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Abstract

We present a statistical simulator, scDesign3, to generate realistic single-cell and spatial omics 

data, including various cell states, experimental designs, and feature modalities, by learning 

interpretable parameters from real data. Using a unified probabilistic model for single-cell and 

spatial omics data, scDesign3 infers biologically meaningful parameters; assesses the goodness-of-

fit of inferred cell clusters, trajectories, and spatial locations; and generates in silico negative and 

positive controls for benchmarking computational tools.

Single-cell and spatial omics technologies provided unprecedented multi-modal views of 

individual cells. First, single-cell RNA-seq (scRNA-seq) was developed to measure cells’ 

transcriptomes, enabling the discovery of discrete cell types and continuous cell trajectories 

[1, 2]. Later, other single-cell omics technologies were developed to measure additional 

molecular feature modalities, including chromatin accessibility [3, 4], DNA methylation 

[5], and protein abundance [6]. More recently, single-cell multi-omics technologies 

were invented to measure more than one feature modality simultaneously [7, 8]. In 
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parallel to single-cell omics, spatial transcriptomics technologies were advanced to profile 

transcriptomes with cells’ spatial locations recorded [9–12].

Thousands of computational methods have been developed for various tasks [13], making 

method benchmarking a pressing challenge. Fair benchmarking demands in silico data 

that contain ground truths and mimic real data, thus calling for realistic simulators and 

benchmark studies. Two benchmark studies [14, 15] found that reference-based scRNA-seq 

simulators, which require training on real data, were more realistic than de novo simulators, 

which use preset theoretical models [15]. The two studies also found that, although 

some reference-based simulators [16–18] generated realistic scRNA-seq data from discrete 

cell types [14, 15], few reference-based simulators could generate data from continuous 

cell trajectories [15, 19–22]. Moreover, realistic simulators were lacking for single-cell 

omics other than scRNA-seq [23], not to mention single-cell multi-omics and spatial 

transcriptomics (see Supplementary Methods for discussion on recent advances). Hence, 

a large gap existed between the diverse benchmarking needs and the limited functionalities 

of existing simulators.

To fill in the gap, here we introduce scDesign3, a simulator that generates realistic 

synthetic data from diverse settings, including cell latent structures, feature modalities, 

spatial locations, and experimental designs (Fig. 1a). Table S1 lists a detailed comparison 

of scDesign3 with the previous two versions, scDesign [24] and scDesign2 [16]. scDesign3 

offers a probabilistic model that unifies the generation and inference for single-cell and 

spatial omics data. The model’s interpretable parameters and likelihood enable scDesign3 to 

generate customized in silico data and unsupervisedly assess the goodness-of-fit of inferred 

cell latent structures (e.g., clusters, trajectories, and spatial locations) (Fig. 2a).

As an overview, we verified scDesign3’s two functionalities—simulation and interpretation

—sequentially. First, we show that the scDesign3 model is reasonable in that its synthetic 

data well mimic real data given high-quality cell type labels and cell trajectories. Second, 

assuming the scDesign3 model is reasonable, we show that scDesign3 allows model-based 

interpretation of real data, including assessment of the goodness-of-fit of inferred cell latent 

structures.

scDesign3 functionality 1: simulation

We verified scDesign3 as a realistic and versatile simulator in four exemplar settings: 

(1) scRNA-seq of continuous cell trajectories, (2) spatial transcriptomics, (3) single-cell 

epigenomics, and (4) single-cell multi-omics (Fig. 1). We show that the synthetic data of 

scDesign3 resembled the left-out test data consistently.

In the first setting, scDesign3 mimicked three scRNA-seq datasets containing single or 

bifurcating cell trajectories (EMBRYO, MARROW, and PANCREAS in Table S2). Fig. 

1b–c, Extended Data Figs. 1–2c–d and Fig. S1c–d show that scDesign3 generated realistic 

synthetic cells that resembled left-out real cells, reflected by high mLISI (mean Local 

Inverse Simpson’s Index) values [25]. Moreover, scDesign3 preserved eight gene- and 

cell-specific characteristics described in Methods (Extended Data Figs. 1–2a–b and Fig. 
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S1a–b). Due to the lack of reference-based simulators for continuous cell trajectories, 

we benchmarked scDesign3 against ZINB-WaVE, muscat, and SPARSIM—three top-

performing simulators for discrete cell types [14, 15]—and a deep-learning-based simulator 

scGAN [26]. scDesign3 outperformed these simulators in generating more realistic synthetic 

cells and in better preserving the gene- and cell-specific characteristics, especially cell-cell 

distances and gene-gene correlations (Fig. 1b–c, Extended Data Figs. 1–2, and Fig. S1).

In the second setting, scDesign3 emulated four spatial transcriptomics datasets generated 

by the 10x Visium and Slide-seq technologies (VISIUM, SLIDE, OVARIAN, and ACINAR 

in Table S2). First, Fig. 1d–e and Extended Data Fig. 3 show that scDesign3 recapitulated 

the expression patterns of spatially variable genes. Second, Extended Data Fig. 4 and Figs. 

S2–S4a–b show that scDesign3 preserved the eight gene- and cell-specific characteristics. 

Third, Extended Data Fig. 4 and Figs. S2–S4c–d use two-dimensional cell embeddings to 

confirm that the synthetic data of scDesign3 resembled the test data. Fourth, scDesign3 

mimicked spatial transcriptomics data so that three prediction algorithms had highly 

consistent performance when trained on real data or scDesign3 synthetic data (Extended 

Data Fig. 5). Fifth, the scDesign3 model adapted to complex spatial patterns in less-

structured cancer tissues (Extended Data Fig. 6). Sixth, given a pair of scRNA-seq 

data and spot-resolution spatial transcriptomics data (where each spot contains multiple 

cells), scDesign3 can generate realistic spot-resolution spatial transcriptomics data with 

cell-type proportions specified at each spot (Fig. 1f; Extended Data Fig. 7a). Using this 

functionality to benchmark cell-type deconvolution algorithms for spatial transcriptomics 

data, we had consistent results with a benchmark study [27] that CARD [27] and RCTD 

[28] outperformed SPOTlight [29] in estimating cell-type proportions, though we also found 

that the three algorithms performed similarly well in estimating each cell type’s relative 

abundance distribution across the spots (Extended Data Fig. 7b).

In the third setting, scDesign3 resembled two single-cell chromatin accessibility datasets 

profiled by the 10x scATAC-seq and sci-ATAC-seq protocols (ATAC and SCIATAC in 

Table S2). For both protocols, scDesign3 generated synthetic cells whose read counts in 

peak regions resembled those of real cells (Fig. 1g; Fig. 1h left; Extended Data Fig. 8; 

Fig. S5). Moreover, coupled with our newly developed read simulator scReadSim [30], 

scDesign3 enabled the generation of realistic synthetic reads, unblocking the capacity for 

benchmarking read-level bioinformatics tools (Fig. 1h right).

In the fourth setting, scDesign3 mimicked a CITE-seq dataset (CITE in Table S2) and 

simulated a multi-omics dataset from separately measured RNA expression and DNA 

methylation modalities (SCGEM in Table S2). First, scDesign3 resembled the CITE-seq 

dataset by simultaneously simulating the expression levels of genes and surface proteins. 

Fig. 1i shows that the RNA and protein expression levels of three exemplary surface proteins 

are highly consistent between the synthetic data and the test data. Moreover, scDesign3 

recapitulated the correlations between RNA and protein expression levels (Extended Data 

Fig. 9b). Second, scDesign3 simulated a single-cell multi-omics dataset with joint RNA 

expression and DNA methylation modalities by learning from two single-omics datasets 

(Fig. 1j left) with joint low-dimensional cell embeddings found by Pamona [49]. This 

synthetic multi-omics dataset preserved the cell trajectory in the two single-omics datasets 
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(Fig. 1j right). The functionality to generate multi-omics data from single-omics data 

allows scDesign3 to benchmark the computational methods that integrate modalities from 

unmatched cells [32].

scDesign3 functionality 2: interpretation

Providing a universal probabilistic model for single-cell and spatial omics data, scDesign3 

has broad applications beyond generating synthetic data. We investigated three prominent 

applications of the scDesign3 model: model parameters, model selection, and model 

alteration (Fig. 2a).

