github.com/

liangyuanhu/Variable-selection-w-missing-data.

3 Simulation

3.1 Simulation design

The simulation scenarios are motivated by our case study to represent data structures 

commonly observed in health studies. We considered two sample sizes, small sample 

size n = 250 and large sample size n = 1000. We generated 10 useful predictors that are 

truly related to the responses, X1, …, X10, and 40 noise predictors, X11, …, X50. This ratio of 

useful versus noise predictors was chosen to mimic our case study. In Section 3.2, we 

vary the number of irrelevant predictors from 10 to 100 and examined how different ratios 

will impact the performance of the methods considered. We drew independently X1 and 

X2 from Bern(0.5), X3, X4 and X5 from the standard N 0, 1 , X6 from Gamma(4, 6), and 

X7, X8, X9, X10 were designed to have missing values under the MAR mechanism. For an 

MAR predictor, we specify the true forms in which the predictor depends on the other 

predictors. Both nonlinearity and nonadditivity were considered for the dependence structure 

among the predictor variables to compare the imputation methods missForest and mice. 

Specifically, the following are the true data models for X7, X8, X9, X10:

x7 ∣ x5, x6 ∼ N −0.4x5 + 0.4x6 + 0.3x5x6, 1

x8 ∣ x5, x6, x7 ∼ N(0.1x5 x6 − 2 2 − 0.1x7
2, 1)

x9 ∣ x3, x4, x5 ∼ N 0.5x3 + 0.3x4 − 0.3x5
2 + 0.2x3x4, 1

x10 ∣ x3, x4, x5, x9 ∼ N 0.1x3
3 − 0.3x4 − 0.4x5 + 0.2x9

2 + 0.3x4x5, 1 .

We further generated 20 continuous noise predictors x11, …, x30 ∼
i . i . d

N(0, 1), and 20 binary 

noise predictors x31, …, x50 ∼
i . i . d

Bern(0.5). The true outcome model is specified as the 

following:

Pr y = 1 ∣ x1, …, x10 = logit−1 − 2.7 + 1.8x1 + 0.5x2 + 1.1x3 − 0.4ex5 − 0.4 x6 − 3.5 2 + 0.3 x7 − 1 3 + 1.1x8

−1.1x10 + 5sin 0.1πx4x9 − 0.4x5x10
2 + 0.4x3

2x8 .

To avoid any concerns that we are deliberately selecting simulation settings where machine 

learning methods will show good performance, we considered the outcome model with 
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arbitrary data complexity that reflects common situations in health datasets: (i) discrete 

predictors with strong x1  and moderate x2  associations; (ii) both linear and nonlinear 

forms of continuous predictors; (iii) nonadditive effects x4x9 .

After generating the full data, we amputated X7, X8, X9, X10 and Y  under MAR using the 

multivariate amputation approach described in Section 2.3.1. Previous studies47,48 show 

that multiple imputation could provide unbiased results when the proportion of missing 

data is up to 90%. We investigate the performance of bootstrap imputation based variable 

selection methods across three levels of missingness: (i) 40% missingness in Y  and 60% 

overall missingness; (ii) 15% missingness in Y  and 30% overall missingness; and (iii) 7.5% 

missingness in Y  and 15% overall missingness. Scenario (i) mimics the percentages of 

missingness observed in our case study (Section 4). Note that each variable can still have a 

small-to-moderate proportion of missing values. The percentage of the cases that are made 

incomplete indicates the overall missingness. For scenario (i), we first randomly divided 

the full data into 8 subsamples, which were the following percentages of the whole data: 

0.30, 0.09, 0.09, 0.08, 0.08, 0.16, 0.10, and 0.10. Each subsample was then amputated to 

have a specific missing pattern using the weighted sum scores defined in equation (5). The 

weighted sum scores relate the missingness on amputated variables to the values of other 

variables as follows:

1. wssy, i = 5x1 + 5x2 + x3 − x5 − x6 + x7 + x8 + x10 − 0.5x6
2 + 1.5x4x9 − 0.5x5x10 + 0.5x3x8

