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Distinct biological signature and modifiable 
risk factors underlie the comorbidity 
between major depressive disorder and 
cardiovascular disease
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Major depressive disorder (MDD) and cardiovascular disease (CVD) are 
often comorbid, resulting in excess morbidity and mortality. Here we show 
that CVDs share most of their genetic risk factors with MDD. Multivariate 
genome-wide association analysis of shared genetic liability between 
MDD and atherosclerotic CVD revealed seven loci and distinct patterns 
of tissue and brain cell-type enrichments, suggesting the involvement 
of the thalamus. Part of the genetic overlap was explained by shared 
inflammatory, metabolic and psychosocial or lifestyle risk factors. Our 
data indicated causal effects of genetic liability to MDD on CVD risk, but 
not from most CVDs to MDD, and showed that the causal effects were partly 
explained by metabolic and psychosocial or lifestyle factors. The distinct 
signature of MDD–atherosclerotic CVD comorbidity suggests an immuno
metabolic subtype of MDD that is more strongly associated with CVD than 
overall MDD. In summary, we identified biological mechanisms underlying 
MDD–CVD comorbidity and modifiable risk factors for prevention of CVD 
in individuals with MDD.

Major depressive disorder (MDD) and cardiovascular disease (CVD) 
are comorbid1,2. Several mechanisms might explain the observed 
comorbidity2. One explanation is that genetic risk factors for MDD 
and CVDs overlap3,4. While observed genetic correlations between 
MDD and CVD are modest2–4, this may reflect local genetic correlations 
of opposing directions attenuating correlation on the genome-wide 
level, leading to an underestimation of the genetic overlap5. The large 
polygenicity of MDD6 might also mask subtypes with stronger genetic 
relationships to CVD.

The observed MDD–CVD comorbidity could also be due to nonge-
netic factors7. Cardiovascular risk factors such as high systolic blood 
pressure, high body mass index (BMI), high levels of low-density lipo-
protein cholesterol, high levels of physical inactivity, presence of type II 
diabetes and smoking have all been associated with MDD8–10. Moreover, 
accumulating data show that psychosocial and/or lifestyle factors 
associated with MDD, such as low educational attainment, exposure 
to childhood maltreatment, loneliness and atypical sleep patterns, are 
also important risk factors for CVD11–14.
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strongest genetic correlations with the CVDs (Extended Data Fig. 1a 
and Supplementary Table 3).

We estimated local genetic correlations between MDD and CVDs 
in each of 2,495 distinct genomic regions using LAVA25. We found 54 
statistically significant, predominantly positive, local correlations 
between MDD and CVDs, 40 of which were noted for MDD and coronary 
artery disease (Fig. 2 and Supplementary Table 4). We also assessed 
correlations between MDD and the CVDs in 16 loci in the human leuko-
cyte antigen (HLA) region (Extended Data Fig. 1b). Out of 50 assessed 
correlations, 8 were statistically significant, indicating that this region 
is a hotspot of correlation between MDD and CVDs.

Next, we investigated genetic overlap on the level of genetic vari-
ants using MiXeR24 (Supplementary Tables 5 and 6). We identified 
more causal variants, that is, genetic variants with nonzero effects 
taking linkage disequilibrium (LD) into account, for MDD than for the 
CVDs, suggesting that MDD is more polygenic than CVD. To verify these 
results, we estimated polygenicity using a complementary approach 
implemented in SBayesS46, which showed estimates that were highly 
correlated with those of MiXeR (Extended Data Fig. 2b and Supple-
mentary Table 7).

Bivariate MiXeR results showed that CVDs shared most of their 
causal variants with MDD (from 64% for atrial fibrillation to 92% for 
heart failure; Fig. 2b and Supplementary Table 6) whereas MDD shared 
only few of its causal variants with CVDs (<20%). Performance metrics 
indicated that results for peripheral artery disease should be inter-
preted with caution. Both shared genetic variants and local genetic 
correlations exhibited strong degrees of effect direction concordance 
(Fig. 2c), suggesting that genetic risk variants for CVDs are strongly 
correlated with a genetic subcomponent of MDD.

