
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control 
for SAM on Noisy Medical Images

Xing Yaoa, Han Liua, Dewei Hub, Daiwei Lua, Ange Loub, Hao Lib, Ruining Denga, Gabriel 
Arenasd, Baris Oguzd, Nadav Schwartzd, Brett C Byramc, Ipek Oguza

aDept. of Computer Science, Vanderbilt University, Nashville, TN, USA

bDept. of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA

cDept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA

dDept. of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA

Abstract

The Segment Anything Model (SAM) is a recently developed all-range foundation model for 

image segmentation. It can use sparse manual prompts such as bounding boxes to generate pixel-

level segmentation in natural images but struggles in medical images such as low-contrast, noisy 

ultrasound images. We propose a refined test-phase prompt augmentation technique designed 

to improve SAM’s performance in medical image segmentation. The method couples multi-box 

prompt augmentation and an aleatoric uncertainty-based false-negative (FN) and false-positive 

(FP) correction (FNPC) strategy. We evaluate the method on two ultrasound datasets and show 

improvement in SAM’s performance and robustness to inaccurate prompts, without the necessity 

for further training or tuning. Moreover, we present the Single-Slice-to-Volume (SS2V) method, 

enabling 3D pixel-level segmentation using only the bounding box annotation from a single 2D 

slice. Our results allow efficient use of SAM in even noisy, low-contrast medical images. The 

source code has been released at: https://github.com/MedICL-VU/FNPC-SAM
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1. INTRODUCTION

The performance of deep convolutional neural networks (DNNs) relies on large datasets 

with pixel-level annotations, which can be both time-consuming and labor-intensive to 

obtain. To address this, researchers have explored coarse-to-fine segmentation, learning 

pixel-level masks from easier-to-obtain annotations like bounding boxes (BBs).1

Recently, the Segment Anything Model (SAM)2 proposed by Meta AI has gained significant 

attention as an all-range segmentation foundation model, capable of generating fine-grade 

segmentation masks using sparse prompts like BBs, fore/background points, texts, and 

dense prompts such as masks. While SAM excels in natural image segmentation,3-5 its 
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performance in various medical image segmentation tasks can be unsatisfactory,6-9 leading 

to increased interest in enhancing its capabilities in medical imaging scenarios.10-16

Efforts to improve SAM’s performance on medical images fall into three categories: 1) 

Fine-tuning a modified SAM model with extensive medical image datasets.10, 17 This 

requires additional time and effort for annotation and training, and the results depend on 

data availability and task complexity. 2) Directly using SAM’s predicted results as fake 

ground truth to train a new network.12 This approach relies on SAM’s initial performance 

on the specific task. 3) Leveraging prompt optimization or augmentation strategies to 

achieve zero-shot segmentation.11, 13, 15 These strategies can efficiently enhance zero-shot 

segmentation performance of SAM, with the potential to be leveraged across unseen datasets 

and downstream tasks.

Inspired by,15, 18 we propose a test-phase prompt augmentation method to amplify 

the coarse-to-fine zero-shot segmentation performance of SAM on low-contrast and 

noisy ultrasound images, without supplementary training or fine-tuning. We assess the 

performance on kidney and placenta ultrasound images. Our results indicate that our 

proposed method surpasses the performance of standalone SAM and, notably, exhibits 

exceptional robustness to variations in the prompt.

We have 4 main contributions: 1) SAM’s performance is sensitive to the BB position and 

size,6, 15, 19 and prediction based on a single prompt may contain FP and FN regions, 

as shown in Fig. 1(a). We suggest a Monte Carlo BB sampling approach to provide 

additional foreground/background prompts to SAM. The predictions from different field-of-

view (FOV) allow us to estimate the aleatoric uncertainty map.20 2) In previous studies, 

the uncertainty map is only used to represent the reliability and robustness of segmentation. 

