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Abstract

Caveolin-1 (Cav1), the core structural and scaffolding protein of caveolae membrane domains, is 

highly expressed in many retinal cells and is associated with ocular diseases. Cav1 regulates innate 

immune responses and is implicated in neuroinflammatory and neuroprotective signaling in the 

retina. We have shown that Cav1 expression in Müller glia accounts for over 70% of all retinal 

Cav1 expression. However, the proteins interacting with Cav1 in Müller glia are not established. 

Here, we show that immortalized MIO-M1 Müller glia, like endogenous Müller glia, highly 

express Cav1. Surprisingly, we found that Cav1 in MIO-M1 cells exists as heat-resistant, high 

molecular weight complexes that are stable after immunoprecipitation (IP). Mass spectrometric 

analysis of high molecular weight Cav1 complexes after Cav1 IP revealed an interactome network 

of intermediate filament, desmosomes, and actin-, and microtubule-based cytoskeleton. These 

results suggest Cav1 domains in Müller glia act as a scaffolding nexus for the cytoskeleton.
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1 Introduction

Caveolin-1 (Cav1), the signature structural protein of caveolae is known to play a role in 

cell signaling, lipid metabolism, endocytosis, and mechanotransduction [3, 24, 25]. Cav1 has 

been associated with ocular neuroinflammation, age-related macular degeneration, diabetic 

retinopathy, blood-retinal barrier function, and primary open-angle glaucoma [7, 9–11, 30]. 

It is expressed in a variety of cell types including retinal pigment epithelium (RPE) and 

choroidal and retinal vascular endothelium [8, 11]. Furthermore, Cav1 is highly expressed 

in Müller glia [11, 21, 26], and its expression correlates with Müller glia differentiation 

[8, 23]. We have shown that neuroretinal Cav1 expression overwhelmingly accounts for 

the majority of Cav1 expression in the retina, with most Cav1 being localized to Müller 

glia [11]. While Cav1 is highly expressed in Müller glia, its function in these cells is only 

beginning to be appreciated. Cav1 regulates cytokine secretion and immune cell influx into 

the retina, as global Cav1 knockout (KO) simultaneously suppresses cytokine secretion and 

increases immune cell influx into the retina [19]. Neuroretinal deletion of Cav1 suppresses 

both proinflammatory cytokine secretion and immune cell infiltration into the retina [11], 

further confirming a role for Müller glial Cav1 in innate immune responses. Cav1 is 

significantly upregulated in Müller glia in autoimmune uveitis [12]. The role of Cav1 as 

an immune modulator is likely cell-context dependent as it can either promote or suppress 

the inflammatory response depending on the cell type examined [19, 31, 32]. Müller glia 

express toll-like receptors (TLRs), whose activities can be enhanced or suppressed by 

interaction with Cav1 [22, 31]. Further, we and others have shown Cav1 to be an important 

regulator of blood-retinal barrier (BRB) function [2, 18, 19, 33].

While Müller glia abundantly express Cav1, it is unclear what proteins interact with Cav1 in 

these cells. The aim of this study was to identify the Cav1 interactome in MIO-M1 Müller 

glia by immunoprecipitating Cav1 and analyzing immune complexes by mass spectrometry. 

We show that Cav1 in MIO-M1 Müller glia exists as high molecular weight aggregates, 

which are resistant to heating in reducing SDS-PAGE buffer. Mass spectrometric analysis of 

Cav1 complexes revealed a network of cytoskeletal proteins that interact with Cav1.

2 Materials and Methods

2.1 Cell Lines and Culture Conditions

Immortalized MIO-M1 Müller glia were cultured in DMEM (1X) + GlutaMax™-I 

(ThermoFisher Scientific) supplemented with 10% fetal bovine serum (FBS), and 1% 

penicillin-streptomycin. Prostate cancer cells (PC3s) were cultured in F-12K medium 

(ATCC Cat#: 30–2004). Retinal microvascular endothelial cells (RMECs) were cultured 

in Endothelial Cell Basal Medium-2 (Lonza Cat#: CC-3156), supplemented with 2% 

FBS, human fibroblast growth factor, vascular endothelial growth factor, insulin-like 
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growth factor-1, ascorbic acid, gentamicin-amphotericin B hydroxycortisone, and human 

endothelial growth factor. Cells were maintained in a humidified atmosphere of 5% CO2, at 

37 °C.

