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Understanding metric-related pitfalls in image analysis 
validation

A full list of authors and affiliations appears at the end of the article.

Abstract

Validation metrics are key for tracking scientific progress and bridging the current chasm between 

artificial intelligence (AI) research and its translation into practice. However, increasing evidence 

shows that particularly in image analysis, metrics are often chosen inadequately. While taking 

into account the individual strengths, weaknesses, and limitations of validation metrics is a 

critical prerequisite to making educated choices, the relevant knowledge is currently scattered and 

poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by 

a multidisciplinary expert consortium as well as extensive community feedback, the present work 

provides the first reliable and comprehensive common point of access to information on pitfalls 

related to validation metrics in image analysis. While focused on biomedical image analysis, the 

addressed pitfalls generalize across application domains and are categorized according to a newly 

created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key 

topic in image analysis validation.

Measuring performance and progress in any given field critically depends on the availability 

of meaningful outcome metrics. In a field such as athletics, this process is straightforward 

because the performance measurements (e.g., the time it takes an athlete to run a given 

distance) exactly reflect the underlying interest (e.g., which athlete runs a given distance 

the fastest?). In image analysis, the situation is much more complex. Depending on the 

underlying research question, vastly different aspects of an algorithm’s performance might 

be of interest (Fig. 1) and meaningful in determining its future practical, for example 

clinical, applicability. If the performance of an image analysis algorithm is not measured 

according to relevant validation metrics, no reliable statement can be made about the 

suitability of this algorithm in solving the proposed task, and the algorithm is unlikely 

to ever reach the stage of real-life application. Moreover, unsuitable algorithms could be 

wrongly regarded as the best-performing ones, sparking entirely futile resource investment 

and follow-up research while obscuring true scientific advancements. In determining new 

state-of- the-art methods and informing future directions, the use of validation metrics 

actively shapes the evolution of research. In summary, validation metrics are the key for both 
measuring and informing scientific progress, as well as bridging the current chasm between 
image analysis research and its translation into practice.

and suggested pitfalls. Z.R.Y. suggested pitfalls and participated in surveys. Al.K., J.S.-R., C.I.S., and S.S. served on the expert Delphi 
panel and participated in workshops and surveys.

CODE AVAILABILITY STATEMENT
We provide reference implementations for all Metrics Reloaded metrics within the MONAI open- source framework. They are 
accessible at https://github.com/Project-MONAI/MetricsReloaded.
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In image analysis, while for some applications it might, for instance, be sufficient to draw 

a box around the structure of interest (e.g., detecting individual mitotic cells or regions 

with apoptotic cell debris) and optionally associate that region with a classification (e.g., 

a mitotic vs an interphase cell), other applications (e.g., cell tracing for fluorescent signal 

quantification) could require determining the exact structure boundaries. The suitability of 

any individual validation metric thus depends crucially on the properties of the driving 

image analysis problem. As a result, numerous metrics have so far been proposed in 

the field of image processing. In our previous work, we analyzed all biomedical image 

analysis competitions conducted within a period of about 15 years [21]. We found a 

total of 97 different metrics reported in the field of biomedicine alone, each with its own 

individual strengths, weaknesses, and limitations, and hence varying degrees of suitability 

for meaningfully measuring algorithm performance on any given research problem. Such a 

vast range of options makes tracking all related information impossible for any individual 

researcher and consequently renders the process of metric selection error-prone. Thus, the 

frequent reliance on flawed, historically grown validation practices in current literature 

comes as no surprise. To make matters worse, there is currently no comprehensive 

resource that can provide an overview of the relevant definitions, (mathematical) properties, 

limitations, and pitfalls pertaining to a metric of interest. While taking into account 
the individual properties and limitations of metrics is imperative for choosing adequate 
validation metrics, the required knowledge is thus largely inaccessible.

As a result, numerous flaws and pitfalls are prevalent in image analysis validation, with 

re- searchers often being unaware of them due to a lack of knowledge of intricate metric 

properties and limitations. Accordingly, increasing evidence shows that metrics are often 

selected inadequately in image analysis (e.g., [11, 17, 35]). In the absence of a central 

information resource, it is common for researchers to resort to popular validation metrics, 

which, however, can be entirely unsuitable, for instance due to a mismatch of the metric’s 

inherent mathematical properties with the underlying research question and specifications of 

the data set at hand (see Fig. 1).

The present work addresses this important roadblock in image analysis research with 

a crowd- sourcing-based approach that involved both a Delphi process undergone by a 

multidisciplinary expert consortium as well as a social media campaign. It represents the 

first comprehensive collection, visualization, and detailed discussion of pitfalls, drawbacks, 
and limitations regarding validation metrics commonly used in image analysis. Our work 

provides researchers with a reliable, single point of access to this critical information. Owing 

to the enormous complexity of the matter, the metric properties and pitfalls are discussed 

in the specific context of classification problems, i.e., image analysis problems that can be 

considered classification tasks at either the image, object, or pixel level. Specifically, these 

encompass the four problem categories of image-level classification, semantic segmentation, 

object detection, and instance segmentation. Our contribution includes a dedicated profile 

for each metric (Suppl. Note 3) as well as the creation of a new common taxonomy that 

categorizes pitfalls in a domain-agnostic manner (Fig. 2). The taxonomy is depicted for 

individual metrics in provided tables (see Extended Data Tabs. 1–5) and enables researchers 

to quickly grasp whether using a certain metric comes with pitfalls in a given use case.
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While our work grew out of image analysis research and practice in the field of biomedicine, 

a field of high complexity and particularly high stakes due to its direct impact on human 

health, we believe the identified pitfalls to be transferable to other application areas of 

imaging research. It should be noted that this work focuses on identifying, categorizing, 

and illustrating metric pitfalls, while the sister publication of this work gives specific 

recommendations on which metrics to apply under which circumstances [22].