Shared genetic liability to MDD and CVD
To further characterize the genetic overlap, we explicitly modeled the 
shared genetic liability between MDD and CVD as a higher-order latent 
factor using genomic SEM. We excluded atrial fibrillation because it 
deteriorated the model fit (comparative fit index (CFI) of 0.918 and 
standardized root mean squared residual (SRMR) of 0.072), so that 
the interpretation of the latent factor changed to representing ASCVD. 
The final model had an excellent fit (CFI of 0.999 and SRMR of 0.021). 
The loading of ASCVD on the MDD-ASCVD factor was β = 2.46 (95% CI 
[2.00, 2.91], P = 1.63 × 10−26). For model identification purposes, the 
loading of MDD was fixed to 1. Factor loadings for the ASCVDs on the 
ASCVD factor were β = 0.79 (95% CI [0.68, 0.90], P = 6.21 × 10−45) for 
stroke, β = 1.03 (95% CI [0.89, 1.17], P = 2.58 × 10−46) for peripheral artery 
disease, and β = 1.08 (95% CI [0.95, 1.21], P = 2.10 × 10−59) for heart failure, 
respectively (Fig. 3a; loadings are given standardized with respect to 
the genetic variance of the traits). For coronary artery disease, the  
factor loading was fixed to 1 for identification purposes. For compari-
son, we also fit a latent factor for the ASCVDs alone (without MDD), 
which showed similar fit and parameter estimates (CFI of >0.999 and 
SRMR of 0.013; Extended Data Fig. 3a). This shows that shared genetic 
liability to different ASCVDs as well as to ASCVDs and MDD (to a lesser 
extent) can be explained by a single underlying factor.

The GWAS on the latent MDD–ASCVD factor resulted in 205 inde-
pendent genome-wide significant loci (Fig. 3b, independent at R2 < 0.1 
and distance ≥ 250 kb; Supplementary Table 8). Almost three-quarters 
(74.6%) of the genome-wide statistically significant single-nucleotide 
polymorphisms (SNPs) showed a high Q heterogeneity, suggesting 
that their effects were more in line with an independent pathway than 
a common pathway model (Methods). Most of this heterogeneity was 
due to MDD, as the GWAS for latent ASCVD without MDD showed fewer 
genome-wide statistically significant SNPs with a high heterogeneity 
(30.6%; Extended Data Fig. 3b).

For the latent MDD–ASCVD factor, we filtered out variants that 
showed statistically significant heterogeneity and considered only 
variants where the latent MDD–ASCVD factor was the best model for 

One common mechanism underlying MDD and CVD, as well as 
their shared risk factors, could be chronic inflammation. Atherosclero-
sis, the accumulation of fibrofatty lesions in the arterial wall, is the main 
cause of CVD15. The buildup of atherosclerotic plaque is a long-term 
inflammatory process mediated by immune components in crosstalk 
with arterial wall cells16. Many lines of evidence also support a role for 
inflammation in MDD17. Excessive or long-term psychosocial stress 
promote the maturation and release of inflammatory cytokines such as 
interleukin (IL)6, which activate the central nervous system to produce 
behaviors related to MDD17. Importantly, low-grade inflammation, 
measured by high C-reactive protein levels, has been observed in more 
than a quarter of patients with depression18, suggesting the presence of 
an inflammatory subtype of MDD19, which might be especially strongly 
associated with CVD.

The full extent of the genetic overlap between MDD and CVD has 
not been explored. It remains unknown whether the genetic overlap is 
associated with specific tissues or brain cell types, or how this overlap 
relates to shared risk factors such as blood pressure, psychosocial or 
lifestyle traits, metabolic traits, and inflammation. Moreover, causal 
effects linking these traits are not fully understood20–23.

In this Article, we dissect the genetic overlap between MDD and 
CVD (peripheral artery disease, heart failure, coronary artery dis-
ease, stroke and atrial fibrillation). First, we assessed genetic overlap 
between MDD and CVD on the genome-wide level, as well as on the 
level of local partitions of the genome and overlapping risk variants 
with MiXeR24 and Local Analysis of (co)Variant Association (LAVA)25. 
Second, we identified genetic variants and genes that contribute to 
the shared genetic liability between MDD and atherosclerotic CVD 
(ASCVD; peripheral artery disease, heart failure, coronary artery dis-
ease and stroke) using genomic structural equation modeling (SEM)26. 
We mapped identified variants to brain cell types using annotations 
based on recent single-cell RNA sequencing in postmortem human 
brain samples27. Third, we assessed shared risk factors explaining the 
genetic correlation between MDD and CVD. Finally, we used Mendelian 
randomization (MR) to investigate putative causal pathways linking 
MDD and CVD.