Here, we further leverage the aleatoric uncertainty map for FN and FP correction (FNPC) 

in the averaged predictions. 3) We examine the influence of the BB prompts in our study 

in fine (tight) BB, medium BB, and coarse BB scenarios. 4) We introduce a Single-Slice-to-

Volume (SS2V) approach for extension to 3D. This allows for pixel-level segmentation of an 

entire 3D volume based solely on the BB annotation of a single 2D slice.

2. METHODS

2.1 Monte Carlo bounding box sampling strategy

Combining SAM with bounding boxes as prompts has shown good segmentation results 

in medical images, although the performance is sensitive to the BB position and size.6, 15, 

19 SAM-U15 addresses this by implementing a multi-BB prompt augmentation approach. 

While SAM-U only uses a simple random sampling strategy, we propose a Monte Carlo 

sampling method with constrained positions, as shown in Fig. 1(a). Our sampling method 

involves randomly selecting N points within a radius R = 1
P  min(BB edges) around the 

center of the initial BB to generate new BBs of the same size. P  is the radius ratio. This 

sampling strategy serves two purposes: first, the new sampled BBs (Fig. 1(a)) provide 

additional positive and negative prompts to SAM. Second, our sampling approach emulates 

the imprecision of typical manual BB placement.
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The predictions Mi from augmented BBs are averaged as Mave = { 1
N + 1 ∑i = 1

N + 1 Mi} > Tave. 

While SAM-U uses a threshold of Tave = 0, effectively taking the union of the predictions, we 

use Tave = 0.5 for a majority vote approach.

2.2 Uncertainty Estimation

We propose a straightforward approach to compute aleatoric uncertainty20 UCraw from the 

N + 1 predictions of augmented BBs and the initial BB. By analyzing the frequency f
of foreground pixels in the set of predicted masks {Mi}, the uncertainty associated with 

each pixel in position (j, k) is determined by f(j, k) = 1
N + 1 ∑i = 1

N + 1 Mi(j, k). This frequency 

calculation allows us to compute the aleatoric uncertainty UC (we drop the pixel coordinates 

from the notation for brevity):

UCraw = f ⋅ (1 − f)

(1)

For a more entropy-like uncertainty, we propose the following calculation, with ϵ = 10−7:

UCraw = − 0.5 ⋅ [f ⋅ log(f + ϵ) + (1 − f) ⋅ log(1 − f + ϵ)]

(2)

In our experiments, Equations 1 and 2 share the same 

performance. Finally, we threshold to extract the high-uncertainty areas: 

UC = UCraw > [min(UCraw) + TUC ⋅ (max(UCraw) − min(UCraw))], where TUC is the threshold ratio.

2.3 False Negative and False Positive Correction (FNPC)

Fig. 1(b) illustrates the pipeline of our proposed FNPC strategy. Given an input image I, 

we determine the average prediction Mave (Sec. 2.1) and the uncertainty map UC which 

highlights potential FNs and FPs (Sec. 2.2).

False Negative Correction: Our goal is to identify FNs that are outside Mave but 

within UC. Initially, the potential FN mask MPFN is computed as (1 − Mave) ⋅ UC, and 

its corresponding regions in I are extracted as IPFN = I ⋅ MPFN. To encourage intensity 

homogeneity, only pixels in IPFN with intensities within a range [TFNl, TFNℎ] are kept in the 

final FN mask MFN:MFN = MPFN ⋅ (TFNℎ > IPFN > TFNl).

False Positive Correction: We aim to identify FPs present in both Mave and UC. 

The potential FP mask MPFP is derived from Mave ⋅ UC, with associated intensity values 

IPFP = I ⋅ MPFP. The final FP mask MFP is again determined with an intensity range 

[TFPl, TFPℎ]:MFP = MPFP ⋅ (TFPℎ < IPFP‖IPFP < TFPl).
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The final mask MFinal which corrects for FNs and FPs is given by: MFNPC = Mave + MFN − MFP. 

As shown in Fig. 1(a), the FNPC has good FN and FP correction performance compared to 

both the raw SAM and simple averaging.