Information on metric pitfalls is largely inaccessible

Researchers and algorithm developers seeking to validate image analysis algorithms 

frequently face the problem of choosing adequate validation metrics while at the same 

time navigating a range of potential pitfalls. Following common practice is often not the 

best option, as evidenced by a number of recent publications [11, 17, 21, 35]. Making an 

educated choice is notably complicated by the absence of any comprehensive databases or 

reviews covering the topic and thus the lack of a central resource for reliable information on 

validation metrics.

This lack of accessibility is considered by experts to be a major bottleneck in image analysis 

validation [21]. To illustrate this point, we searched the literature for available information 

on commonly used validation metrics. The search was conducted on the platform Google 

Scholar using search strings that combined different notations of the metric name, including 

synonyms and acronyms, with search terms indicating problems, such as “pitfall” or 

“limitation”. The mean and median number of hits for the metrics addressed in the present 

work were 159,329 and 22,100, respectively, and ranged between 49 for centerline Dice 

Similarity Coefficient (clDice) and 962,000 for Sensitivity. Moreover, despite valuable 

literature on individual relevant aspects (e.g., [5, 6, 13, 17, 32, 33, 35]), we did not find 

a common point of entry to metric-related pitfalls in image analysis in the form of a review 

paper or other credible source. We conclude that the key knowledge required for making 
educated decisions and avoiding pitfalls related to the use of validation metrics is highly 
scattered and not accessible by individuals.

Historically grown practices are not always justified

To obtain an initial insight into current common practice regarding validation metrics, we 

prospectively captured the designs of challenges organized by the IEEE Society of the 

International Symposium of Biomedical Imaging (ISBI), the Medical Image Computing and 

Computer Assisted Interventions (MICCAI) Society and the Medical Imaging with Deep 

Learning (MIDL) foundation. The organizers of the respective competitions were asked to 

provide a rationale for the choice of metrics in their competition. An analysis of a total of 

138 competitions conducted between 2018 and 2022 revealed that metrics are frequently 

(in 24% of the competitions) based on common practice in the community. We found, 

however, that common practices are often not well-justified, and poor practices may even be 

propagated from one generation to the next.

One remarkable example for this issue is the widespread adoption of an incorrect 

naming and inconsistent mathematical formulation of a metric proposed for cell instance 
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segmentation. The term “mean Average Precision (mAP)” usually refers to one of the most 

common metrics in object detection (object-level classification) [20, 28]. Here, Precision 

denotes the Positive Predictive Value (PPV), which is “averaged” over varying thresholds on 

the predicted class scores of an object detection algorithm. The “mean” Average Precision 

(AP) is then obtained by taking the mean over classes [10, 28]. Despite the popularity of 

mAP, a widely known challenge on cell instance segmentation1 introduced a new “Mean 

Average Precision” in 2018. Although the task matches the task of the original “mean” 

AP, object detection, all terms in the newly proposed metric (mean, average, and precision) 

refer to entirely different concepts. For instance, the common definition of Precision from 

literature TP/(TP + FP) was altered to TP/(TP + FP + FN), where TP, FP, and FN refer to 

the cardinalities of the confusion matrix (i.e., the true/false positives/negatives). The latter 

formula actually defines the Intersection over Union (IoU) metric. Despite these problems, 

the terminology was adopted by subsequent influential works [16, 30, 31, 39], indicating 

widespread propagation and usage within the community.

A multidisciplinary Delphi process reveals numerous pitfalls in biomedical 

image analysis validation

With the aim of creating a comprehensive, reliable collection and future point of access to 

biomedical image analysis metric definitions and limitations, we formed an international 

multidisciplinary consortium of 62 experts from various biomedical image analysis-related 

fields that engaged in a multi-stage Delphi process [2] for consensus building. The Delphi 

process comprised multiple surveys, developed by a coordinating team and filled out by the 

remaining members of the consortium. Based on the survey results, the list of pitfalls was 

iteratively refined by collecting pitfall sources, specific feedback and suggestions on pitfalls, 

and final agreement on which pitfalls to include and how to illustrate them. Further pitfalls 

were crowdsourced through the publication of a dynamic preprint of this work [28] as well 

as a social media campaign, both of which asked the scientific community for contributions. 

This approach allowed us to integrate distributed, cross-domain knowledge on metric-related 

pitfalls within a single resource. In total, the process revealed 37 distinct sources of pitfalls 

(see Fig. 2). Notably, these pitfall sources (e.g., class imbalances, uncertainties in the 

reference, or poor image resolution) can occur irrespective of a specific imaging modality 

or application. As a result, many pitfalls generalize across different problem categories in 

image processing (image-level classification, semantic segmentation, object detection, and 

instance segmentation), as well as imaging modalities and domains. A detailed discussion of 

all pitfalls can be found in Suppl. Note 2.