Results
Study design
We acquired summary statistics from the largest and most recent 
genome-wide association studies (GWASs) so far of MDD6, MDD symp-
toms, CVDs and shared risk factors (Fig. 1 and Supplementary Table 1). 
We used summary statistics from a GWAS of MDD involving 294,322 
cases6. For CVDs, we used summary statistics from GWASs of peripheral 
artery disease28, heart failure29, coronary artery disease30, stroke31 and 
atrial fibrillation32, based on 12,086, 47,304, 181,523, 73,652 and 60,620 
cases, respectively. We considered five categories of risk factors: blood 
pressure33, psychosocial or lifestyle34–38, childhood maltreatment39, 
metabolic40–42 and inflammation43,44. These data were used together 
with a comprehensive set of methods to elucidate etiological pathways 
underlying the comorbidity between MDD and CVD (Fig. 1).

Most genetic risk factors for CVD overlap with MDD
We found moderate genetic correlations between MDD and CVDs, 
as estimated with linkage disequilibrium score regression (LDSC45; 
Extended Data Fig. 1 and Supplementary Table 2). The strongest cor-
relations were noted for peripheral artery disease (rg = 0.30, 95% CI 
[0.22, 0.38], P = 1 × 10−13), heart failure (rg = 0.29, 95% CI [0.23, 0.34], 
P = 1 × 10−24) and coronary artery disease (rg = 0.25, 95% CI [0.21, 0.28], 
P = 9 × 10−45), while smaller but statistically significant correlations 
were observed for stroke and atrial fibrillation (rg = 0.18 and rg = 0.11, 
P < 1 × 10−7). ASCVDs showed strong correlations among each other 
while atrial fibrillation was only moderately genetically correlated to 
the ASCVDs (Extended Data Fig. 2a and Supplementary Table 2). For 
MDD symptoms, poor appetite or overeating showed consistently the 
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the follow-up analyses. We retained 72 independent loci underlying the 
shared genetic liability (Fig. 3b and Supplementary Table 9). The top 
SNP after filtering was rs11670056 in the ELL gene, which encodes a part 
of the transcription elongation factor complex and has previously been 
associated with CVDs, blood traits, BMI and educational attainment 
(enrichment in associations with other traits for statistically significant 
SNPs are shown in Extended Data Fig. 4a). There were 19 top SNPs with 
significant expression quantitative trait loci (eQTL) for one or multiple 

genes (Fig. 3b and Supplementary Table 10). Besides ELL, multiple 
genes on chromosome 10 around INA and CNNM2 were identified. INA 
and CNNM2, which encode a neurofilament and a protein involved in 
ion transportation, respectively, have previously been associated with 
psychiatric as well as cardiovascular traits.

We found seven novel loci in the latent MDD–ASCVD GWAS that 
were not among the risk loci in the MDD and ASCVD GWASs that con-
stituted the latent factor (Extended Data Fig. 4b and Supplementary 
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Table 11). The top SNPs in these loci have not been identified in any 
GWAS recorded in the GWAS catalog before, but four of them have 
shown suggestive associations (P < 0.05) with metabolic traits.

Using partitioned LDSC, we observed that the heritability of the 
latent MDD–ASCVD factor was enriched in genes with expression 
specific to endothelial tissues, which was also observed for latent 
ASCVD but not for MDD (Fig. 3c and Supplementary Table 12). To 
gain deeper insights into brain-specific mechanisms, we leveraged 
high-resolution human brain single-nucleus RNA sequencing data27 
and identified four human brain cell types that exhibited enriched 
MDD–ASCVD heritability, including deep-layer corticothalamic and 
6b cells, midbrain-derived inhibitory neurons, miscellaneous neurons 
and vascular cells (Fig. 3d and Supplementary Table 13). Notably, 
except for miscellaneous neurons, these cell types displayed no 
enrichment for either latent ASCVD or MDD, suggesting that the 
genetic variance for MDD–ASCVD comorbidity has a distinct func-
tional signature.

To externally validate the MDD–ASCVD phenotype, we computed 
polygenic risk scores (PRS) based on the summary statistics for the 
latent MDD–ASCVD factor, as well as for MDD and latent ASCVD, and 
found them to predict ASCVD and MDD diagnoses in UK Biobank 
(UKB) (all P < 2 × 10−13; Fig. 3e and Supplementary Tables 14 and 15; 
note that source and target samples were overlapping and the R2 val-
ues should only be interpreted relative to one another). The PRS for 
latent ASCVD and the latent MDD–ASCVD factor explained similar 

amounts of variance in ASCVDs. This is in line with the MiXeR findings 
(Fig. 2b), suggesting that most causal variants for ASCVDs are shared 
with MDD. In contrast, as most causal variants for MDD are not shared 
with ASCVDs, the PRS for the latent MDD–ASCVD factor explained less 
than half as much variance in MDD as the MDD PRS.