2.4 Single Slice to Volume method (SS2V)

We next introduce the SS2V method for pixel-level segmentation of a 3D volume only using 

a single 2D BB annotation. The workflow of SS2V is depicted in Fig. 2.

1. We first select a 2D slice K containing the target. A manual BB, labelled as Box K, 

is provided. While in theory our method can start from any slice containing the target, 

we begin with the central slice, as this typically offers a more representative view of the 

anatomy than a far-off side.

2. Using Box K as the initial BB, the segmentation Pred K is derived using our FNPC 

method. Based on Pred K, we generate a tightly fitting BB, CBox K, to be used as the 

candidate BB for the next slice.

3. We refine the CBox K based on Box K to generate the BB (Box K+1 or Box K−1) for the 

neighboring slices.

4. Steps 2 and 3 are iteratively applied to produce BBs for subsequent slices until the whole 

volume is segmented.

We assume that transitions between neighboring slices should be smooth. We enforce this by 

comparing CBox K and Box K and restricting the movement of each corner by a threshold 

TB in Step 3. For example, for the lower-left corner of Box K+1, we use xminBK + 1 = xminCBK if 

∣ xminCBK − xminBK ∣ ≤ TB, and xminBK + 1 = xminBK otherwise.

2.5 Datasets, preprocessing, and implementation details

Kidney: We use a dataset of free-hand kidney ultrasound images. It comprises 124 samples 

from 9 subjects, each 128x128 in dimension, with manual segmentations. The images are 

normalized to [0, 255] range. We compute Fine BB as the tightest BB of the pixel-level 

masks and randomly expanding the edges outwards by 0 to 2 pixels. Medium BB and 

Coarse BB are produced by similar expansions, ranging from 2 to 4 pixels and 4 to 6 pixels, 

respectively.

Placenta: We use a 3D placenta ultrasound dataset from 4 subjects, with manual 

annotations. The images are resized to 128x128x128 and normalized to [0, 255] range. We 

extract all 2D coronal slices containing placenta, for a total of 222 2D images. For brevity, 

we only show the Fine BB setting. For SS2V, we use the Fine BB of the central slice as 

initial BB.

Hyperparameter selection: We use the pretrained ViT-L SAM model2 to obtain the 

initial SAM segmentation. For kidneys, we randomly pick 14 images from one subject for 

hyperparameter setting. TUC is 0.9 for the Fine BB, 0.1 for the Medium BB and Coarse BB. 

For all stages, P  is 8, N is 30, TFNl and TFPl are both 0, TFNℎ and TFPℎ are both 20. For the 
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placenta segmentation and SS2V task, we extract the central slice of each subject for tuning 

the hyperparameter for the entire dataset. For both tasks, TUC is 0.2, P  is 4, N is 30, TFNl and 

TFPl are both 70, TFNℎ and TFPℎ are both 200. For SS2V, the TB is 2.

3. RESULTS

3.1 Kidney dataset

Left panels of Fig. 3 and Table 1 compare SAM, Average, and FNPC on kidney images 

under three levels of prompt coarseness, qualitatively and quantitatively. FNPC effectively 

eliminates the FP portions within the average predictions and SAM, and improves the Dice, 

ASSD, and HD results, across all BB coarseness levels. We observe that unlike SAM and 

average predictions, FNPC only shows a small deterioration in Dice and ASSD between fine 

and coarse prompts. This highlights FNPC’s robustness to prompt coarseness.

3.2 Placenta dataset and SS2V experiments

The right panel of Fig. 3 presents the results for 3D placenta segmentation using the 

SS2V method. The top four rows depict 2D segmentation results, using a manual Fine BB 

annotation (yellow box). The FNPC method delivers overall superior segmentation results, 

with fewer FPs and FNs than the SAM and Average methods. Remarkably, SS2V showcases 

performance on par with FNPC across all slices, even though it only uses a single 2D 

Fine BB annotation (yellow box) for the entire 3D segmentation task. We observe that 

synthetic BBs (blue boxes) produced by SS2V are less precise than the manual Fine Box 

annotations, especially as we move further away from the reference slice 66. Nonetheless, 

even with these coarse annotations, SS2V manages to yield segmentations that surpass those 

produced by the SAM and Average models using a new manual BB annotations for each 

slice, and approaches FNPC performance. This behavior leverages FNPC’s robustness to BB 

variations. The right panel of Table 1 provides quantitative results, illustrating that FNPC has 

better performance than SAM and Average. SS2V’s outcomes are closely aligned with those 

of FNPC, showcasing excellent extension to 3D segmentation tasks.