A common taxonomy enables domain-agnostic categorization of pitfalls

One of our key objectives was to facilitate information retrieval and provide structure within 

this vast topic. Specifically, we wanted to enable researchers to identify at a glance which 

metrics are affected by which types of pitfalls. To this end, we created a comprehensive 

taxonomy that categorizes the different pitfalls in a semantic fashion. The taxonomy was 

1. https://www.kaggle.com/competitions/data-science-bowl-2018/overview/evaluation 
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created in a domain- agnostic manner to reflect the generalization of pitfalls across different 

imaging domains and modalities. An overview of the taxonomy is presented in Fig. 2, and 

the relations between the pitfall categories and individual metrics can be found in Extended 

Data Tabs. 1–5. We distinguish the following three main categories:

[P1] Pitfalls related to the inadequate choice of the problem category.

A common pitfall lies in the use of metrics for a problem category they are not suited 

for because they fail to fulfill crucial requirements of that problem category, and hence 

do not reflect the domain interest (Fig. 1). For instance, popular voxel-based metrics, such 

as the Dice Similarity Coefficient (DSC) or Sensitivity, are widely used in image analysis 

problems, although they do not fulfill the critical requirement of detecting all objects in a 

data set. In a cancer monitoring application they fail to measure instance progress, i.e., the 

potential increase in number of lesions (Fig. 1), which can have serious consequences for the 

patient. For some problems, there may even be a lack of matching problem category (Fig. 

SN 2.2), rendering common metrics inadequate. We present further examples of pitfalls in 

this category in Suppl. Note 2.1.

[P2] Pitfalls related to poor metric selection.

Pitfalls of this category occur when a validation metric is selected while disregarding 

specific properties of the given research problem or method used that make this metric 

unsuitable in the particular context. [P2] can be further divided into the following four 

subcategories:

[P2.1] Disregard of the domain interest.—Commonly, several requirements arise from 

the domain interest of the underlying research problem that may clash with particular metric 

limitations. For example, if there is particular interest in the structure boundaries, it is 

important to know that overlap-based metrics such as the DSC do not take the correctness 

of an object’s boundaries into account, as shown in Fig. 4(a). Similar issues may arise if the 

structure volume (Fig. SN 2.4) or center(line) (Fig. SN 2.5) are of particular interest. Other 

domain interest-related properties may include an unequal severity of class confusions. This 

may be important in an ordinal grading use case, in which the severity of a disease is 

categorized by different scores. Predicting a low severity for a patient that actually suffers 

from a severe disease should be substantially penalized. Common classification metrics do 

not fulfill this requirement. An example is provided in Fig. 4(b). On pixel level, this property 

relates to an unequal severity of over- vs. undersegmentation. In applications such as 

radiotherapy, it may be highly relevant whether an algorithm tends to over- or undersegment 

the target structure. Common overlap-based metrics, however, do not represent over- and 

undersegmentation equally [38]. Further pitfalls may occur if confidence awareness (Fig. SN 

2.6), comparability across data sets (Fig. SN 2.7), or a cost-benefit analysis (Fig. SN 2.9) are 

of particular importance, as illustrated in Suppl. Note 2.2.1.

[P2.2] Disregard of the properties of the target structures.—For problems that 

require capturing local properties (object detection, semantic or instance segmentation), the 

properties of the target structures to be localized and/or segmented may have important 

implications for the choice of metrics. Here, we distinguish between size-related and shape- 
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and topology-related pitfalls. Common metrics, for example, are sensitive to structure 

sizes, such that single-pixel differences may hugely impact the metric scores, as shown 

in Extended Data Fig. 1(a). Shape- and topology-related pitfalls may relate to the fact that 

common metrics disregard complex shapes (Extended Data Fig. 1(b)) or that bounding 

boxes do not capture the disconnectedness of structures (Fig. SN 2.14). A high variability 

of structure sizes (Fig. SN 2.11) and overlapping or touching structures (Fig. SN 2.13) may 

also influence metric values. We present further examples of [P2.2] pitfalls in Suppl. Note 

2.2.2.

[P2.3] Disregard of the properties of the data set.—Various properties of the data 

set such as class imbalances (Fig. 5(a)), small sample sizes (Fig. 5(b)), or the quality of 

the reference annotations, may directly affect metric values. Common metrics such as the 

Balanced Accuracy (BA), for instance, may yield a very high score for a model that predicts 

many False Positive (FP) samples in an imbalanced setting (see Fig. 5(a)). When only small 

test data sets are used, common calibration metrics (which are typically biased estimators) 

either underestimate or overestimate the true calibration error of a model (Fig. 5(b)) [14]. 

On the other hand, metric values may be impacted by reference annotations (Fig. SN 2.17). 

Spatial outliers in the reference may have a huge impact on distance-based metrics such as 

the Hausdorff Distance (HD) (Fig. 5(c)). Additional pitfalls may arise from the occurrence 

of cases with an empty reference (Extended Data Fig. 2(b)), causing division by zero errors. 

We present further examples of [P2.3] pitfalls in Suppl. Note 2.2.3.

[P2.4] Disregard of the properties of the algorithm output.—Reference-based 

metrics compare the algorithm output to a reference annotation to compute a metric score. 