First, the scDesign3 model has an interpretable parametric structure consisting of genes’ 

marginal distributional parameters and pairwise gene correlations. Moreover, the scDesign3 

model is flexible to incorporate diverse cell covariates via the use of generalized additive 

models and Gaussian process (Methods), which allow the estimation of non-linear gene 

expression changes along cell trajectories (Fig. 2b) and across spatial locations (Fig. 2c). 

Besides inferring individual genes’ expression characteristics, scDesign3 also estimates 

pairwise gene correlations conditional on cell covariates, thus providing insights into 

potential gene regulatory relationships. Specifically, scDesign3 estimates gene correlations 

by two statistical techniques, Gaussian copula and vine copula, which have complementary 

advantages (Methods): Gaussian copula is fast but outputs only a gene correlation matrix; 

vine copula is slow but interpretable by outputting a gene “vine” with the top layer 

indicating the most highly-correlated genes (i.e., “hub genes”). Applied to an scRNA-seq 

dataset of human peripheral blood mononuclear cells with four cell types (ZHENGMIX4 in 

Table S2), Gaussian copula revealed similar gene correlation matrices for similar cell types 

(regulatory T cells vs. naive cytotoxic T cells) and distinct gene correlation matrices for 

distinct cell types (CD14+ monocytes vs. naive cytotoxic T cells) (Fig. 2d top); vine copula 

discovered canonical cell-type marker genes as hub genes: LYZ for CD14+ monocytes and 

CD79A for B cells (Fig. 2d bottom).

Second, scDesign3 embraces likelihood-based model selection criteria such as Akaike 

information criterion (AIC) and Bayesian information criterion (BIC), allowing scDesign3 

to evaluate the “goodness-of-fit” of a model to data and to compare competing models. A 

noteworthy application is evaluating how inferred cell latent structures (clusters, trajectories, 

and spatial locations) describe data, i.e., assessing latent structures from the goodness-of-fit 

perspective without ground truths or external knowledge. Although the scDesign3 model 

does not represent ground truths, we demonstrated that scDesign3 AIC and BIC are useful 

“unsupervised” criteria for assessing how well latent structures agree with data under the 

scDesign3 model.

For cell clustering, we benchmarked scDesign3 BIC against the “supervised” adjusted 

Rand index (ARI) (Methods) and the newly-proposed “unsupervised” clustering deviation 

index (CDI) [33] on eight datasets with known cell types [34]. The results show that 

scDesign3 BIC agreed well with ARI (mean Spearman correlation < −0.7) and had better or 

similar performance compared to CDI (Extended Data Fig. 10b). For pseudotime inference, 

scDesign3 BIC correlated well (mean Spearman correlation < −0.7) with the “supervised” 
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R2 (Methods) on multiple synthetic datasets with true pseudotimes (Fig. 2e top; Extended 

Data Fig. 10a). Applied to three pseudotime inference methods, scDesign3 BIC found the 

pseudotimes inferred by Slingshot [35] agreed better with data (smaller BIC) than those 

inferred by TSCAN [36] and Monocle3 [2] (Fig. 2e bottom). For spatial location inference, 

we found scDesign3 AIC correlated well (mean Spearman correlation < −0.7) with the 

“supervised” mean cosine similarity (Methods) on two spatial transcriptomics datasets 

(MOUSE-CORTEX and MOUSE-VISUAL in Table S2), suggesting that scDesign3 AIC is 

effective in assessing spatial locations’ goodness-of-fit (Extended Data Fig. 10c). Note that 

scDesign3 AIC outperformed BIC in this case, possibly because AIC prefers more complex 

models, which can better fit complex spatial data.

Third, scDesign3 has a model alteration functionality: given the scDesign3 model 

parameters estimated on real data, users can alter these parameters to reflect a hypothesis 

and generate the corresponding in silico data with real data characteristics. This functionality 

makes scDesign3 advantageous over deep-learning-based simulators [26], which cannot be 

easily altered to reflect a hypothesis. We demonstrated how to use this functionality in 

three examples. First, scDesign3 can generate synthetic data with different cell-type-specific 

condition effects (Fig. 2f). In a real dataset (CONDITION in Table S2), gene IFI6’s 

expression was up-regulated after stimulation in both CD16+ monocytes and B cells (Fig. 2f 

top-left). With scDesign3’s fitted model, we altered IFI6’s mean parameters to make IFI6’s 

expression up-regulated (Fig. 2f top-right) or unchanged (Fig. 2f bottom-left) in both cell 

types, or up-regulated in CD16+ monocytes only (Fig. 2f bottom-right). Second, scDesign3 

can generate synthetic data with or without batch effects (Fig. 2g). Trained on a real dataset 

(BATCH in Table S2) containing two batches (Fig. 2g left), scDesign3 generated synthetic 

data retaining the batch effects (Fig. 2g middle); then we altered the batch parameter in the 

fitted scDesign3 model to generate synthetic data without batch effects (Fig. 2g right). Third, 

scDesign3 can generate synthetic data under the null hypothesis H0  that only one cell type 

exists and the alternative hypothesis H1  that two cell types exist (Fig. 2h). Given a real 

dataset (ZHENGMIX4 in Table S2, Fig. 2h left), under H1, we fitted the model using cell 

type labels (Fig. 2h middle); under H0, we fitted the model by assuming all cells are of one 

type (Fig. 2h right). Using the two fitted models, scDesign3 generated synthetic data under 

H1 and H0. Particularly, the synthetic data under H0 can serve as the in silico negative control 

for benchmarking cell-type identification methods.

In summary, scDesign3 accommodates various cell statuses, diverse omics modalities, and 

complex experimental designs. Although the scDesign3 model should not be treated as 

the true model, its interpretable parameters precede functionalities besides data simulation. 

First, scDesign3 model parameters offer a comprehensive interpretation of real data. Second, 

scDesign3 allows likelihood-based model selection to assess the goodness-of-fit of inferred 

cell clusters, trajectories, and spatial locations. Of course, this unsupervised model-based 

assessment cannot replace supervised metrics or compare models with different types of cell 

latent structures (e.g., cell clusters vs. trajectories). Third, scDesign3 can generate synthetic 

data under specific hypotheses by having its model parameters altered.
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Methods

The generative model of scDesign3

Mathematical notations of scDesign3’s training data—The training data of 

scDesign3 contain three matrices: a cell-by-feature matrix (e.g., features are genes or 

chromatin regions), a cell-by-state-covariate matrix (e.g., cell-state covariates include the 

cell type, pseudotime, or spatial coordinate), and an optional cell-by-design-covariate matrix 

(e.g., design covariates include the batch or condition).

Mathematically, first, we denote by Y = Y ij ∈ ℝn × m the cell-by-feature matrix with n cells 

as rows, m features as columns, and Y ij as the measurement of feature j in cell i. For 

single-cell sequencing data, Y is often a count matrix (i.e., Y ∈ ℕn × m, with Y ij indicating the 

read or unique molecular identifier (UMI) count of feature j in cell i); then the sequencing 

depth (i.e., the total number of reads or UMIs) is N = ∑i = 1
n ∑j = 1

m Y ij.

Second, we denote by X = x1, ⋯, xn
⊤ ∈ ℝn × p the cell-by-state-covariate matrix with n

cells as rows and p cell-state covariates as columns. In X, the i-th row xi ∈ ℝp is cell i’s
state covariate vector. Typical cell-state covariates include the cell type (p = 1 categorical 

variable), the cell pseudotime in p lineage trajectories (p continuous variables), and the 2- or 

3-dimensional cell spatial locations (p = 2 or 3 continuous variables).

Third, we denote by Z = z1, ⋯, zn
⊤ ∈ ℝn × q the cell-by-design-covariate matrix with n cells 

as rows and q design covariates as columns. In Z, the i-th row zi ∈ ℝq is cell i’s design 

covariate vector. Example design covariates are categorical variables such as the batch and 

condition. Note that Z is optional: it is not required if cells are from a single condition 

and measured in a single batch. To simplify the discussion, in the following text, we 

write Z = b, c , where b = b1, …, bn
⊤ has bi ∈ 1, … , B  representing cell i’s batch, and 

c = c1, …, cn
⊤ has ci ∈ 1, …, C  representing cell i’s condition.