2. wssx7, i = x5 + x6 + x5x6

3. wssx8, i = 5y + x5 + x6 + x7 + x7
2 + x5x6

4. wssx9, i = 5y + x3 + x4 + x5 + x5
2 + x3x4

5. wssx10, i = 5y + x3 + x4 + x5 + x9 + x4x5

6. wssy, x7, x8, i = x5 + x6

7. wssy, x8, x10, i = x5

8. wssy, x9, x10, i = x3 + x4 + 0.5x5
2 + 0.5x3x4

The weighted sum score gives a nonzero weight to the variables and their nonlinear 

forms and interactions therein, on which the probabilities to be missing for amputated 

variables depend. In subsample (1), the responses were amputated. The predictor variables 

X7, X8, X9, X10 were respectively amputated in subsample (2), subsample (3), subsample 

(4), and subsample (5). We further created the joint missingness in Y , X7, X8  in subsample 

(6), Y , X8, X10  in subsample (7), and (Y , X9, X10) in subsample (8). Finally, we applied the 

logistic distribution function to the weighted sum scores to create the missing indicators 

and amputate data. A right-tailed type of missingness was used for subsamples (1)–(5) 

and a both-tailed type of missingness was used for subsamples (6)–(8). In each subsample, 

there were 60% missing values in the amputated variables. The amputated eight subsamples 

were combined to form a whole dataset. This setup creates 40% missingness in Y  and 

60% overall missingness. The scenario (iii) with 7.5% missingness in Y  and 15% overall 

missingness was generated by creating 15% missing values in the amputated variables. We 
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generated missingness scenario (ii) with 15% missingness in Y  and 30% overall missingness 

by changing the proportions of the eight subsamples to 0.20, 0.15, 0.15, 0.10, 0.10, 0.10, 

0.10, and 0.10 and creating 30% missing values in each subsample.

There are a total of 8 scenarios considered in our simulation: 2 sample sizes (n = 250 and 

n = 1000) × 4 percentages of missingness (complete data, 15% overall missingness, 30% 

overall missingness and 60% overall missingness). For computational considerations, we 

replicated each simulation independently M = 250 times for n = 1000 and M = 1000 times 

for n = 250. For each Monte Carlo dataset, we draw B = 100 bootstrap samples and perform 

imputation on each sample. In Section 3.2, we additionally investigated the sensitivity of 

complete data performance – a benchmark against which performance on incomplete data 

will be compared – to the number of noise predictor variables.

3.2 Simulation results

When implementing the methods, we included all 50 predictor variables (10 useful and 40 

noise predictors) and the outcome variable available to the analyst in the imputation models 

for both mice and missForest. The top panel of Table 1 displays four performance metrics 

for each of six methods considered on complete data with n = 250 and n = 1000. For the 

large sample size n = 1000, four machine learning methods, BART, XGBoost, CRF and RF 

outperformed the two parametric methods, lasso and backward stepwise selection. BART, 

XGBoost, CRF and RF all had good performance, with BART being the top performer and 

CRF and RF having relatively lower recall. Between the two parametric methods, lasso 

tended to have higher precision and backward stepwise selection tended to higher recall 

and higher type I error. A perusal of the recall for each of 10 useful predictor variables 

(Web Figure 1) shows that lasso and backward stepwise selection failed to identify the 

two nonadditive variables X4 and X9, and had a low probability of selecting X10, which had 

complex forms of relationship with other predictors and with the response. On the other 

hand, BART and XGBoost had a high success rate of identifying all continuous variables in 

conditions of nonadditivity and nonlinearity, followed by CRF and RF, but all four machine 

learning based methods were less likely to select discrete variables compared to parametric 

methods. All methods had deteriorated performance, with no apparent “winning” method 

when the sample size decreased from n = 1000 to n = 250, demonstrated by lower precision, 

recall and F1 and higher Type I error. The recall or power, in particular, had a substantial 

drop, suggesting the difficulty in recovering the full set of useful predictors with a small 

sample size.

