Table 6. Conventional machine learning approaches for WBC classification (n = 6).
Author | Year | Method | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Gautam et al. [20] | 2016 | Naïve Bayesian classifier | 80.88 | - | - |
Tantikitti et al. [65] | 2015 | Decision Tree | 92.2 | - | |
Rawat et al. [66] | 2017 | PCA-SVM | 94.6 | 97 | 88 |
Shaikhina et al. [67] | 2019 | Decision Tree and RF | 85 | 81.8 | 88.9 |
Abdeldaim et al. [68] | 2018 | K-NN | 98.6 | - | - |
Mathur et al. [69] | 2013 | Naïve Bayesian Classifier | 92.72 | 90 | - |