Modeling features’ marginal distributions—For each feature j = 1, …, m in every cell 

i = 1, …, n, the measurement Y ij —conditional on cell i’s state covariates xi and design 

covariates zi = bi, ci
⊤ —is assumed to follow a distribution F j ⋅ xi, zi ; µij, σij, pij , which is 

specified as the generalized additive model for location, scale and shape (GAMLSS) [37] 

(i.e., the distribution family F j depends on feature j only, but the parameters µij, σij, and pij

depend on both feature j and cell i):

Y ij xi, zi ind F j ⋅ xi, zi ; µij, σij, pij

θj µij = αj0 + αjbi + αjci + fjci xi

log σij = βj0 + βjbi + βjci + gjci xi

logit pij = γj0 + γjbi + γjci + ℎjci xi

,

(1)
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where θj ⋅  denotes feature j’s specific link function of the mean parameter µij, depending 

on F j (Table S3); σij denotes the scale parameter (e.g., standard deviation or dispersion); 

pij denotes the zero-inflation proportion parameter. Note that µij, σij, and pij do not always 

co-exist, depending on the form of F j (Table S3). To ensure model identifiability, for 

j = 1, …, m, we set αjbi = βjbi = γjbi = 0 when bi = 1 and αjci = βjci = γjci = 0 when ci = 1.

θj µij  is assumed to have feature j’s specific intercept αj0, batch bi’s effect αjbi (specific to 

feature j), condition ci’s effect αjci (specific to feature j), and cell-state covariates xi’s effect 

fjci xi  (specific to feature j and condition ci).

log σij  is assumed to have feature j’s specific intercept βj0, batch bi’s effect βjbi (specific to 

feature j), condition ci’s effect βjci (specific to feature j), and cell-state covariates xi’s effect 

gjci xi  (specific to feature j and condition ci).

logit pij  is assumed to have feature j’s specific intercept γj0, batch bi’s effect γjbi (specific to 

feature j), condition ci’s effect γjci (specific to feature j), and cell-state covariates xi’s effect 

ℎjci xi  (specific to feature j and condition ci).

For θj µij , log σij , and logit pij , the interaction effects are considered between the condition 

and cell-state covariates, but not between the batch and cell-state covariates. This modeling 

choice is made based on empirical observations and the simplicity preference [38].

Note that if only the mean parameter µij is assumed to depend on the state covariates xi, batch 

bi, and condition ci, then the GAMLSS degenerates to a generalized additive model (GAM) 

[39].

Depending on the modality of feature j (e.g., a gene’s UMI count), scDesign3 specifies F j

to be one of the six distributions: Gaussian (Normal), Bernoulli, Poisson, Negative Binomial 

(NB), Zero-inflated Poisson (ZIP), and Zero-inflated Negative Binomial (ZINB); see Table 

S3 for the specifications. Different specifications of F j correspond to different link functions 

θj ⋅  and parameters; see Table S3 for the details.

Depending on cell i’s cell-state covariates xi, scDesign3 specifies the functions fjci · , gjci · , 

and ℎjci ·  in the corresponding forms. See Table S4 for the details. Below are the three 

typical forms of fjci · .

(1) When the cell-state covariate is the cell type (out of a total of KC cell types) and 

X = x1, …, xn
⊤ is a 1-column matrix with xi ∈ 1, …, KC ,

fjci xi = αjcixi,

which corresponds to cell-type xi’s effect on feature j in condition ci. Note that for 

identifiability, αjcixi = 0 if ci = 1 or xi = 1.
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(2) When the cell-state covariates are the cell pseudotimes in p lineage trajectories, i.e., 

xi = xi1, , …, , , xip
⊤ with xil indicating cell i’s pseudotime in the l-th lineage trajectory,

fjci xi = ∑
l = 1

p
∑

k = 1

K
bjcilk xil βjcilk,

where ∑k = 1
K bjcilk ⋅ βjcilk is a cubic spline function for pseudotime in the l-th lineage. This 

formulation means that feature j under condition ci has a specific smooth pattern in lineage 

l. The exact choice K, the dimension of the basis governing the flexibility of fjci, is not 

critical as long as K is not too small (because automatic penalization would be used in the 

estimation of fjci by the R package mgcv, which is used in the R package gamlss; see [39]); 

we set K = 10 as default; K cannot be larger than the number of data points.

(3) When the cell-state covariates are 2-dimensional spatial locations, i.e., xi = xi1, , , xi2
⊤

indicating cell i’s 2-dimensional spatial coordinates,

fjci xi = fjci
GP xi1, xi2, K ,

a low-rank Gaussian process smoother described in [39, 40], where K is the dimension 

of the basis governing the flexibility of fjci This formulation means that feature j under 

condition ci has a smooth 2-dimensional function (i.e., a surface). The exact choice K is not 

critical as long as K is large (because automatic penalization would be used in the estimation 

of fjci by the R package mgcv, which is used in the R package gamlss; see [39]); we set 

K = 400 as default; K cannot be larger than the number of data points.

The distribution of Y ij xi, zi  in Equation (1) is fitted by the function gamlss() in the R 

package gamlss (version 5.4–3) or the function gam() in the R package mgcv (version 

1.8–40). The fitted distribution is denoted as F j ⋅ xi, zi , i = 1, …, n ; j = 1, …, m.

Modeling features’ joint distribution—For cell i = 1, …, n, we denote its 

measurements of the m features as a random vector Yi = Y i1, , , …, , , Y im
⊤, whose joint 

distribution—conditional on cell i’s state covariates xi and design covariates zi —is 

denoted as F · xi, zi :ℝm 0, 1 . Section Modeling features’ marginal distributions 

specifies F j · xi, zi , the distribution of Y ij xi, zi , j = 1, …, m. In scDesign3, the joint 

cumulative distribution function (CDF) F · xi, zi  is modeled from the marginal CDFs 

F1 · xi, zi , …, Fm · xi, zi  using the copula C · xi, zi : 0, 1 m 0, 1 :

F yi xi, zi = C F1 yi1 xi, zi , …, Fm yim xi, zi xi, zi ,

where yi = yi1, , , …, , , yim
⊤ is a realization of Yi = Y i1, , , …, , , Y im

⊤.

The copula C · xi, zi  can be (1) the Gaussian copula or (2) the vine copula, specified below.
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The Gaussian copula is defined as

C F1 yi1, xi, zi , ⋯, Fm yim xi, zi xi, zi

= Φm Φ−1 F1 yi1, xi, zi , ⋯, Φ−1 Fm yi1 xi, zi ; R xi, zi ,

where Φ−1 denotes the inverse of the CDF of the standard Gaussian distribution, 

Φm ⋅ ; R xi, zi  denotes the CDF of an m-dimensional Gaussian distribution with a zero mean 

vector and a covariance matrix equal to the correlation matrix R xi, zi .

An issue with the Gaussian copula is that the likelihood calculation is not straightforward 

in the high-dimensional case when m is large and the sample correlation matrix R xi, zi , as 

an estimator of R xi, zi , is not invertible. Then, the likelihood cannot be computed based on 

R xi, zi . To address this issue, we consider the vine copula.

The vine copula is a way to “decompose” a high-dimensional copula into a sequence 

of bivariate copulas, in which every pair of features is modeled as a bivariate Gaussian 

distribution. In short, the vine copula provides a regular vine (R-vine) structure that 

uses conditioning to sequentially decompose an m-dimensional copula into a sequence of 

bivariate copulas; then the m-dimensional copula density function is approximated by the 

product of the bivariate copula density functions [41]. The vine copula is advantageous to 

the Gaussian copula because it enables the likelihood calculation in the high-dimensional 

case. A detailed definition of the vine copula is in Supplementary Methods.