Thus, the content and format of the prediction are of high importance when considering 

metric choice. Overlapping predictions in segmentation problems, for instance, may return 

misleading results. In Extended Data Fig. 2(a), the predictions only overlap to a certain 

extent, not representing that the reference instances actually overlap substantially. This is 

not detected by common metrics. Another example are empty predictions that may cause 

division by zero errors in metric calculations, as illustrated in Extended Data Fig. 2(b), or the 

lack of predicted class scores (Fig. SN 2.20). We present further examples of [P2.4] pitfalls 

in Suppl. Note 2.2.3.

[P3] Pitfalls related to poor metric application.

Once selected, the metrics need to be applied to an image or an entire data set. This step is 

not straightforward and comes with several pitfalls. For instance, when aggregating metric 

values over multiple images or patients, a common mistake is to ignore the hierarchical 

data structure, such as data from several hospitals or a varied number of images per patient. 

We present three examples of [P3] pitfalls in Fig. 6; for more pitfalls in this category, 

please refer to Suppl. Note 2.3. [P3] can further be divided into five subcategories that are 

presented in the following paragraphs.

[P3.1] Inadequate metric implementation.—Metric implementation is, unfortunately, 

not standardized. As shown by [12], different researchers typically employ various different 

implementations for the same metric, which may yield a substantial variation in the metric 
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scores. While some metrics are straightforward to implement, others require more advanced 

techniques and offer different possibilities. In the following, we provide some examples for 

inadequate metric implementation:

• The method of how identical confidence scores are handled in the computation 

of the AP metric may lead to substantial differences in the metric scores. 

Microsoft Common Objects in Context (COCO) [20], for instance, processes 

each prediction individually, while CityScapes [7] processes all predictions with 

the same score in one joint step. Fig. 6(a) provides an example with two 

predictions having the same confidence score, in which the final metric scores 

differ depending on the chosen handling strategy for identical confidence scores. 

Similar issues may arise with other curve-based metrics, such as Area under 

the Receiver Operating Characteristic Curve (AUROC), AP, or Free-Response 

Receiver Operating Characteristic (FROC) scores (see e.g., [24]).

• Metric implementation may be subject to discretization issues such as the chosen 

discretization of continuous variables, which may cause differences in the metric 

scores, as exemplary illustrated in Fig. SN 2.22.

• For metrics assessing structure boundaries, such as the Average Symmetric 

Surface Distance (ASSD), the exact boundary extraction method is not 

standardized. Thus, for example, the boundary extraction method implemented 

by the Liver Tumor Segmentation (LiTS) challenge [1] and that implemented by 

Google DeepMind2 may produce different metric scores for the ASSD. This is 

especially critical for metrics that are sensitive to small contour changes, such as 

the HD.

• Suboptimal choices of hyperparameters may also lead to metric scores that do 

not reflect the domain interest. For example, the choice of a threshold on a 

localization criterion (see Fig. SN 2.23) or the chosen hyperparameter for the Fβ 
Score will heavily influence the subsequent metric scores [34].

More [P3.1] pitfalls can be found in Suppl. Note 2.3.1.

[P3.2] Inadequate metric aggregation.—A common pitfall with respect to metric 

application is to simply aggregate metric values over the entire data set and/or all classes. 

As detailed in Fig. 6(b) and Suppl. Note 2.3.2, important information may get lost in 

this process, and metric results can be misleading. For example, the popular TorchMetrics 

framework calculates the DSC metric by default as a global average over all pixels in the 

data set without considering their image or class of origin3. Such a calculation eliminates 

the possibility of interpreting the final metric score with respect to individual images and 

classes. For example, errors in small structures may be suppressed by correctly segmented 

larger structures in other images (see e.g., Fig. SN 2.26). An adequate aggregation scheme is 

also crucial for handling hierarchical class structure (Fig. SN 2.27), missing values (Fig. SN 

2. https://github.com/deepmind/surface-distance 
3. https://torchmetrics.readthedocs.io/en/stable/classification/dice.html?highlight=dice 
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2.29), and potential biases (Fig. SN 2.28) of the algorithm. Further [P3.2] pitfalls are shown 

in Suppl. Note 2.3.2.

[P3.3] Inadequate ranking scheme.—Rankings are often created to compare algorithm 

performances. In this context, several pitfalls pertain to either metric relationships or ranking 

uncertainty. For example, to assess different properties of an algorithm, it is advisable to 

select multiple metrics and determine their values. However, the chosen metrics should 

assess complementary properties and should not be mathematically related. For example, 

the DSC and IoU are closely related, so using both in combination would not provide any 

additional information over using either of them individually (Fig. SN 2.30). Note in this 

context that unawareness of metric synonyms can equally mislead. Metrics can be known 

under different names; for instance, Sensitivity and Recall refer to the same mathematical 

formula. Despite this fact potentially appearing trivial, an analysis of 138 biomedical image 

analysis challenges [22] found three challenges that unknowingly used two versions of the 

same metric to calculate their rankings. Moreover, rankings themselves may be unstable 

(Fig. SN 2.31). [21] and [37] demonstrated that rankings are highly sensitive to altering the 

metric aggregation operators, the underlying data set, or the general ranking method. Thus, 

if the robustness of rankings is disregarded, the winning algorithm may be identified by 

chance rather than true superiority.