With MAR covariates and outcome, our proposed variable selection procedures can recover 

the performance achieved on complete data. Figure 1–4 respectively compare the curves of 

precision, recall, F1 and type I error over the interval π = 0, 0.1, …, 1  for the six methods 

considered and for n = 1000. The variable selection results on incomplete data vary with the 

threshold value of π, with the precision increasing and the recall and type I error decreasing 

over the interval of π. Overall, BART, CRF and RF have the highest precision and the 

lowest type I error; backward stepwise selection and lasso have the highest recall but also 

the highest type I error. Figure 3 presents the F1 score, a balance of precision and recall, 

for each of three missingness proportions and each of two imputation methods. The optimal 
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value of π yielding the highest F1 varies by methods, but remains largely consistent across a 

combination of scenarios of missingness proportions and imputation methods. BART, CRF 

and RF achieved the best F1 at π = 0.1 or π = 0.2, XGBoost attained the highest F1 with 

π = 0.4 or π = 0.5, while lasso and backward stepwise selection favored a larger threshold 

value around π = 0.8. The performance of all methods deteriorated when the proportions 

of missing data increased. The nonparametric imputation technique, missForest did not 

improve the performance compared to mice, except for BART with 60% missingness. 

Figure 5 shows the power of each method for selecting each of the 10 predictors in the Y 
model. XGBoost has the lowest power among all methods for detecting discrete variables 

(X1 and X2) across all scenarios, but has superior performance in identifying complex 

nonadditive (X4 and X9) and nonlinear (X10) continuous variables. BART appears to have 

consistently good performance across all data types, except that in the scenario of 60% 

missing data imputed via mice, it has a poor power in detecting X4 and X9. While having 

the best performance in selecting discrete variables, lasso and backward stepwise selection 

still have a low power when the effect size of a discrete variable is moderate X2 . When the 

sample size reduced to n = 250, the performance of all methods deteriorated, but XGBoost 

appeared to have the smallest drop in the power for detecting the useful predictors, as 

demonstrated in Web Figure 2.

Web Figure 3–6 respectively display precision, recall, F1 and type I error for n = 250. 

The overall patterns of the four performance metrics remain similar to those for n = 1000. 

Although our variable selection procedures on incomplete data can still recover the 

performance achieved on complete data, with substantially reduced sample size, none of the 

methods could produce satisfactory performance even with moderate proportion of missing 

data. Machine learning methods had a larger drop in performance compared to parametric 

methods. Among the four tree-based machine learning methods, XGBoost appears to be the 

least impacted and still outperforms the lasso and backward stepwise selection.

Variable selection results on incomplete data with 15%, 30% and 60% overall missingness 

are summarized in Table 1 for all six methods considered, using the imputation method 

mice. For each method, we show results for threshold values of π leading to the highest 

F1 and lowest type I error as well as results on the complete cases. Overall, four tree-based 

machine learning methods produced better performance than lasso and backward stepwise 

selection, demonstrated by higher F1 and lower type I error. Using the performance on 

complete data as a benchmark, all methods can recover the performance benchmark when 

the missingness proportion is small (15%) or moderate (30%) for both sample sizes. With 

increased proportion of missing data, BART had the largest drop in performance even with 

a large sample size, and XGBoost appears to be the only method that can achieve the 

performance benchmark even with a small sample size. Variable selection results using 

missForest as the imputation method are summarized in Web Table 1. The optimal 

threshold value for π tended to be smaller when using missForest, and BART had a better 

performance when there is a large proportion (60%) of missing data. Overall, there is no 

evident improvement in performance over using mice. For all methods, variable selection 

via bootstrap imputation yielded better performance than variable selection amongst the 

complete cases across all scenarios.
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Finally, Figure 6 compares the distributions of the numbers of selected noise and useful 

predictor variables across 250 replications for each of six methods in each of six scenarios 

defined by missingness proportion and imputation methods and for n = 1000. Compared to 

the two parametric methods, lasso and backward stepwise selection, four machine learning 

methods were able to identify more useful predictors across all scenarios, while generally 

selecting less noise predictors. Among machine learning methods, the number of selected 

useful predictors is substantially larger in the case of 15% missing data than in the case 

of 60% missing data, for both imputation methods, mice and missForest. With the same 

missingness proportion, there is no apparent “winner” between the two imputation methods.