To estimate C · xi, zi  as either the Gaussian or vine copula, we use the plug-in approach 

that takes the estimated F 1 · xi, zi , …, F m · xi, zi  from Section Modeling features’ marginal 

distributions. Specifically, when F j · xi, zi  is a continuous distribution, each observed yij

is transformed as uij = F j yij xi, zi . When F j ⋅ xi, zi  is a discrete distribution with the 

support on non-negative integers (e.g., the Poisson distribution), u1j, …, unj follow a discrete 

distribution. Since the Gaussian and vine copulas assume that features follow continuous 

distributions, we use the distributional transformation as in [16]:

uij = 1 − vij F j yij − 1 xi, zi + vijF j yij xi, zi , yij = 1, 2, …,

where vij’s are sampled independently from Uniform[0, 1], i = 1, …, n; j = 1, …, m. To unify 

and simplify our notations, we write uij = F j yij xi, zi , where F j ⋅ xi, zi  is the CDF of a 

continuous distribution.

Then C · xi, zi  is estimated from u1, …, un, where ui = ui1, , , …, , , uim
⊤. For the Gaussian 

copula, we use the function cora() in the R package Rfast (version 2.0.6); specifically, 

R xi, zi  is the sample correlation matrix of {Φ−1 uj : xj, zj  is in a pre-defined-sized 

neighborhood of xi, zi  }, where Φ−1 ui = Φ−1 ui1 , …, Φ−1 uim
⊤

. For the vine copula, we 

use the function vinecop() in R package rvinecoplib (version 0.6.2.1.1).

Then the estimated joint distribution F ⋅ xi, zi  is
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F yi xi, zi = C F 1 yi1, xi, zi , ⋯ , F m yim, xi, zi xi, zi .

(2)

Model likelihood, AIC, and BIC—Given Equation (2), the estimated probability density 

function of cell i’s m-dimensional feature vector yi, conditional on the cell-state covariates xi

and the design covariates zi, is

f yi xi, zi = c F 1 yi1 xi, zi , ⋯, F m yim xi, zi xi, zi ∏
j = 1

m
f j yij xi, zi ,

where c ⋅ xi, zi  is the probability density function of C ⋅ xi, zi , and f j ⋅ xi, zi  is the 

probability density function of F j ⋅ xi, zi . Hence, the log-likelihood is

ℓ = ∑
i = 1

n
logf yi xi, zi

= ∑
i = 1

n
logc F 1 yi1 xi, zi , ⋯, F m yim xi, zi xi, zi + ∑

i = 1

n
∑

j = 1

m
logf j yij xi, zi

= ℓCopula + ℓMarginal ,

so the log-likelihood ℓ can be written as the sum of a copula log-likelihood

ℓCopula = ∑
i = 1

n
logc F 1 yi1 xi, zi , ⋯, F m yim xi, zi xi, zi

and a marginal log-likelihood

ℓMarginal = ∑
i = 1

n
∑

j = 1

m
logf j yij xi, zi .

Given k model parameters and n cells (i.e., the sample size n is the number of cells), the 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are

AIC = 2k − 2 ℓ ;

BIC = 2k log n − 2 ℓ ,

so smaller AIC and BIC values indicate better goodness-of-fit of a model to data.

Because of the likelihood decomposition, the AIC and BIC are also decomposable
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AIC = AICCopula + AICMarginal;

BIC = BICCopula + BICMarginal,

where AICCopula and BICCopula only include the number of parameters in c ⋅ xi, zi , 

and AICMarginal and BICMarginal only include the total number of parameters in 

f1 ⋅ xi, zi , ⋯, fm ⋅ xi, zi .

Synthetic data generation by scDesign3

To generate a synthetic cell-by-feature matrix Y′ ∈ ℝn′ × m, which contains n′ synthetic cells 

and the same m features as in the training data, scDesign3 allows the specification of a 

cell-by-state-covariate matrix X′ ∈ ℝn′ × p and an optional cell-by-design-covariate matrix 

Z′ ∈ ℕn′ × q (depending on whether the training data have Z) for the n′ synthetic cells. Note 

that X′ and Z′ can be specified by users, generated by resampling the rows of X and Z, or 

sampled from some generative models of the rows of X and Z.

Given X, Z, and the fitted distributions in Sections Modeling features’ marginal distributions 

and Modeling features’ joint distribution, scDesign3 samples n′ synthetic cells in the 

following steps.

First, for each synthetic cell i′, given its cell-state covariates xi′ and design covariates 

zi′, we independently sample an m-dimensional vector (with values in [0, 1]) from the 

m-dimensional copula estimated in Section Modeling features’ joint distribution:

Ui′1, …, Ui′m
⊤ C ⋅ xi′, zi′ , i′ = 1, …, n′ .

Second, based on the m features’ fitted marginal distributions in Section Modeling features’ 

marginal distributions, we calculate the conditional distribution of Y i′j, the measurement of 

feature j in synthetic cell i′, given the synthetic cell’s cell-state covariates xi′ and design 

covariates zi′ = bi′, ci′
⊤, where bi′ ∈ 1, …, B  and ci′ ∈ 1, …, C :

Y i′j xi′, zi′ ∼ F j ⋅ xi′, zi′ = F j ⋅ xi′, zi′; µi′j, σi′j, pi′j ,

where

θ μi′j = αj0 + αjbi′ + αjci′ + f jci′ xi′ ,

log σi′j = β j0 + β jbi′ + β jci′ + gjci′ xi′ ,

logit pi′j = γ j0 + γ jbi′ + γ jci′ + ℎjci′ xi′ .

Note that μi′j, σi′j, and pi′j may not be all required, depending on the form of F j (Table S3).
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Then the m-dimensional feature vector of synthetic cell i′ is Y i′1, …, Y i′m
⊤, where

Y i′j = F j
−1 Ui′j xi′, zi′ , j = 1, …, m .

Thanks to the parametric form of F j ⋅ xi′, zi′ , users can generate the synthetic data in their 

demand by modifying the parameters. For instance, if users want the expected sequencing 

depth of Y′ to change from N (the sequencing depth of Y) to N′, they can scale the mean 

parameter:

Y i′j xi′, zi′ ∼ F j ⋅ xi′, zi′; N′
N μi′j, σi′j, pi′j .

If users want to remove the batch effects, they can set

αjbi′ = β jbi′ = γ jbi′ = 0,

for all i′ = 1, …, n′; j = 1, …, m.

If users want to remove the condition effects, they can set

αjci′ = β jci′ = γ jci′ = 0 ;

f jci′ ⋅ = f j1 ⋅ ;
gjci′ ⋅ = gj1 ⋅ ;

ℎjci′ ⋅ = ℎj1 ⋅ ,

for all i′ = 1, …, n′; j = 1, …, m.

The comparison of scDesign, scDesign2, and scDesign3—Table S1 lists a 

detailed comparison of scDesign3 with the previous two versions scDesign [24] and 

scDesign2 [16]. Note that scDesign2 is a special case of scDesign3 for generating scRNA-

seq data from discrete cell types.

Data analysis

Data preprocessing—Table S2 lists the real datasets from 11 published studies, which 

were used in this study. Since scDesign3 can directly model count data, we did not perform 

data transformation (e.g., logarithmic transformation) on the cell-by-feature count matrices.

For each cell-by-feature count matrix Y (except for the SCGEM-METH and SCGEM-RNA 

datasets), feature screening was used to select informative features and save computation 

time.

• For every scRNA-seq dataset (BATCH, EMBRYO, IFNB, MARROW, 

PANCREAS, and the RNA data in CITE), we used the R package scran (version 

1.20.1) [42] to select the top 1000 highly variable genes (HVGs).
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• For the 10x scATAC-seq dataset (ATAC), we used the R package Signac 

(version 1.7.0) [43] to first obtain a cell-by-peak matrix and then select 1133 

differentially accessible peaks.

• For the sci-ATAC-seq (SCIATAC) dataset, the preprocessing and feature 

selection steps were described in [30].

• For the 10x Visium datasets (ACINAR, OVARIAN, and VISIUM), we used the 

R package Seurat (version 4.1.1) to select the top 1000 spatially variable genes 

(SVGs).

• For the Slide-seq dataset (SLIDE), we selected the top 1000 genes with the 

smallest p-values outputted by SPARK-X [45].

• For the pair of single-cell and spatial datasets (MOB-SC and MOB-SP), we used 

the R package scran (version 1.20.1) to select the top 50 marker genes for each 

cell type in MOB-SC.

• For datasets MOUSE-CORTEX, MOUSE-VISUAL, and ZHENGMIX4, we used 

the genes selected in the original studies [34, 50].