[P3.4] Inadequate metric reporting.—A thorough reporting of metric values and 

aggregates is important both in terms of transparency and interpretability. However, several 

pitfalls are to be avoided in this regard. Notably, different types of visualization may vary 

substantially in terms of interpretability, as shown in Figs 6(c). For example, while a box 

plot provides basic information, it does not depict the distribution of metric values. This may 

conceal important information, such as specific images on which an algorithm performed 

poorly. Other pitfalls in this category relate to the non-determinism of algorithms, which 

introduces a natural variability to the results of a neural network, even with fixed seeds (Fig. 

SN 2.32). This issue is aggravated by inadequate reporting, for instance, reporting solely the 

results from the best run instead of proper cross-validation and reporting of the variability 

across different runs. Generally, shortcomings in reporting, such as providing no standard 

deviation or confidence intervals in the presented results, are common. Concrete examples of 

[P3.4] pitfalls can be found in Suppl. Note 2.3.4.

[P3.5] Inadequate interpretation of metric values.—Interpreting metric scores and 

aggregates is an important step for the analysis of algorithm performances. However, several 

pitfalls can arise from the interpretation. In rankings, for example, minor differences in 

metric scores may not be relevant from an application perspective but may still yield better 

ranks (Fig. SN 2.36). Furthermore, some metrics do not have upper or lower bounds, or the 

theoretical bounds may not be achievable in practice, rendering interpretation difficult (Fig. 

SN 2.35). More information on interpretation-based pitfalls can be found in Suppl. Note 

2.3.4.
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The first illustrated common access point to metric definitions and pitfalls

To underline the importance of a common access point to metric pitfalls, we conducted a 

search for individual metric-related pitfalls on the platforms Google Scholar and Google, 

with the purpose of determining how many of the pitfalls identified through our work 

could be located in existing resources. We were only able to locate a portion of the pitfalls 

identified by our approach in existing research literature (68%) or online resources such as 

blog posts (11%; 8% were found in both). Only 27% of the located pitfalls were presented 

visually.

Our work now provides this key resource in a highly structured and easily understandable 

form. Suppl. Note 2, contains a dedicated illustration for each of the pitfalls discussed, 

thus facilitating reader comprehension and making the information accessible to everyone 

regardless of their level of expertise. A further core contribution of our work are the metric 

profiles presented in Suppl. Note 2, which, for each metric, summarize the most important 

information deemed of particular relevance by the Metrics Reloaded consortium of the sister 

work to this publication [22]. The profiles provide the reader with a compact, at-a-glance 

overview of each metric and an enumeration of the limitations and pitfalls identified in the 

Delphi process conducted for this work.

DISCUSSION

Flaws in the validation of biomedical image analysis algorithms significantly impede the 

translation of methods into (clinical) practice and undermine the assessment of scientific 

progress in the field [19]. They are frequently caused by poor choices due to disregarding 

the specific properties and limitations of individual validation metrics. The present work 

represents the first comprehensive collection of pitfalls and limitations to be considered 

when using validation metrics in image-level classification, semantic segmentation, instance 

segmentation, and object detection tasks. Our work enables researchers to gain a deep 

understanding of and familiarity with both the overall topic and individual metrics 

by providing a common access point to previously largely scattered and inaccessible 

information — key knowledge they can resort to when conducting validation of image 

analysis algorithms. This way, our work aims to disrupt the current common practice of 

choosing metrics based on their popularity rather than their suitability to the underlying 

research problem. This practice, which, for instance, often manifests itself in the unreflected 

and inadequate use of the DSC, is concerningly prevalent even among prestigious, high-

quality biomedical image analysis competitions (challenges) [8, 11, 15, 17, 18, 21, 23, 35]. 

The educational aspect of our work is complemented by dedicated ‘metric profiles’ which 

detail the definitions and properties of all metrics discussed. Notably, our work pioneers 

the examination of artificial intelligence (AI) validation pitfalls in the biomedical domain, a 

domain in which they are arguably more critical than in many others as flaws in biomedical 

algorithm validation can directly affect patient wellbeing and safety.

We posited that shortcomings in current common practice are marked by the low 

accessibility of information on the pitfalls and limitations of commonly used validation 

metrics. A literature search conducted from the point of view of a researcher seeking 
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information on individual metrics confirmed that the number of search results far exceeds 

any amount that could be overseen within reasonable time and effort, as well as the lack of 

a common point of entry to reliable metric information. Even when knowing the specific 

pitfalls and related keywords uncovered by our consortium, only a fraction of those pitfalls 

could be found in existing literature, indicating the novelty and added value of our work.

For transparency, several constraints regarding our literature search must be noted. First, it 

must be acknowledged that the remarkably high search result numbers inevitably include 

duplicates of papers (e.g., the same work in a conference paper and on arXiv) as well as 

results that are out of scope (e.g., [3], [9]), in the cited examples for instance due to a 

metric acronym (AUC) simultaneously being an acronym for another entity (a trinucleotide) 

in a different domain, or the word “sensitivity” being used in its common, non-metric 

meaning. Moreover, common words used to describe pitfalls such as “problem” or “issue” 

are by nature present in many publications discussing any kind of research, rendering them 

unusable for a dedicated search, which could, in turn, account for missing publications that 

do discuss pitfalls in these terms. Similarly, when searching for specific pitfalls, many of 

the returned results containing the appropriate keywords did not actually refer to metrics 

or algorithm validation but to other parts of a model or biomedical problem (e.g., the need 

for stratification is commonly discussed with regard to the design of clinical studies but not 

with regard to their validation). Character limits in the Google Scholar search bar further 

complicate or prevent the use of comprehensive search strings. Finally, it is both possible 

and probable that our literature search did not retrieve all publications or non-peer-reviewed 

online resources that mention a particular pitfall, since even extensive search strings might 

not cover the particular words used for a pitfall description.