Results of a sensitivity analysis exploring the impact of the number of noise predictors on 

complete data performance of six variable selection methods are shown in Figure 7. The 

RF and CRF are the only two methods that are comparatively insensitive to the number of 

noise predictors. For BART, the recall and F1 are highly sensitive to the number of noise 

predictors; the best performance is achieved when the number of noise predictors is > 30 

(the ratio of useful versus noise predictors > 1/3), and the performance is substantially 

worse than other methods when the number of noise predictors reduces to 10. XGBoost 

consistently yields good performance, which is generally insensitive to the number of noise 

predictors; the Type I error is slightly higher when there are less than 20 noise predictors. 

Overall, backward stepwise selection and lasso produce lower precision and F1, and higher 

type I error; and for backward stepwise selection, precision decreases at a fast rate as the 

number of noise predictors increases. Web Figure 7 shows disaggregated performance of 

each method for X1 − X10. The high sensitivity of BART to lower numbers of noise predictors 

is manifested in several variables (both discrete and continuous variables). Machine learning 

methods are less capable of identifying discrete variables, even those with large effect size, 

but are much more adept at detecting nonlinearity and nonadditivity.

4 Case study: The Study of Women’s Health Across the Nation

We analyzed a data set from the Study of Women’s Health Across the Nation (SWAN). The 

SWAN study was a multicenter, longitudinal study aiming to understand women’s health 

across the menopause transition. The SWAN data set contains 3302 women of five racial/

ethnic groups aged between 42 and 52, who were enrolled in 1996–1997 from seven sites 

of the US and were followed to 2018 annually. More detail about the SWAN study can be 

found in Janssen et al.49 Despite growing research using the SWAN study data in various 

areas of women’s health, there is a dearth of robust studies identifying key predictors for 

health outcomes such as metabolic syndrome in the presence of both missing covariates and 

outcomes.

Metabolic syndrome is a cluster of conditions that occur together, representing “de-tuning” 

of metabolic adaptations, and has been shown to increase the risk of heart disease, 

stroke and type 2 diabetes50. Prior work51,52 has shown that the incidence of metabolic 

syndrome is associated with various risk factors including blood pressure, triglycerides, 

waist circumstance, triglycerides, glucose, body mass index, waist to hip circumference 

ratio, and lipoprotein(a). However, these studies were not specifically focused on the health 

of women during their middle years, which was the target population of our study. In 
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addition, it is possible that there exists important risk factors that have not been identified 

previously.

We sought to identify predictors of 3-year incidence of metabolic syndrome. Metabolic 

syndrome is defined as the presence of at least three of the following five symptoms: 

abdominal obesity, hypertension, hypertriglyceridemia, impaired fasting glucose, and low 

high-density lipoprotein cholesterol level50. Our analysis included 2313 women who did not 

have metabolic syndrome at enrollment. Among the 2313 women, 251 (10.9%) developed 

metabolic syndrome within three years of enrollment, 1240 (53.6%) did not, and the 

remaining 822 (35.5%) had missing outcomes. Based on previous literature49,50,53,54 on 

risk factors for metabolic syndrome, we selected 60 candidate predictors (29 continuous 

variables and 31 discrete variables), including demographics, daily life behaviour, dietary 

habits, sleep habits, medications, mental status, menopausal status and related factors, 

physical measurement, blood measurement, and bone mineral density. A list of 60 variable 

names and their definitions are displayed in Web Table 2. Only 11 variables are fully 

observed; the amount of missing data in the other variables ranges from 0.1% to 27.1%. 

Only 1047 (45.3%) participants have observed data for all predictors and 763 (33.0%) for all 

predictor and outcome variables.

We conducted imputation on 100 bootstrap samples and implemented six variable selection 

methods: BART, XGBoost, CRF, RF, backward stepwise selection and lasso. All 60 

candidate predictors and the outcome variable were included in the imputation models 

for both mice and missForest. The imputation technique and the threshold value of π, 

which gave the best performance for each of the methods in the simulation study under the 

scenario representative of the SWAN data structure (n = 1000 and 60% overall missingness), 

were chosen for each respective method. Table 2 summarizes the variable selection results. 