4. DISCUSSION AND CONCLUSION

We introduced a test-phase prompt augmentation method to adapt SAM to challenging 

medical image segmentation tasks, specifically for ultrasound images marked by low 

contrast and noise. This method, leveraging multi-box prompt augmentation and aleatoric 

uncertainty thresholding, aims to mitigate SAM’s FN and FP predictions without 

requiring time-consuming pixel-level annotations. Our evaluation on two ultrasound datasets 

showcases substantial improvements in SAM’s performance and robustness to prompt 

coarseness. We recognize, however, that continued exploration and optimization are required 

for dealing with increasingly complex and variable data.

We further proposed SS2V to produce 3D segmentations from a single 2D BB input, with 

excellent results. We note that while the HD metric is slightly better in SAM for the placenta 

experiment, it also has a large standard deviation. In contrast, the Dice and ASSD metrics 

are substantially better for the FNPC and SS2V methods.
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Figure 1. 
(a) Monte Carlo BB sampling strategy (Sec. 2.1) on two segmentation tasks. The initial 

BB (yellow) has a center (yellow dot) and a sampling range (yellow circle). Sampled boxes 

(red) with their centers (red dots) are used to generate an average prediction. Green arrows 

point to FN areas in results from only the initial BB or simple averaging method, and 

are corrected by the proposed FNPC strategy. Orange arrows indicate areas where FPs are 

similarly corrected by the proposed FNPC. (b) FNPC pipeline (Sec. 2.3).
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Figure 2. 
Pipeline for SS2V method. Yellow color highlights the initial human-annotated BB. 

Green color highlights the candidate BBs generated from the predicted masks. Blue color 

highlights synthetic BBs generated by the SS2V method.
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Figure 3. 
Qualitative results. Left, kidney segmentation for three levels of prompt coarseness. D: Dice, 

A: ASSD, H: HD. Red font indicates the best performance. Right, placenta segmentation 

with SS2V. Yellow: manual BBs, blue: synthesized BBs generated by SS2V. For Left and 

Right, green and orange arrows highlight the FNs and FPs improved by our proposed 

methods (highlighted in red).
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Table 1.

Quantitative results. F, M, C represent Fine BB, Medium BB, and Coarse BB, respectively. Left, kidney. Red 

numbers indicate the best performance for each BB scenario. Right, placenta with SS2V. Red numbers 

indicate the best performance for each metric.

Kidney BB Dice↑ ASSD↓ HD↓

SAM

F 0.90±0.05 0.25±0.21 6.67±3.44

M 0.87±0.06 0.35±0.29 8.01±3.78

C 0.77±0.06 0.83±0.37 12.96±4.12

Ave

F 0.90±0.05 0.23±0.20 6.26±3.52

M 0.87±0.06 0.33±0.29 7.62±3.63

C 0.77±0.05 0.77±0.34 12.27±3.89

FNPC

F 0.91±0.04 0.20±0.17 5.70±3.21

M 0.89±0.05 0.24±0.22 5.87±3.09

C 0.88±0.04 0.31±0.19 8.22±3.14

Placenta BB Dice↑ ASSD↓ HD↓

SAM F 0.72 ± 0.13 0.84 ± 0.58 13.87 ± 1.99

Ave F 0.70 ± 0.10 0.89 ± 0.28 14.96 ± 2.90

FNPC F 0.79 ± 0.04 0.53 ± 0.18 14.66 ± 3.26

SS2V F 0.76 ± 0.03 0.76 ± 0.19 15.55 ± 2.15
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