None of these observations, however, detracts from our hypothesis. In fact, all of the above 

observations reinforce our finding that, for any individual researcher, retrieving information 

on metrics of interest is difficult to impossible. In many cases, finding information on 

pitfalls only appears feasible if the specific pitfall and its related keywords are exactly 

known, which, of course, is not the situation most researchers realistically find themselves 

in. Overall accessibility of such vital information, therefore, currently leaves much to be 

desired.

Compiling this information through a multi-stage Delphi process allowed us to leverage 

distributed knowledge from experts across different biomedical imaging domains and thus 

ensure that the resulting illustrated collection of metric pitfalls and limitations is both 

comprehensive and of maximum practical relevance. Continued proximity of our work 

to issues occurring in practical application was achieved through sharing the first results 

of this process as a dynamic preprint [27] with dedicated calls for feedback, as well as 

crowdsourcing further suggestions on social media.

Although their severity and practical consequences might differ between applications, 

we found that the pitfalls generalize across different imaging modalities and application 

domains. By categorizing them solely according to their underlying sources, we were able to 

create an overarching taxonomy that goes beyond domain-specific concerns and thus enjoys 

broad applicability. Given the large number of identified pitfalls, our taxonomy crucially 
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establishes structure in the topic. Moreover, by relating types of pitfalls to the respective 

metrics they apply to and illustrating them, it enables researchers to gain a deeper, systemic 

understanding of the causes of metric failure.

Our complementary Metrics Reloaded recommendation framework, which guides 

researchers towards the selection of appropriate validation metrics for their specific tasks 

and is introduced in a sister publication to this work [22], shares the same principle 

of domain independence. Its recommendations are based on the creation of a ‘problem 

fingerprint’ that abstracts from specific domain knowledge and, informed by the pitfalls 

discussed here, captures all properties relevant to metric selection for a specific biomedical 

problem. In this sister publication, we present recommendations to avoid the pitfalls 

presented in this work. Importantly, the finding that pitfalls generalize and can be 

categorized in a domain-independent manner opens up avenues for future expansion of our 

work to other fields of ML-based imaging, such as general computer vision (see below), thus 

freeing it from its major constraint of exclusively focusing on biomedical problems.

It is worth mentioning that we only examined pitfalls related to the tasks of image-level 

classification, semantic segmentation, instance segmentation, and object detection, as these 

can all be considered classification tasks at different levels (image/object/pixel) and hence 

share similarities in their validation. While including a wider range of biomedical problems 

not considered classification tasks, such as regression or registration, would have gone 

beyond the scope of the present work, we envision this expansion in future work. Moreover, 

our work focused on pitfalls related to reference-based metrics. Including pitfalls pertaining 

to non-reference-based metrics, such as metrics that assess speed, memory consumption, 

or carbon footprint, could be a future direction to take. Finally, while we aspired to be 

as comprehensive as possible in our compilation, we cannot exclude that there are further 

pitfalls to be taken into account that the consortium and the participating community have 

so far failed to recognize. Should this be the case, our dynamic Metrics Reloaded online 

platform, which is currently under development and will continuously be updated after 

release, will allow us to easily and transparently append missed pitfalls. This way, our work 

can remain a reliable point of access, reflecting the state of the art at any given moment 

in the future. In this context, we note that we explicitly welcome feedback and further 

suggestions from the readership of Nature Methods.

The expert consortium was primarily compiled in a way to cover the required expertise 

from various fields but also consisted of researchers of different countries, (academic) ages, 

roles, and backgrounds (details can be found in the Suppl. Methods). It mainly focused on 

biomedical applications. The pitfalls presented here are therefore of the highest relevance 

for biological and clinical use cases. Their clear generalization across different biomedical 

imaging domains, however, indicates broader generalizability to fields such as general 

computer vision. Future work could thus see a major expansion of our scope to AI validation 

well beyond biomedical research. Regardless of this possibility, we strongly believe that 

by raising awareness of metric-related pitfalls, our work will kick off a necessary scientific 

debate. Specifically, we see its potential in inducing the scientific communities in other 

areas of AI research to follow suit and investigate pitfalls and common practices impairing 

progress in their specific domains.
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In conclusion, our work presents the first comprehensive and illustrated access point to 

information on validation metric properties and their pitfalls. We envision it to not only 

impact the quality of algorithm validation in biomedical imaging and ultimately catalyze 

faster translation into practice, but to raise awareness on common issues and call into 

question flawed AI validation practice far beyond the boundaries of the field.

Extended Data

Extended Data Fig. 1. [P2.2] Disregard of the properties of the target structures.
[P2.2] Disregard of the properties of the target structures. (a) Small structure sizes. 
The predictions of two algorithms (Prediction 1/2) differ in only a single pixel. In the case 

of the small structure (bottom row), this has a substantial effect on the corresponding Dice 

Similarity Coefficient (DSC) metric value (similar for the Intersection over Union (IoU)). 