BART and XGBoost identified the largest set of predictors (17 and 18); while lasso and 

backward stepwise selection selected the least predictors (10). Four variables, diastolic blood 

pressure (DIABP), systolic blood pressure (SYSBP), lipoprotein(a) (LPA) and triglycerides 

(TRIGRES), were selected by all of the six methods. Additional four variables were selected 

by all four machine learning methods, body mass index (BMI), tissue plasminogen activator 

(TPA), waist circumference (WAIST) and waist to hip circumference ratio (WHRATIO), 

among which, TPA and WHRATIO were not identified by the two parametric methods. The 

backward stepwise selection approach selected more variables that were not chosen by any 

of four machine learning methods than the lasso. A full list of names and definitions for the 

60 candidate predictor variables can be found in Web Table 2.

As an anonymous reviewer pointed out, in the situation where it remains unclear which 

method is able to select the most relevant predictors, one may use the cross-validated error 

to help distinguish between the methods. We evaluated the prediction performance, based on 

area under the curve (AUC), Cohen’s Kappa statistic and misclassification error, of the six 

models that regress the outcome variable on their respectively selected predictor variables. 

Figure 8 shows the distribution of 5-fold cross-validated AUC among 100 bootstrap samples 

with imputation performed via the best technique suggested in simulations for each of 

six methods. BART boasts the highest AUC, closely followed by XGBoost; the lasso and 

backward stepwise selection have the lowest AUC. Displayed in Web Figure 8–9 are the 
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distributions of 5-fold cross-validated Cohen’s Kappa and misclassification error, which 

suggest the same performance rankings of the methods. In light of these results, variables 

selected by BART may be an important addition to the literature. Among the 17 variables 

selected by BART, some have been less commonly identified as risk factors for metabolic 

syndrome in the literature, but selection of these variables may be supported by domain 

knowledge. For example, levels of TPA antigen and low apolipoprotein A-1 (APOARES) 

were found to be associated with insulin resistance, which was involved in the pathogensis 

of impaired fasting glucose54,55.

5 Discussion

We investigate a general variable selection approach when there are missing data in 

both covariates and outcomes. This approach exploits the flexibility of machine learning 

modeling techniques and bootstrap imputation, which is amenable to nonparametric methods 

in which the effect sizes of predictor variables are not naturally defined as in parametric 

models. Our numeric results show that the proposed variable selection procedure based on 

three machine learning methods: BART, RF and XGBoost achieves good practical operating 

characteristics. When the sample size is sufficiently large (e.g., n = 1000), even with a 

large amount of missing data, the variable selection procedure can recover the performance 

achieved on complete data. The proposed approach can be readily applied to a variable 

selection problem with a general missing data pattern.

Several considerations must be taken into account in choosing an “optimal” variable 

selection method. First, an investigator needs to decide the goal of variable selection and 

choose the corresponding performance metrics: whether it is to identify as many useful 

predictors as possible (precision), or to avoid selecting irrelevant predictors (recall), or to 

achieve the best balance between these two goals (F1 and type I error). Second, while BART 

has the best performance across various scenarios in our simulation study, our exploratory 

sensitivity analysis on complete data shows that BART is sensitive to the ratio of useful 

versus noise predictors. When the ratio is relatively large (e.g., 1:1), BART has a poor 

recall and F1. As the ratio decreases to < 1/3, BART achieves the best balance between 

selecting useful predictors and avoiding irrelevant predictors. On the other hand, XGBoost 

shows good performance across various scenarios and is generally insensitive to the amount 

of noise information, but has a low power of detecting discrete predictors. RF is highly 

capable of avoiding selecting unimportant predictors but is less capable of uncovering the 

full set of important predictors. In practice, it may be useful to run several variable selection 

approaches and if the chosen variable selection performance metrics are similar across 

methods, then a cross-validated error estimation of the model with selected variables may 

help further distinguish between methods, as demonstrated in our case study. Third, while 

adept at detecting nonlinear and nonadditive variables, machine learning methods have lower 

power of detecting discrete variables, even those with relatively strong effects, compared 

to parametric models such as lasso and backward stepwise selection. As a result, machine 

learning methods may be less favored if a majority of candidate predictors are discrete.