2.2 Western Blotting

Cells were lysed in buffer containing 120 mM octylglucoside, 150 mM NaCl, 10 mM Tris–

HCl pH 7.4, 0.5 mM EDTA, 0.1% Triton X-100 and protease inhibitor cocktail. Lysates 

were cleared by centrifugation and protein concentration was determined using a BCA 

reagent (ThermoFisher Scientific). Equal amounts of proteins were separated by reducing 

SDS-PAGE and were transferred to nitrocellulose membranes. Membranes were blocked 

for 1 h in 5% BSA and were probed with primary antibodies of choice: rabbit anti-Cav1 

(Cell Signaling Technology, cat. #3267, 1:1000), rabbit anti-PTRF (Abcam, 1:1000) and 

mouse anti-β-actin (Abcam, 1:5000). Primary antibodies were detected using Horseradish 

peroxidase (HRP)-conjugated secondary antibodies. To visualize protein bands after SDS-

PAGE electrophoresis, gels were stained for 1 h with SimplyBlue™ Safestain (Thermofisher 

Scientific). Western blot images were captured using the In Vivo F-Pro imaging system.

2.3 Immunoprecipitation

Immunoprecipitation was performed using the Dynabeads™ Protein G Immunoprecipitation 

Kit (ThermoFisher Scientific) according to the manufacturer’s instructions. Briefly, Cav1 

primary antibody (Cell Signaling Technology, cat. #3267) was conjugated to magnetic beads 

for 20 min at room temperature (RT). Then, the beads-antibody conjugate was incubated 

with equal amounts of protein lysates for 20 min at RT. After several rounds of washing, 

beads were resuspended in Laemmli buffer and the immunoprecipitates were separated by 

reducing SDS-PAGE without heating. The gel was stained for 1 h using SimplyBlue™ 

SafeStain and washed several times with water. Visible Cav1 complexes were excised and 

used for mass spectrometry analysis (Fig. 1). A portion of the immune complexes was boiled 

in Laemmli buffer, separated by reducing SDS-PAGE, and transferred to nitrocellulose 

membranes for Western blotting.

2.4 Mass Spectrometry

Cav1 immunoprecipitates were separated by SDS-PAGE, gel-stained, and visible high 

molecular weight Cav1 complexes excised for mass spectrometry (Fig. 2d). Proteins 

were subjected to the FASP (filter-aided sample preparation) protocol [34] and digested 

overnight with Sequencing Grade Modified Trypsin (Promega, V5111) at 37 °C in 40 mM 

NH4HCO3. Peptides were desalted, concentrated, and loaded onto C18 sequencing columns 

(Acclaim™ PepMap™ 100 C18, ThermoFisher). Peptide elution was performed using a 

90-min acetonitrile gradient for label-free quantification. Eluted peptides were analyzed by 

LC-MS/MS analysis using a Thermo Lumos Fusion tribrid Orbitrap mass spectrometer, 

coupled to an Ultimate 3000 RSLC nano ultra-high-performance liquid chromatography 

(UHPLC) system. Proteins were identified by Proteome Discoverer 2.4, with SEQUEST as 

the search engine. Protein identification required the detection of at least two peptides per 

protein. STRING open-source software was used to identify protein networks.
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3 Results

3.1 Cav1 in MIO-M1 Müller Glia Exist as High Molecular Weight Complexes

To determine the protein composition of Cav1 complexes, we first evaluated the expression 

of Cav1 in authenticated MIO-Müller glia and compared the expression to retinal 

microvascular endothelial cells (RMEC), which also abundantly express Cav1 [29]. Our 

results show that MIO-M1 cells, like endogenous Müller glia, abundantly express Cav1 (Fig. 

2). To our surprise, we observed that the majority of Cav1 in MIO-M1 cells exist as high 

molecular weight complexes (Fig. 2a) which are resistant to heating in reducing SDS-PAGE 

buffer (Fig. 2b). However, upon heating at 98 °C for 10 min, Cav1 complexes dissociate 

and migrate as monomers on reducing SDS-PAGE (Fig. 2c). High molecular weight Cav1 

complexes in MIO-M1 cells remain relatively stable after Cav1 immunoprecipitation (Fig. 

2d). On the contrary, Cav1 in RMECs migrates predominantly as monomers on SDS-PAGE 

gels without heating. While most Cav1 complexes in MIO-M1s remain stable after heating 

at 70 °C for 10 min, the small fraction of aggregated Cav1 in RMECs dissociates to 

monomers after heating at 70 °C. These data suggest that different proteins may be 

interacting with and stabilizing Cav1 complexes in MIO-M1 cells.