This pitfall is also relevant for other overlap-based metrics such as the centerline Dice 

Similarity Coefficient (clDice), and localization criteria such as Box/Approx/Mask IoU and 

Intersection over Reference (IoR). (b) Complex structure shapes. Common overlap-based 

metrics (here: DSC) are unaware of complex structure shapes and treat Predictions 1 and 2 
equally. The clDice uncovers the fact that Predictions 1 misses the fine-granular branches of 

the reference and favors Predictions 2, which focuses on the center line of the object. This 

pitfall is also relevant for other overlap-based such as metrics IoU and pixel-level Fβ Score 

as well as localization criteria such as Box/Approx/Mask IoU, Center Distance, Mask IoU > 

0, Point inside Mask/Box/Approx, and IoR.
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Extended Data Fig. 2. [P2.4] Disregard of the properties of the algorithm output.
[P2.4] Disregard of the properties of the algorithm output. (a) Possibility of overlapping 
predictions. If multiple structures of the same type can be seen within the same image (here: 

reference objects R1 and R2), it is generally advisable to phrase the problem as instance 

segmentation (InS; right) rather than semantic segmentation (SemS; left). This way, issues 

with boundary-based metrics resulting from comparing a given structure boundary to the 

boundary of the wrong instance in the reference can be avoided. In the provided example, 

the distance of the red boundary pixel to the reference, as measured by a boundary-based 

metric in SemS problems, would be zero, because different instances of the same structure 

cannot be distinguished. This problem is overcome by phrasing the problem as InS. In this 

case, (only) the boundary of the matched instance (here: R2) is considered for distance 
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computation. (b) Possibility of empty prediction or reference. Each column represents a 

potential scenario for per-image validation of objects, categorized by whether True Positives 

(TPs), False Negatives (FNs), and False Positives (FPs) are present (n > 0) or not (n = 0) 

after matching/assignment. The sketches on the top showcase each scenario when setting “n 

> 0” to “n = 1”. For each scenario, Sensitivity, Positive Predictive Value (PPV), and the F1 

Score are calculated. Some scenarios yield undefined values (Not a Number (NaN)).
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Extended Data Tab. 1.
Overview of pitfall sources for image-level classification 
metrics

((a): counting metrics, (b): multi-threshold metrics) related to poor metric selection [P2]. 

Pitfalls for semantic segmentation, object detection and instance segmentation are provided 

in Extended Data Tabs. 2–5 respectively. A warning sign indicates a potential pitfall for the 

metric in the corresponding column, in case the property represented by the respective row 

holds true. Comprehensive illustrations of pitfalls are available in Suppl. Note 2. A 

comprehensive list of pitfalls is provided separately for each metrics in the metrics cheat 
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sheets (Suppl. Note 3). Note that we only list sources of pitfalls relevant to the considered 

metrics. Other sources of pitfalls are neglected for this table.
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Extended Data Tab. 2.
Overview of pitfall sources for semantic segmentation 
metrics

((a): overlap-based metrics, (b): boundary-based metrics) related to poor metric selection 

[P2]. A warning sign indicates a potential pitfall for the metric in the corresponding column, 

in case the property represented by the respective row holds true. Comprehensive 

illustrations of pitfalls are available in Suppl. Note 2. A comprehensive list of pitfalls is 

provided separately for each metrics in the metrics cheat sheets (Suppl. Note 3). Note that 
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we only list sources of pitfalls relevant to the considered metrics. Other sources of pitfalls 

are neglected for this table.
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*
Can be mitigated by the choice of the percentile
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Extended Data Tab. 3.
Overview of sources of pitfalls for object detection 
metrics

((a): detection metrics, (b): localization criteria) related to poor metric selection [P2]. A 

warning sign indicates a potential pitfall for the metric in the corresponding column, in case 

the property represented by the respective row holds true. Comprehensive illustrations of 

pitfalls are available in Suppl. Note 2. A comprehensive list of pitfalls is provided separately 

for each metrics in the metrics cheat sheets (Suppl. Note 3). Note that we only list sources of 
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pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this 

table.
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Extended Data Tab. 4.
Overview of sources of pitfalls for instance segmentation 
metrics (Part 1)

((a): detection metrics, (b): localization criteria) related to poor metric selection [P2]. A 

warning sign indicates a potential pitfall for the metric in the corresponding column, in case 

the property represented by the respective row holds true. Comprehensive illustrations of 

pitfalls are available in Suppl. Note 2. A comprehensive list of pitfalls is provided separately 

for each metrics in the metrics cheat sheets (Suppl. Note 3). Note that we only list sources of 
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pitfalls relevant to the considered metrics. Other sources of pitfalls are neglected for this 

table.
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Extended Data Tab. 5.
Overview of sources of pitfalls for instance segmentation 
metrics (Part 2)

((a) per instance segmentation overlap-based metrics, (b) per instance segmentation 

boundary-based metrics) related to poor metric selection [P2]. A warning sign indicates a 

potential pitfall for the metric in the corresponding column, in case the property represented 

by the respective row holds true. Comprehensive illustrations of pitfalls are available in 
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Suppl. Note 2. Note that we only list sources of pitfalls relevant to the considered metrics. 

Other sources of pitfalls are neglected for this table.

*
Can be mitigated by the choice of the percentile

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Examples of metric-related pitfalls in image analysis validation. (A) Medical image analysis 

example: Voxel-based metrics are not appropriate for detection problems. Measuring the 

voxel-level performance of a prediction yields a near-perfect Sensitivity. However, the 

Sensitivity at the instance level reveals that lesions are actually missed by the algorithm. 