For each dataset, the cell-by-state-covariate matrix X was from the original study (if the cell-

state covariates are cell types or spatial locations) or inferred by the R package Slingshot 

(version 2.2.1) [35] (if the cell-state covariates are pseudotime values in trajectory lineages).

For each dataset, the optional cell-by-design-covariate matrix Z was from the original study 

if available.

Dimensionality reduction and visualization—To compare scDesign3’s synthetic data 

with real test data, we used the R package irlba (version 2.3.5) to calculate the top 50 

principal components (PCs) of the test cell-by-feature matrix (after log-transformation); 

next, we used the R package umap (version 0.2.8.0) to project the test cells from the 

50-dimensional PC space to the 2-dimensional UMAP space. Then, we applied the same 

PCA-UMAP projection to scDesign3’s synthetic cells using the R function predict(). Using 

the same projection ensures that the test cells and synthetic cells are embedded in the same 

2-dimensional space and thus comparable.

Unless otherwise noted, the figures were made by the R package ggplot2 (version 3.3.6). 

The coverage plot in Fig. 1g was generated by IGV (version 2.12.3).

Evaluation metrics

• mLISI: To measure the similarity between test cells and synthetic cells in the 2-

dimensional space, we used the mean of local inverse Simpson’s index (mLISI) 

[25] as the metric. Specifically, if a cell’s neighboring cells are from one group 

(e.g., test cells or synthetic cells), the cell’s local inverse Simpson’s index (LISI) 

is 1; otherwise, if a cell’s neighboring cells comprise two groups equally, the 

cell’s LISI is 2. The mLISI is the average of all cells’ LISIs. Hence, an mLISI 

close to 2 means that the test cells and synthetic cells are well mixed. The 
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mLISI is calculated by the function evalIntegration() in the R package CellMixS 

(version 1.8.0) [46].

• Pearson correlation between spatial patterns: To measure the per-feature 

similarity between real data and synthetic data when the cell-state covariates 

are spatial locations, we compared supervised learners trained on real data and 

synthetic data separately. In detail, for every feature (e.g., gene), we conducted 

the following analysis. First, treating the feature as the outcome, we trained a 

flexible learner, the generalized boosted regression model (GBM), separately on 

real data and synthetic data to predict the feature’s values from the cell-state 

covariates, using the R package caret (version 6.0–93). Second, we measured 

the Pearson correlation r between the two GBMs’ predicted feature values from 

the synthetic data’s spatial locations (note that the cell-state covariates could be 

replaced by a random sample from the location space). An r close to 1 means 

that the two GBMs are similar; that is, the feature’s “relationship” with spatial 

locations is similar in the real data and the synthetic data. If all features have r
values close to 1, we concluded that the synthetic data resemble the real data.

• Summary statistics: In Extended Data Figures 1–2; 4; 8–9; Figures S1–5, we 

compared the distributions of eight feature-level, cell-level, feature-pair-level, 

and cell-pair-level summary statistics between real data and synthetic data. Note 

that in scRNA-seq and spatial transcriptomics data, every gene is a feature; in 

scATAC-seq and sci-ATAC-seq data, every peak is a feature. The eight summary 

statistics are

1. mean of log expression (feature-level statistic): a feature’s mean of 

log(count+1) values across all cells;

2. variance of log expression (feature-level statistic): a feature’s variance 

of log(count + 1) values across all cells;

3. feature detection frequency (feature-level statistic): a feature’s 

proportion of non-zero counts across all cells;

4. feature-feature correlation (feature-pair-level statistic): the correlation 

between two features’ log(count + 1) values across all cells;

5. cell library size on the log scale (cell-level statistic): a cell’s log-

transformed total read or UMI count (i.e., log per-cell sequencing 

depth);

6. cell-cell distance (cell-pair-level statistic): the Euclidean distance 

between two cells in the 50-dim principal component space 

(constructed from the cell-by-gene log(count+1) matrix);

7. cell detection frequency (cell-level statistic): a cell’s proportion of non-

zero counts across all features;

8. cell-cell correlation (cell-pair-level statistic): the correlation between 

two cells’ log(count+ 1) values across all features.
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Feature-feature correlations were calculated for the top 100 highly expressed 

features in each real dataset and the corresponding synthetic datasets. To measure 

the similarity between the real and synthetic correlation matrices, we calculated 

the Pearson correlation r across all 1002
2 − 100 off-diagonal entries in the upper 

triangle of the correlation matrices.

Boxplots and scatter plots—The boxplots (Fig. 2f) were plotted using the function 

geom_boxplot() in the R package ggplot2 (version 3.6.6). In each boxplot, the center 

horizontal line represents the median, the box limits represent the upper and lower quartiles, 

the whiskers cover the 1.5× interquartile range, and points are outliers. The p-value was 

calculated by the two-sided Wilcoxon rank-sum test.

The scatter plots (Fig. 2e; Extended Data Fig. 10) were plotted using the function 

geom_scatter() in the R package ggplot2 (version 3.6.6). In each scatter plot, the p-value 

associated with the Spearman’s correlation coefficient ρ was calculated by the one-sided test 

in the function cor.test() in the R package stats (version 4.4.2).

scDesign3’s simulation of spot-resolution transcriptomics data with true cell-
type proportions—To generate the synthetic spot-resolution spatial transcriptomics data 

with true cell-type proportions at each spot, we used a pair of scRNA-seq dataset (MOB-SC) 

and spatial transcriptomics dataset (MOB-SP) that measured the same biological sample 

(mouse olfactory bulb). The simulation procedure consists of three steps: the first two steps 

for parameter estimation from real data and the last step for data simulation.

First, we used scDesign3 to estimate each gene’s mean expression level of each cell type 

(from scRNA-seq data) and the same gene’s mean expression level at each spatial spot (from 

spatial transcriptomics data; Extended Data Fig. 7a Step 1).

Second, using the four cell types’ gene mean expression vectors (one vector per cell type; 

the cell types are the columns in Extended Data Fig. 7b; each vector’s elements correspond 

to genes’ mean expression levels in the cell type) as the reference data and the spatial 

spots’ gene mean expression vectors (one vector per spot) as the query data, we used the 

cell-type decomposition method CIBERSORT [47, 48] to estimate each spot’s cell-type 

proportions (Fig. 1f left; Extended Data Fig. 7b top row), which we then considered as the 

spot’s true cell-type proportions in scDesign3’s simulation. As a sanity check, we show 

CIBERSORT’s fitted gene expression levels at each spot in Extended Data Fig. 7a Step 2. 

Note that CIBERSORT could be replaced by other decomposition methods.

Third, we used scDesign3 to generate synthetic scRNA-seq data of the four cell types 

after training scDesign3 on the real scRNA-seq data. Then we simulated spot-resolution 

transcriptomics data as follows. For each real spot, we sampled 100 cells from the four 

cell types based on the spot’s true cell-type proportions. Specifically, if the true cell-type 

proportions are p1, …, p4, then the numbers of cells sampled from the four cell types would 

be drawn from a multinomial distribution Multinomial(100, (p1, …, p4)). Then we added the 

sampled cells’ gene expression vectors and divided the summed vector by 10 to form the 
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spot’s gene expression vector (so every spot corresponds to 10 cells on average, consistent 

with real data) (Extended Data Fig. 7a Step 3).

Using the synthetic spot-resolution spatial transcriptomics data, we benchmarked three 

spatial transcriptomics cell-type deconvolution algorithms: CARD [27], RCTD [28], 

and SPOTlight [29], using the R packages CARD (version 1.0), spacexr (version 

2.1.6), and SPOTlight (version 1.0.1), respectively. We chose these three algorithms to 

demonstrate scDesign3’s benchmarking functionality because of a published benchmark 

study [27], which found CARD and RCTD to have similarly good performance and to 

have outperformed SPOTlight. Hence, we considered CARD, RCTD, and SPOTlight as 

representative algorithms to check if our benchmark results based on scDesign3 could be 

consistent with the published study that used an independent approach [27].

scDesign3’s simulation of a multi-omics dataset from single-omics datasets 
measuring different modalities—To simulate a multi-omics dataset from real single-

omics datasets with unmatched cells, scDesign3 relies on an integration method that projects 

single-omics data to a joint low-dimensional space. Then scDesign3 considers each cell’s 

low-dimensional embedding as the cell-state covariates in the modeling.