3.2 Proteins Associated with Cav1 Complexes Are Involved with the Cell Cytoskeleton

Next, we were interested in identifying the proteins that interact with Cav1 complexes 

in MIO-M1 cells. To identify the protein composition of Cav1 complexes, we 

immunoprecipitated Cav1 from MIO-M1 cells and analyzed the high molecular weight 

complexes by mass spectrometry. We analyzed the same complexes from three replicate 

samples (Fig. 2d). Thirty-three proteins were found to associate with Cav1 complexes after 

mass spectrometry. Interestingly, the majority of these proteins including β-actin (ACTB), 

myosin, vimentin (VIM), plectin (PLEC), and nestin (NES) have been shown to play a role 

in the cytoskeleton and cell-cell junction structure [4].

4 Discussion

In this study, we sought to identify the protein composition of Cav1 complexes in MIO-M1 

cells. We show for the first time that Cav1 in MIO-M1 cells exists as heat-resistant, high 

molecular weight aggregates, which interact with important cytoskeletal proteins. Cav1 

is the major protein component of caveolae [5, 6, 27], flask-shaped plasma membrane 

invaginations whose formation requires another protein called Cavin1 or PTRF (Polymerase 

I and Transcript Release Factor) [14, 20]. It is currently unclear why Cav1 exist in this 

aggregated form in MIO-M1 cells, as opposed to the monomeric form in RMEC cells. 

However, we speculate that the absence of Cavin1/PTRF expression in MIO-M1 cells may 

provide an explanation for this phenomenon. Cavin1/PTRF stabilizes Cav1 in multiple 

tissues, as Cavin1/PTRF deficiency downregulates Cav1 protein expression [20]. However, 

Cav1 is stably expressed in prostate cancer (PC3) cells without Cavin1/PTRF [1, 14, 15] 

in functional domains described as “Cav1 scaffolds” [16, 17]. Further, multiple studies 

have shown that approximately 150 Cav1 molecules are required per caveola formed [25]. 

However, during caveolae biogenesis, Cav1 form oligomers of 12–16 Cav1 molecules, 

which associate with lipid rafts in the Golgi and adopt detergent-resistant properties [13, 
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28], similar to Cav1 on the plasma membrane. Thus, it is intriguing to speculate that in 

the absence of Cavin1/PTRF in MIO-M1 Müller glial cells, these Cav1 high molecular 

weight oligomers represent non-caveolar Cav1 scaffolds previously described [16, 17]. 

Therefore, the expression of Cavin1/PTRF in MIO-M1 cells likely provides a mechanism to 

biochemically resolve Cav1 scaffolds (Fig. 3).
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Fig. 1. 
Schematic overview of Cav1 immunoprecipitation and mass spectrometry workflow. 

Proteins were extracted from untreated MIO-M1 Müller glia and were immunoprecipitated 

using Cav1 primary antibodies. Cav1 immunoprecipitates were separated by reducing SDS-

PAGE without heating. Gels were stained for 1 h and visible Cav1 complexes were excised 

and analyzed by mass spectrometry. A portion of the immunoprecipitate was transferred to 

nitrocellulose membranes to evaluate interactions by Western blotting
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Fig. 2. 
Cav1 in MIO-M1 cells exists in heat-resistant, high molecular weight complexes. (a) 

Representative Western blots showing expression of Cav1 in MIO-M1 and RMEC cells. 

MIO-M1 cells, like endogenous Müller glia, abundantly expresses Cav1. Interestingly, Cav1 

in these cells exists in high molecular weight complexes. (b) Cav1 complexes are resistant to 

heating at 70 °C for 10 min in reducing SDS-PAGE. On the contrary, Cav1 in RMEC cells 

was mostly monomeric both at RT and after heating at 70 °C for 10 min. (c) Representative 

Western blots showing that Cav1 migrates as a monomer in reducing SDS-PAGE buffer only 

after rigorous heating at 98 °C for 10 min. (d) Stained gel and representative Western blot 

showing stable Cav1 complexes after Cav1 immunoprecipitation. Bands from the stained gel 

(B1, B2, and B3 indicated by arrows) were excised and analyzed by mass spectrometry
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Fig. 3. 
Proteins that interact with Cav1 complexes are associated with the cell cytoskeleton. 

Cav1 protein-protein interaction by STRING analysis. Cav1 complexes were analyzed by 

mass spectrometry and STRING open-source database was used to identify protein-protein 

interactions. A total of 33 proteins were found to interact with Cav1 complexes, most of 

which play a role in the cell cytoskeletal architecture and include β-actin (ACTB), myosin 

(MYO5A), vimentin (VIM) plectin (PLEC), and nectin (NEC)
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