Next, we assessed genetic correlations between the latent MDD–
ASCVD factor and MDD symptoms. We found that poor appetite or 
overeating and suicidal thoughts are the symptoms most strongly 
correlated with MDD–ASCVD. In contrast, poor appetite or overeating 
is among the least genetically correlated symptoms to MDD (Extended 
Data Fig. 4c).

Finally, we estimated genetic correlation of attention deficit and 
hyperactivity disorder (ADHD), anxiety disorders, posttraumatic stress 
disorder (PTSD), bipolar disorder and schizophrenia, with MDD, latent 
MDD–ASCVD and latent ASCVD. We found that ADHD, anxiety disorder 
and PTSD were genetically correlated with latent ASCVD (Extended 
Data Fig. 4d). In addition, PTSD and ADHD showed similar genetic cor-
relations for MDD and latent MDD–ASCVD, suggesting that variants 
that are shared between MDD and ASCVD might explain most of the 
genetic correlation between MDD and these disorders.

Genetic overlap between MDD and risk factors
Next, we aimed to identify risk factors linking MDD and CVD. First, 
we assessed genetic correlations between MDD and risk factors. 
We observed strong to moderate genetic correlations of MDD with 
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(x axis) and the corresponding P value (y axis). Loci exceeding the horizontal 
line are significant at PFDR < 0.05 (Benjamini–Hochberg-adjusted P value). 
Multiple testing was performed separately for each trait over all considered 
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directions on the y axis. In a–c, the sample sizes and information for underlying 
summary statistics GWASs are reported in Supplementary Table 1. AF, atrial 
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psychosocial or lifestyle factors, such as loneliness (rg = 0.68, 95%  
CI [0.64, 0.72]), childhood maltreatment (rg = 0.55, 95% CI [0.50,  
0.60]) and exercise (rg = −0.33, 95% CI [−0.38, −0.29]) (Fig. 4b and 
Extended Data Fig. 6). Among metabolic factors, MDD showed the 
strongest genetic correlation with type II diabetes (rg = 0.19, 95% 
CI [0.16, 0.23]) as well as levels of high-density lipoprotein choles-
terol (rg = −0.14, 95% CI [−0.17, −0.11]) and triglycerides (rg = 0.18, 
95% CI [0.15, 0.21]). We observed genetic correlation of MDD with 
levels of the inflammatory markers IL6 (rg = 0.22, 95% CI [0.11, 0.33]) 
and C-reactive protein (rg = 0.15, 95% CI [0.10, 0.19]). We did not 
observe genetic correlations of MDD with blood pressure traits. As 
a comparison, for CVDs, the largest genetic correlations were found 
between heart failure and BMI (rg = 0.55, 95% CI [0.50, 0.60]) and 
type II diabetes (rg = 0.49, 95% CI [0.42, 0.55]) (Extended Data Fig. 5 
and Supplementary Table 2). The results for MDD symptoms largely 
followed the pattern of MDD diagnosis, although poor appetite or 
overeating showed stronger genetic correlations with metabolic 
factors than did MDD diagnosis (Extended Data Fig. 6 and Supple-
mentary Table 3).

Causal-variant and local genetic correlation analysis revealed 
several patterns of genetic overlap between MDD and risk factors. We 
found that psychosocial or lifestyle factors, childhood maltreatment 
and BMI showed similar levels of polygenicity to MDD (Extended Data 
Fig. 2b and Supplementary Tables 5 and 7). In addition, they exhibited a 
large degree of shared variants and many local genetic correlations with 
MDD (Fig. 4a, Extended Data Fig. 7 and Supplementary Tables 4 and 
6). Out of these factors, loneliness and childhood maltreatment also 
showed high levels of effect direction concordance with MDD, both for 
risk variants and local genetic correlations (Fig. 4b and Supplementary 
Tables 4 and 6). Combined with high polygenicity, such concordance 
translates to large genome-wide genetic correlations. In contrast, 
educational attainment, smoking, exercise, physical activity, BMI and 
sleep duration had similar levels of polygenicity and a large degree of 
polygenic overlap with MDD, but low effect direction concordance, 
suggesting that genome-wide genetic correlations underestimate the 
genetic overlap with MDD for these traits.