One limitation of our bootstrap imputation-based variable selection procedure is the 

computational cost of running machine learning models on a large data set. However, it 
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should be noted that the bootstrap resampling can be computed in parallel on multiple cores 

when such resources are available. A challenging but important avenue for future research 

is developing inference-based variable selection methods using the variable importance 

measure provided by machine learning models. An immediate next step could be to extend 

the BART-based approach by leveraging the Bayesian posterior samples of the variable 

inclusion proportions56. When using multiple imputation for missing data in conjunction 

with BART models, we can use Rubin’s rule27,57 or pooled posterior samples arising from 

the multiple datasets58 to combine inferences for variable inclusion proportions, which can 

be further used for variable selection. It is less straightforward for frequentist machine 

learning methods. Ishwaran and Lu59 proposed a subsampling approach to estimate the 

variance and construct confidence intervals of RF’s variable importance scores. However, in 

the presence of missing data, the reduced sample size in a random subsample should have 

an adverse effect on imputation as it depends on the observed data26. One possible strategy 

is to derive a nonparametric extension of the usual ANOVA-derived measure of variable 

importance in parametric models. Particularly, Williamson et al.60 discussed a generalization 

of the ANOVA variable importance measure, Ψs(P ) = ∫ μP(x) − μP , s(x) 2dP (x)/varP(Y ), where 

μP(x) and μP , s(x) are respectively the conditional mean of outcome Y  given the full set 

and a subset of covariates, under the data-generating mechanism P . Further research in 

adapting this measure into the settings where missing data are present could be a worthwhile 

contribution.
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Figure 1. 
The precision by threshold values of π for each of six variable selection methods and for 

sample size n = 1000, based on 250 replications. Imputation was performed on 100 bootstrap 

samples of each replication data set, using two imputation methods mice and missForest 

for each of three overall missingness proportions, 15%, 30% and 60%.
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Figure 2. 
The recall by threshold values of π for each of six variable selection methods and for 

sample size n = 1000, based on 250 replications. Imputation was performed on 100 bootstrap 

samples of each replication data set, using two imputation methods mice and missForest 

for each of three overall missingness proportions, 15%, 30% and 60%.
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Figure 3. 
The F1 scores by threshold values of π for each of six variable selection methods and for 

sample size n = 1000, based on 250 replications. Imputation was performed on 100 bootstrap 

samples of each replication data set, using two imputation methods mice and missForest 

for each of three overall missingness proportions, 15%, 30% and 60%.
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Figure 4. 
The type I errors by threshold values of π for each of six variable selection methods and for 

sample size n = 1000, based on 250 replications. Imputation was performed on 100 bootstrap 

samples of each replication data set, using two imputation methods mice and missForest 

for each of three overall missingness proportions, 15%, 30% and 60%.
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Figure 5. 
Power of each of six methods for selecting each of 10 useful predictors across 250 

replications, when the sample size n = 1000. Imputation was performed on 100 bootstrap 

samples of each replication data set, using two imputation methods mice and missForest 

for each of three overall missingness proportions, 15%, 30% and 60%.
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Figure 6. 
The distribution of the numbers of selected noise predictors and useful predictors for each of 

six methods in six scenarios and for n = 1000, across 250 replications. The total number of 

useful predictors is 10 and the total number of noise predictors is 40.
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Figure 7. 
Precision, recall, F1 and type I error of each of six methods on complete data with varying 

number of noise predictors. The total number of useful predictors is 10, and the total 

number of noise predictors ranges from 10 to 100. Among the noise predictors, 50% are 

binary variables simulated from Bern(0.5) and 50% are continuous variables generated from 

N(0,1).
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Figure 8. 
The distribution of 5-fold cross-validated area under the curve (AUC) among 100 bootstrap 

samples of the SWAN dataset with imputation performed for each of six methods.
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Table 1.

Simulation results for a combination of 6 scenarios = 2 samples sizes (n = 250 and n = 1000) × 4 percentages 

of missingness (complete data, 15% overall missingness, 30% overall missingness and 60% overall 

missingness). There are a total of 50 predictors, 10 of which are truly related to the response variable and 40 

are noise predictors. Imputation was conducted via mice. For each of six methods, we show results 

corresponding to the best threshold values of π (based on F1) as well as results on the complete cases (CC). 