In Fig. 1j, we used an scRNA-seq dataset and a single-cell methylation dataset with 

unmatched cells. The two datasets’ cells’ joint low-dimensional embeddings were inferred 

by the integration method Pamona [49], which could be replaced by other integration 

methods. Then we trained scDesign3 for each modality (RNA or methylation) using the 

low-dimensional embeddings of the modality’s real cells. Finally, using the fitted models 

(one per modality), we generated a synthetic cell with both modalities from each real cell’s 

low-dimensional embedding.

scDesign3’s assessment of cell clusters’ goodness-of-fit—To show that 

scDesign3 can assess the goodness-of-fit of cell clusters, we used the 8 datasets from 

the R package DuoClustering2018 (version 1.10.0), in which each dataset contains cell 

type labels (“truth”) and various clustering methods’ results with varying numbers of 

clusters. The adjusted Rand index (ARI), a “supervised” measure calculated between each 

clustering result and cell type labels, was used as the benchmark standard. Assuming the 

NB distribution in the scDesign3 model, we calculated scDesign3’s marginal BIC (Section 

Model likelihood, AIC, and BIC), an “unsupervised” measure that uses only the clustering 

result but not the cell type labels, for each clustering result in each dataset. We used 

scDesign3’s marginal BIC because we observed that it better captured the goodness-of-fit of 

cell clusters than scDesign3’s BIC. A possible reason is that scDesign3’s BIC is dominated 

by the copula BIC, which largely reflects the number of parameters instead of the clustering 

goodness-of-fit.

In Extended Data Fig. 10b, we benchmarked scDesign3’s marginal BIC against the ARI 

and found them to have negative correlations on the 8 datasets consistently, suggesting that 

scDesign3’s marginal BIC is an effective assessment measure of clustering goodness-of-fit: 

a lower BIC indicates better goodness-of-fit.
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scDesign3’s assessment of cell pseudotimes’ goodness-of-fit—To show that 

scDesign3 can assess the goodness-of-fit of cell pseudotimes, we used 5 synthetic datasets 

generated by the R package dyngen (version 1.0.3) [19] and 3 synthetic datasets generated 

by scDesign3; each dataset contains cells’ true pseudotime values (“truth”) ranging from 

0 to 1. To generate perturbed pseudotimes with varying quality, we randomly replaced 

0%, 10%, 20%, …, 100% of truth pseudotime values with randomly sampled values from 

the Uniform[0, 1] distribution. We also considered the inferred pseudotimes by the R 

packages slingshot (version 2.4.0), monocle3 (version 1.0.0), and TSCAN (version 1.34.0). 

The benchmark standard was the “supervised” R2 between the true pseudotime values and 

the perturbed or inferred pseudotime values. Using the NB distribution in the scDesign3 

model, we calculated scDesign3’s marginal BIC (Section Model likelihood, AIC, and BIC), 

an “unsupervised” measure that only uses the perturbed or inferred pseudotime values but 

not the true pseudotime values, for each set of perturbed or inferred pseudotime values in 

each dataset. We used scDesign3’s marginal BIC because we observed that it better captured 

the goodness-of-fit of cell pseudotimes than scDesign3’s BIC. A possible reason is that 

scDesign3’s BIC is dominated by the copula BIC, which largely reflects the number of 

parameters instead of the pseudotime goodness-of-fit.

In Extended Data Fig. 10a, we benchmarked scDesign3’s marginal BIC against the R2 and 

found them to have negative correlations on the 8 datasets consistently, suggesting that 

scDesign3’s marginal BIC is an effective assessment measure of pseudotime goodness-of-

fit: a lower BIC indicates better pseudotime goodness-of-fit.

scDesign3’s assessment of inferred spatial locations’ goodness-of-fit—To 

show that scDesign3 can assess the goodness-of-fit of inferred spatial locations, we used 

two single-cell resolution spatial transcriptomics datasets from Li et al. [50]. The two 

datasets contain all cells’ measured spatial locations. Then for each spatial transcriptomics 

dataset, we treated its cells’ gene expression counts as a “pseudo” scRNA-seq dataset, and 

we inputted this pseudo scRNA-seq data along with the original spatial transcriptomics 

dataset into Seurat (version 4.1.1), Tangram (version 1.0.0) [51], and novoSpaRc (version 

0.4.3) [52]—as an integration task—to infer the spatial locations of the cells in the pseudo 

scRNA-seq dataset. This approach allowed us to evaluate the inferred spatial locations based 

on the true spatial locations in the original spatial transcriptomics dataset.

The inferred spatial locations by novoSpaRc contained a large proportion of overlapping 

locations and thus were not used in our assessment. For Seurat and Tangram, we used each 

method’s inferred spatial locations along with the original gene expression counts to train 

scDesign3 (with the NB distribution; Table S3) and calculate the likelihood, marginal AIC, 

and marginal BIC (Section Model likelihood, AIC, and BIC). Note that we only used the 

top 100 spatially variable genes defined by Moran’s I statistic to train scDesign3 to save 

computational time. To evaluate the performance of scDesign3’s unsupervised marginal AIC 

and BIC, we used the mean cosine similarity, a “supervised” measure that averages all cells’ 

absolute values of the cosine similarity (for each cell, the cosine similarity is calculated 

between the cell’s true spatial location and inferred spatial location).
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Additionally, for each dataset, we randomly shuffled 0%, 10%, 20%, …, 100% of true 

spatial locations to obtain perturbed spatial locations with varying quality. Then we 

calculated scDesign3’s marginal AIC and BIC for the perturbed spatial locations.

In Extended Data Fig. 10c, we found that scDesign3’ marginal AIC and the mean cosine 

similarity had negative correlations on the two datasets, suggesting that scDesign3’s 

marginal AIC is an effective assessment measure of spatial locations’ goodness-of-fit: a 

lower AIC indicates better goodness-of-fit. Note that AIC outperformed BIC in this case, 

possibly due to the reason that genes’ spatial patterns are complex and thus need complex 

models.

Implementation of other simulators—We compared scDesign3 with multiple 

representative scRNA-seq simulators including scGAN, muscat, SPARSim, and ZINB-

WaVE.

• For scGAN, we used the docker and the tutorial available at https://github.com/

imsb-uke/scGAN (access date: February 7, 2022) to simulate synthetic data.

• For muscat, we first used the R function prepSim() to process the training 

dataset. Then, we ran the R function simData() to simulate a synthetic dataset 

based on the processed training dataset and the cell-level information (such as 

cell types and experimental conditions) in the training dataset. Both functions are 

from the R package muscat (version 1.6.0).

• For SPARSim, we first used the SPARSim_create_simulation_parameter() 

function to obtain the parameters for each group of cells in the 

training dataset, whose cells were grouped by cell types, experimental 

conditions, or batches. The 3 required input parameters for the 

function—intensity, variability, and library_size—were obtained from the 

functions SPARSim_estimate_intensity(), SPARSim_estimate_variability(), and 

SPARSim_estimate_library_size(), respectively, for each cell group. Then, we 

ran the SPARSim_simulation() function with the input parameters from the 

previous step to generate synthetic data. All functions are from the R package 

SPARSim (version 0.9.5).