(B) Biological image analysis example: The task of predicting fibrillarin in the dense 

fibrillary component of the nucleolus should be phrased as a segmentation task, for which 

segmentation metrics reveal the low quality of the prediction. Phrasing the task as image 

reconstruction instead and validating it using metrics such as the Pearson Correlation 

Coefficient yields misleadingly high metric scores [4, 26, 29, 36, 36].
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Figure 2: 
Overview of the taxonomy for metric-related pitfalls. Pitfalls can be grouped into three 

main categories: [P1] Pitfalls related to the inadequate choice of the problem category, [P2] 

pitfalls related to poor metric selection, and [P3] pitfalls related to poor metric application. 

[P2] and [P3] are further split into subcategories. For all categories, pitfall sources are 

presented (green), with references to corresponding illustrations of representative examples. 

Note that the order in which the pitfall sources are presented does not correlate with 

importance.
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Figure 3: 
[P1] Pitfalls related to the inadequate choice of the problem category. Wrong choice of 
problem category. Effect of using segmentation metrics for object detection problems. The 

pixel-level Dice Similarity Coefficient (DSC) of a prediction recognizing every structure 

(Prediction 2) is lower than that of a prediction that only recognizes one of the three 

structures (Prediction 1).
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Figure 4: [P2.1] Disregard of the domain interest.
(a) Importance of structure boundaries. The predictions of two algorithms (Prediction 
1/2) capture the boundary of the given structure substantially differently, but lead to the 

exact same Dice Similarity Coefficient (DSC), due to its boundary un- awareness. This 

pitfall is also relevant for other overlap-based metrics such as centerline Dice Similarity 

Coefficient (clDice), pixel-level Fβ Score, and Intersection over Union (IoU), as well as 

localization criteria such as Box/Approx/Mask IoU, Center Distance, Mask IoU > 0, Point 

inside Mask/Box/Approx, and Intersection over Reference (IoR). (b) Unequal severity 
of class con- fusions. When predicting the severity of a disease for three patients in an 

ordinal classification problem, Prediction 1 assumes a much lower severity for Patient 3 than 

actually observed. This critical issue is overlooked by common metrics (here: Accuracy), 

REINKE et al. Page 39

Nat Methods. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which measure no difference to Prediction 2, which assesses the severity much better. 

Metrics with pre-defined weights (here: Expected Cost (EC)) correctly penalize Prediction 1 
much more than Prediction 2. This pitfall is also relevant for other counting metrics, such as 

Balanced Accuracy (BA), Fβ Score, Positive Likelihood Ratio (LR+), Matthews Correlation 

Coefficient (MCC), Net Benefit (NB), Negative Predictive Value (NPV), Positive Predictive 

Value (PPV), Sensitivity, and Specificity.
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Figure 5: [P2.3] Disregard of the properties of the data set.
(a) High class imbalance. In the case of underrepresented classes, common metrics may 

yield misleading values. In the given example, Accuracy and Balanced Accuracy (BA) have 

a high score despite the high amount of False Positive (FP) samples. The class imbalance 

is only uncovered by metrics considering predictive values (here: Matthews Correlation 

Coefficient (MCC)). This pitfall is also relevant for other counting and multi-threshold 

metrics such as Area under the Receiver Operating Characteristic Curve (AUROC), 

Expected Cost (EC) (depending on the chosen costs), Positive Likelihood Ratio (LR+), 

Net Benefit (NB), Sensitivity, Specificity, and Weighted Cohen’s Kappa (WCK). (b) Small 
test set size. The values of the Expected Calibration Error (ECE) depend on the sample size. 

Even for a simulated perfectly calibrated model, the ECE will be substantially greater than 
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zero for small sample sizes [14]. (c) Imperfect reference standard. A single erroneously 

annotated pixel may lead to a large decrease in performance, especially in the case of the 

Hausdorff Distance (HD) when applied to small structures. The Hausdorff Distance 95th 

Percentile (HD95), on the other hand, was designed to deal with spatial outliers. This pitfall 

is also relevant for localization criteria such as Box/Approx Intersection over Union (IoU) 

and Point inside Box/Approx. Further abbreviations: True Positive (TP), False Negative 

(FN), True Negative (TN).

REINKE et al. Page 42

Nat Methods. Author manuscript; available in PMC 2024 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: [P3] Pitfalls related to poor metric application.
(a) Non-standardized metric implementation. In the case of the Average Precision (AP) 

metric and the construction of the Precision- Recall (PR)-curve, the strategy of how identical 

scores (here: confidence score of 0.80 is present twice) are treated has a substantial impact 

on the metric scores. Microsoft Common Objects in Context (COCO) [20] and CityScapes 

[7] are used as examples. (b) Non-independence of test cases. The number of images taken 

from Patient 1 is much higher compared to that acquired from Patients 2–5. Averaging over 

all Dice Similarity Coefficient (DSC) values, denoted by ∅, results in a high averaged score. 

Aggregating metric values per patient reveals much higher scores for Patient 1 compared 

to the others, which would have been hidden by simple aggregation. (c) Uninformative 
visualization. A single box plot (left) does not give sufficient information about the raw 
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metric value distribution. Adding the raw metric values as jittered dots on top (right) adds 

important information (here: on clusters). In the case of non-independent validation data, 

color/shape-coding helps reveal data clusters.
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