Methods are sorted in descending order of F1 for n = 1000.

n = 250 n = 1000

Precision Recall F 1 Type I error Precision Recall F 1 Type I error

Complete data

BART 0.87 0.44 0.58 0.02 BART 1.00 0.87 0.93 0.00

XGBoost 0.82 0.53 0.62 0.04 XGBoost 0.93 0.81 0.86 0.02

CRF 0.95 0.42 0.55 0.01 CRF 1.00 0.72 0.83 0.00

RF 0.94 0.40 0.54 0.01 RF 1.00 0.70 0.82 0.00

Stepwise 0.68 0.56 0.60 0.08 Stepwise 0.79 0.74 0.76 0.05

lasso 0.83 0.36 0.51 0.03 lasso 0.87 0.65 0.74 0.03

15% missingness in Y and 30% overall missingness

BART π = 0.2 0.64 0.55 0.59 0.08 BART π = 0.1 0.97 0.89 0.92 0.01

XGBoost π = 0.3 0.77 0.59 0.66 0.05 XGBoost π = 0.4 0.97 0.83 0.89 0.01

RF π = 0.2 0.76 0.52 0.62 0.04 RF π = 0.1 0.91 0.84 0.87 0.02

CRF π = 0.2 0.77 0.53 0.63 0.03 CRF π = 0.2 0.98 0.77 0.86 0.00

Stepwise π = 0.5 0.60 0.55 0.56 0.11 Stepwise π = 0.7 0.89 0.69 0.77 0.02

lasso π = 0.7 0.73 0.43 0.52 0.05 lasso π = 0.8 0.90 0.64 0.74 0.02

BART CC 0.56 0.47 0.51 0.10 BART CC 0.93 0.79 0.85 0.02

XGBoost CC 0.82 0.44 0.56 0.05 XGBoost CC 0.87 0.77 0.81 0.04

CRF CC 0.44 0.56 0.48 0.13 CRF CC 0.82 0.76 0.79 0.03

RF CC 0.43 0.55 0.47 0.15 RF CC 0.84 0.75 0.78 0.04

Stepwise CC 0.78 0.29 0.42 0.02 Stepwise CC 0.80 0.62 0.71 0.04

lasso CC 0.88 0.23 0.36 0.03 lasso CC 0.80 0.60 0.70 0.04
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Table 2.

Variable selection results by each of six methods, with the best imputation method and threshold value of π 
suggested in simulations. BART was used with missForest and π = 0.1, CRF and RF with mice and π = 

0.2, XGBoost with mice and π = 0.5, lasso with mice and π = 0.9, Stepwise with mice and π = 0.8. 

Definitions of the variable names appear in Web Table 2.

Methods # selected 
variables

Selected variables

BART 17 APOARES, BMI, BP, DIABP, DTTLIN, GLUCOSE, LPA, RACE, RESTLES, SHBG, SPBMD, SYSBP, T, 
TPA, TRIGRES, WAIST, WHRATIO

XGBoost 18 APOARES, BMI, DIABP, EDUCATION, E2AVE, GLUCOSE, HPBMD, INSULIN, LMPDAY, LPA, PAI1, 
SHBG, SPBMD, SYSBP, TPA, TRIGRES, WAIST, WHRATIO

CRF 11 BMI, DIABP, EDUCATION, INSULIN, LPA, PAI1, SYSBP, TPA, TRIGRES, WAIST, WHRATIO

RF 12 BMI, CRP, DIABP, EDUCATION, INSULIN, LPA, PAI1, SYSBP, TPA, TRIGRES, WAIST, WHRATIO

Stepwise 10 BMI, DIABP, EDUCATION, LPA, NOINSURE, PHYSWORK, RESTLES, SPORTS, SYSBP, TRIGRES

lasso 10 ALLCALC, APOARES, DIABP, DTTSWET, E2AVE, GLUCOSE, LPA, SYSBP, TRIGRES, WAIST
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