• For ZINB-WaVE, we used the zinbFit() function from the R package zinbwave 

(version 1.15.3), with the count matrix and cell-type labels as inputs.
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Extended Data

Extended Data Fig. 1. Benchmarking scDesign3 against four existing scRNA-seq simulators 
(scGAN, muscat, SPARSim, and ZINB-WaVE) for generating scRNA-seq data from a single 
trajectory (mouse pancreatic endocrinogenesis; dataset PANCREAS in Table S2).
a, Distributions of eight summary statistics in the test data and the synthetic data generated 

by scDesign3 and the four simulators. Each number on top of a violin plot (the distribution 

of a summary statistic in a synthetic dataset) is the Kolmogorov–Smirnov (KS) distance 

between the synthetic data distribution (indicated by that violin plot) and the test data 

distribution. A smaller number indicates better agreement between the synthetic data and 

the test data in terms of that summary statistic’s distribution. b, Heatmaps of the gene-

gene correlation matrices (showing top 100 highly expressed genes) in the test data and 

the synthetic data generated by scDesign3 and the four simulators. Pearson’s correlation 

coefficient r measures the similarity between two correlation matrices, one from the test data 

and the other from the synthetic data. c, PCA visualization (top two PCs) of the test data 

and the synthetic data generated by scDesign3 and the four simulators. Colors label cells’ 

pseudotime values; note that only the synthetic data generated by scDesign3 contain the 

pseudotime truths. An mLISI value close to 2 means that the synthetic data resemble the 

real data well in the low-dimensional space. d, UMAP visualization of the real data and the 

synthetic data generated by scDesign3 and the four simulators.
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Extended Data Fig. 2. Benchmarking scDesign3 against four existing scRNA-seq simulators 
(scGAN, muscat, SPARSim, and ZINB-WaVE) for generating scRNA-seq data from bifurcating 
trajectories (myeloid progenitors in mouse bone marrow; dataset MARROW in Table S2).
a, Distributions of eight summary statistics in the test data and the synthetic data generated 

by scDesign3 and the four simulators. Each number on top of a violin plot (the distribution 

of a summary statistic in a synthetic dataset) is the Kolmogorov–Smirnov (KS) distance 

between the synthetic data distribution (indicated by that violin plot) and the test data 

distribution. A smaller number indicates better agreement between the synthetic data and 

the test data in terms of that summary statistic’s distribution. b, Heatmaps of the gene-

gene correlation matrices (showing top 100 highly expressed genes) in the test data and 

the synthetic data generated by scDesign3 and the four simulators. Pearson’s correlation 

coefficient r measures the similarity between two correlation matrices, one from the test 

data and the other from the synthetic data. c, PCA visualization (top two PCs) of the test 

data and the synthetic data generated by scDesign3 and the four simulators. Colors label 

cells’ pseudotime values in two trajectories; note that only the synthetic data generated by 

scDesign3 contain the pseudotime truths. An mLISI value close to 2 means that the synthetic 

data resemble the real data well in the low-dimensional space. d, UMAP visualization of the 

real data and the synthetic data generated by scDesign3 and the four simulators.
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Extended Data Fig. 3. scDesign3 simulated realistic gene expression patterns in cancer spatial 
transcriptomics data (datasets OVARIAN and ACINAR in Table S2.
Human ovarian cancer (a) and human prostate cancer, acinar cell carcinoma (b). The tissue 

samples were measured with both H&E (hematoxylin and eosin stain, left) and spatial 

transcriptomics (right, three cancer-related genes). Large Pearson correlation coefficients (r) 
represent similar spatial patterns in synthetic and real (test) data.
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Extended Data Fig. 4. scDesign3 simulated 10x Visium spatial transcriptomics data (sagital 
mouse brain slices; dataset VISIUM in Table S2).
a, Distributions of eight summary statistics in the test data and the synthetic data generated 

by scDesign3 using cell type labels (scDesign3-ideal) and spatial locations (scDesign3-

spatial), respectively. Each number on top of a violin plot (the distribution of a summary 

statistic in a synthetic dataset) is the Kolmogorov–Smirnov (KS) distance between the 

synthetic data distribution (indicated by that violin plot) and the test data distribution. A 

smaller number indicates better agreement between the synthetic data and the test data in 

terms of that summary statistic’s distribution. b, Heatmaps of the gene-gene correlation 

matrices (showing top 100 highly expressed genes) in the test data and the synthetic data 

generated by scDesign3-ideal and scDesign3-spatial. Pearson’s correlation coefficient r 
measures the similarity between two correlation matrices, one from the test data and the 

other from the synthetic data. c, PCA visualization (top two PCs) of the real data and 

the synthetic data generated by scDesign3-ideal and scDesign3-spatial. Cell types (clusters) 

are labeled by colors. Since the scDesgin3-spatial dataset was based on spatial locations 

only, it did not contain cell types. An mLISI value close to 2 means that the synthetic 

data resemble the real data well in the low-dimensional space. d, UMAP visualization of 

the real data and the synthetic data generated by scDesign3-ideal and scDesign3-spatial. 

In summary, scDesign3 realistically simulated 10x Visium data based on spatial locations 

without needing cell type annotations.
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Extended Data Fig. 5. scDesign3 mimicked spatial transcriptomics data so that prediction 
algorithms had similar prediction performance when trained on real data or scDesign3 synthetic 
data.
In detail, we first split each of four spatial transcriptomics datasets (VISIUM, SLIDE, 

OVARIAN, and ACINAR) into two datasets (training and testing) by randomly splitting 

the spatial locations into two halves. Second, we used each of the four training datasets 

to fit scDesign3 and generate the corresponding synthetic dataset. Third, on each pair of 

training dataset and synthetic dataset (among a total of four pairs), we trained each of 

three prediction algorithms (gbm: gradient boosting machine; randomForest: random forest; 

svmRadial: support vector machine with the radial kernel) to predict each gene’s expression 

at a spatial location (input: spatial location; output: the gene’s log(count+1) expression level 

at the location), obtaining a pair of prediction models for each gene. Fourth, we applied each 

pair of prediction models to the corresponding testing dataset and calculated each model’s 

root-mean-squared error (RMSE) for predicting the corresponding gene, obtaining a pair of 

RMSEs. As a result, in each panel, we plotted the RMSEs for each prediction algorithm 

(row) and dataset (column), with each dot in the panel representing a gene. We found all 

genes’ RMSEs highly similar, indicating that scDesign3’s synthetic data well mimicked real 

data.
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Extended Data Fig. 6. The effect of K on scDesign3’s simulation of spatial transcriptomics data.
The rows represent three cancer-related genes; column 1 represents real test data; columns 

2–8 represent scDesign3’s synthetic data generated using varying K, the input basis number. 

A large Pearson correlation coefficient (r) represents similar spatial patterns in synthetic 

and test data. The effective degrees of freedom (edf) represents the wiggliness of the fitted 

surface. With a larger K, scDesign3 can fit more complex patterns. The overfitting issue is 

accounted for by the automatic smoothness estimation [39]: when K is sufficiently large, edf 

(model complexity) and r (model goodness-of-fit) both become stable.
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Extended Data Fig. 7. scDesign3 simulated spot-resolution spatial transcriptomics data for 
benchmarking cell-type deconvolution algorithms.
a, scDesign3’s synthetic spot-resolution data well mimicked real data (top row), showing 

similar expression patterns for four cell-type marker genes (columns). scDesign3 used 

three steps to generate the spot-resolution data. Step 1: every gene’s estimated mean 

expression level at each spot (as a smooth function of spot location) by scDesign3. Step 

2: every gene’s predicted expression level at each spot from CIBERSORT’s estimated 

cell-type proportions at the spot (considered as the “true proportions”) and the gene’s 

cell-type-specific expression levels (from reference scRNA-seq data). Step 3: every gene’s 

simulated expression level at each spot by scDesign3 (from the true cell-type proportions at 

the spot and scDesign3’s synthetic scRNA-seq data). b, Using scDesign3 synthetic data, we 

benchmarked three spatial cell-type deconvolution algorithms (CARD [6], RCTD [7], and 

SPOTlight [8]). For each of the four cell types (columns), we used two metrics—Pearson 

correlation (r) and root-mean-square error (RMSE)—to compare the proportions estimated 
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by each deconvolution algorithm (rows 2–4) to the true proportions (top row). Large r 

values represent similar spatial patterns of proportions, while small RMSE values represent 

similar values of proportions. Although all three algorithms well captured the spatial 

patterns of each cell type’s proportions (evidenced by large r values), CARD and RCTD 

outperformed SPOTlight by estimating cell-type proportions more accurately (evidenced by 

smaller RMSE values).

Extended Data Fig. 8. scDesign3 simulated scATAC-seq data (human PBMCs; dataset ATAC in 
Table S2).
a, Distributions of eight summary statistics in the test data and the synthetic data generated 

by scDesign3 using cell type labels. Each number on top of a violin plot (the distribution 

of a summary statistic in a synthetic dataset) is the Kolmogorov–Smirnov (KS) distance 

between the synthetic data distribution (indicated by that violin plot) and the test data 

distribution. A smaller number indicates better agreement between the synthetic data and 

the test data in terms of that summary statistic’s distribution. b, Heatmaps of the peak-peak 

correlation matrices in the test data and the synthetic data generated by scDesign3. Pearson’s 

correlation coefficient r measures the similarity between two correlation matrices, one from 

the test data and the other from the synthetic data. c, PCA visualization (top two PCs) of 

the test data and the synthetic data generated by scDesign3. Cell types are labeled by colors. 

An mLISI value close to 2 means that the synthetic data resemble the test data well in 
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the low-dimensional space. d, UMAP visualization of the test data and the synthetic data 

generated by scDesign3.

Extended Data Fig. 9. scDesign3 simulated CITE-seq data (human PBMCs; dataset CITE in 
Table S2).
a, Distributions of eight summary statistics in the test data and the synthetic data generated 

by scDesign3. The CITE-seq dataset contains simultaneous measurements of each cell’s 

gene expression and surface protein abundance captured by Antibody-Derived Tags (ADTs). 

Each number on top of a violin plot (the distribution of a summary statistic in a synthetic 

dataset) is the Kolmogorov–Smirnov (KS) distance between the synthetic data distribution 

(indicated by that violin plot) and the test data distribution. A smaller number indicates 

better agreement between the synthetic data and the test data in terms of that summary 

statistic’s distribution. b, Heatmaps of the gene and protein correlation matrices (10 proteins 

with names starting with “ADT” and their corresponding genes) from test data and the 

synthetic data generated by scDesign3. Pearson’s correlation coefficient r measures the 

similarity between two correlation matrices, one from the test data and the other from 

the synthetic data. scDesign3 preserved the correlations between the RNA and protein 

expression levels of the 10 surface proteins. c, PCA visualization (top two PCs) of the 

test data and the synthetic data generated by scDesign3. Cell types are labeled by colors. 

An mLISI value close to 2 means that the synthetic data resemble the real data well in 

the low-dimensional space. d, UMAP visualization of the real data and the synthetic data 

generated by scDesign3.
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Extended Data Fig. 10. scDesign3 provides unsupervised measures of the goodness-of-fit of 
pseudotime, clusters, and inferred locations.
For visual clarity, we plot the relative BIC/AIC (rBIC/rAIC) by re-scaling scDesign3’s 

marginal BIC/AIC to [0, 1]. a, The scDesign3 rBIC (unsupervised) is negatively correlated 

with the R2 (supervised). Each R2 was calculated between the set of perturbed or inferred 

pseudotimes and the set of true pseudotimes in each of the eight datasets. The p-value 

is from the one-sided test of Spearman’s rank correlation ρ. The true pseudotime is the 

ground truth used for generating the synthetic data. b, Comparison of scDesign3 rBIC and 

Clustering Deviation Index (CDI) rBIC (rescaled to [0, 1]) [33]. The color scale shows the 

number of clusters, and the shapes represent clustering algorithms. We found scDesign3 

rBIC (unsupervised) negatively correlated with the ARI (supervised). The p-value is from 

the one-sided test of Spearman’s rank correlation ρ. We also found scDesign3 rBIC to 

perform better or similarly to CDI on six out of the eight datasets. c, The scDesign3 rAIC 

(unsupervised) is negatively correlated with the mean cosine similarity (supervised). The 

mean cosine similarity was calculated between the set of perturbed or inferred locations 

and the set of true locations in each of the two spatial datasets. The p-value is from the 

one-sided test of Spearman’s rank correlation ρ. The true locations are the ground truth used 

for generating the semi-synthetic data. Due to the high complexity of spatial patterns, the 

AIC outperforms BIC since it penalizes the model complexity less.
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Figure 1: scDesign3 generates realistic synthetic data of diverse single-cell and spatial omics 
technologies.
a, An overview of scDesign3’s simulation functionalities: cell states (e.g., discrete types, 

continuous trajectories, and spatial locations); multi-omics modalities (e.g., RNA-seq, 

ATAC-seq, and CITE-seq); experimental designs (e.g., batches and conditions). b–c, 

scDesign3 outperformed existing simulators scGAN, muscat, SPARSim, and ZINB-WaVE 

in simulating scRNA-seq datasets with a single trajectory (b) and bifurcating trajectories (c). 

Larger mLISI values represent better resemblance between synthetic data and test data. d–e, 

scDesign3 simulated realistic gene expression patterns in spatial transcriptomics datasets 

measured by 10x Visium (d) and Slide-seq (e). Large Pearson correlation coefficients r
represent similar spatial patterns in synthetic and test data. f, using paired scRNA-seq data 

and spatial transcriptomics data (MOB-SC and MOB-SP in Table S2) as input, we defined 

the “ground-truth” cell-type proportions at each spot (left). Each color represents a cell type. 

With the cell-type proportions, scDesign3 generated synthetic spatial transcriptomics data in 
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which every spot is a mixture of synthetic single cells, given the spot’s cell-type proportions. 

The four cell-type marker genes exhibit similar spatial expression patterns in real data (right 

top) and synthetic data (right bottom). Large r values represent similar expression patterns 

in synthetic and test data. g, scDesign3 simulated a realistic scATAC-seq dataset at the 

count level. h, scDesign3 simulated a realistic sci-ATAC-seq dataset at both the count level 

(left: UMAP visualizations of real and synthetic cells based on peak counts) and the read 

level when coupled with scReadSim [30] (right: pseudobulk read coverages). i, scDesign3 

simulated realistic CITE-seq data. Four genes’ protein and RNA abundances are shown on 

the cell UMAP embeddings in test data (top) and synthetic data (bottom). Large r values 

represent similar expression patterns in synthetic and test data. j, scDesign3 generated a 

multi-omics (RNA expression + DNA methylation) dataset (right) by learning from two real 

single-omics datasets with RNA expression or DNA methylation only (left). The synthetic 

data preserved the linear cell topology.
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Figure 2: scDesign3 enables comprehensive interpretation of real data.
a, Summary of scDesign3’s interpretation functionalities. b, scDesign3 estimated six 

genes’ expression trends along cell pseudotime (PANCREAS in Table S2). c, scDesign3 

estimated six genes’ spatial expression trends (VISIUM in Table S2). d, scDesign3 

estimated cell-type-specific gene correlations (ZHENGMIX4 in Table S2): correlation 

matrices by Gaussian copula (top); vine representations by vine copula (bottom), with 

genes in the first layer (roughly the genes strongly correlated) labeled. e, scDesign3’s 

unsupervised assessment of goodness-of-fit. On synthetic scRNA-seq data with true 

pseudotimes (based on EMBYRO in Table S2), scDesign3 BIC and R2 were evaluated 

on inferred pseudotimes of TSCAN (blue), Monocle3 (green), and Slingshot (orange), 

with perturbed true pseudotimes (black) as reference. Top: relative BIC (rBIC = BIC 

minus the smallest BIC) vs. R2; the p-value p  is from the one-sided test of Spearman’s 

rank correlation ρ H0:ρ = 0; H1:ρ < 0 . Bottom: UMAP visualization of the three methods’ 

inferred pseudotimes. f, In the CONDITION dataset (Table S2), gene IFI6 was up-regulated 

in both CD16+ monocytes and B cells from control (green) to stimulation (red). scDesign3 

simulated data where IFI6 was up-regulated in both cell types (cond++), unchanged in both 

cell types (cond−−), or up-regulated in CD16+ monocytes only (cond+−). The box center 

lines, bounds, and whiskers denote the medians, first and third quartiles, and minimum and 

maximum values within 1.5× the interquartile range of the box limits, respectively (the 

control and stimulation conditions have ncontrol = 1772 and nstimulation = 2188 cells, respectively). 

The p-values p  are from the two-sided Wilcoxon rank-sum test. g, The BATCH dataset 

Song et al. Page 35

Nat Biotechnol. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Table S2) contains two batches (left). scDesign3 preserved the batch effects in synthetic 

data generation (batch+) or generated synthetic data without batch effects (batch−). h, The 

ZHENGMIX4 dataset (Table S2) contains two cell types (left). scDesign3 resembled the 

real data under the alternative hypothesis (H1: two cell types existed) (middle) or generated 

synthetic data under the null hypothesis (H0: one cell type existed) (right).
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