Genetic factors for blood pressure traits showed unique patterns 
of genetic overlap with MDD. They were polygenic (>5,000 causal vari-
ants; Extended Data Fig. 2b) but did not overlap strongly with genetic 
risk factors for MDD (<0.30 of risk variants overlapping; Fig. 4a). More
over, risk variants that did overlap showed low degree of effect direc-
tion concordance (48–57% of shared variants in the same direction; 
Fig. 4b). We observed 97 significant local genetic correlations with 
MDD for the three blood pressure traits, 60% of which were positive. 
These findings suggest that MDD and blood pressure share variants 
that exhibit both positive and negative correlations, which are canceled 
out in the genome-wide estimate.

Type II diabetes, lipid traits and C-reactive protein showed low 
polygenicity (<2,500 causal risk variants). Type II diabetes, triglyceride 
levels and C-reactive protein levels shared most of their risk variants 
with MDD, and these variants showed high degrees of concordance 
(>85% of shared variants in the same direction). High-density lipopro-
tein cholesterol shared most of its risk variants with MDD, in consist-
ently opposite directions.

Risk factors underlying genetic overlap between MDD  
and CVD
To assess risk factors explaining the genetic overlap between MDD 
and CVD, we estimated genetic correlations adjusted for risk factors 
(individually or as a group) using genomic SEM (Fig. 5a, Extended Data 
Fig. 8 and Supplementary Table 16). The largest reduction in point 
estimate was observed for the genetic correlation between MDD and 
peripheral artery disease after adjustment for the group of psycho
social or lifestyle factors. Similarly, the genetic correlation of MDD with 
coronary artery disease and the latent ASCVD factor were attenuated 

after adjusting for psychosocial or lifestyle factors. The reduction was 
mainly driven by loneliness (Extended Data Fig. 8). Genetic correlations 
of MDD with peripheral artery disease and stroke were no longer statis-
tically significant after adjusting for psychosocial or lifestyle factors. 
We also observed some attenuation in the genetic correlation between 
MDD and CVDs after adjusting for childhood maltreatment, metabolic 
factors or inflammatory markers, although confidence intervals (CIs) 
overlapped.

Next, we specified the risk factors as mediators instead of covari-
ates in the genomic SEM model and compared the path estimates from 
MDD with CVD. Observing attenuation in the association between 
MDD and CVD when a risk factor is modeled as a mediator rather than 
a covariate supports the interpretation that the risk factor mediates 
some of the link between MDD and CVD. For all psychosocial or lifestyle 
factors together, the inflammation traits, and for type II diabetes, the 
95% CIs did not overlap between the mediator and covariate models, 
suggesting that these risk factors are mediating part of the link between 
MDD and CVD (Supplementary Table 17).

Finally, we estimated genetic correlations between the risk factors 
and the latent MDD–ASCVD factor (Fig. 5b) and found that the latent 
MDD–ASCVD factor was substantially more genetically correlated with 
blood pressure traits, C-reactive protein levels and metabolic factors 
than MDD only, suggesting that these factors characterize the genetic 
liability to MDD–ASCVD rather than to MDD alone.

Causal pathways linking MDD and CVD
We investigated putative causal relationships between MDD and CVD 
using two-sample MR. Instruments were Steiger filtered, that is, SNPs 
explaining statistically significantly more variance in the outcome 
than the exposure were excluded. The results provide support for a 
causal effect of MDD liability on all CVDs, with the strongest effects 
observed for coronary and peripheral artery disease (Fig. 6a). We found 
no statistically significant pleiotropy and the results were consist-
ent across weighted median, mode and Egger sensitivity analyses, 
providing support for the inverse variance weighted (IVW) estimates 
(Supplementary Table 18).

For risk factors, we observed that increased liability to MDD was 
associated with increased loneliness, smoking, risk of type II diabetes 
and levels of C-reactive protein (Fig. 6a). These results were again con-
sistent across sensitivity analyses (Supplementary Table 18).

We also investigated potential causal effects in the other direc-
tion with genetic instruments to CVDs and risk factors as exposures 
and MDD as outcome (Fig. 6b). We provide evidence for a statistically 
significant causal effect of stroke, loneliness, smoking, exercise, edu-
cational attainment, childhood maltreatment, levels of high-density 
lipoprotein cholesterol and BMI on MDD risk (Fig. 6b), which was robust 
across sensitivity analyses (Supplementary Table 18). No robust effects 
were observed for other CVDs, blood pressure, other metabolic traits 
or inflammatory markers.

When using genetic instruments for the latent MDD–ASCVD 
factor to predict risk factors, statistically significant effects were 
observed for pulse pressure and type II diabetes (Extended Data 
Fig. 9d). We found statistically significant pleiotropy for systolic 
blood pressure.

We extended univariable results with multivariable MR to assess 
whether there was support for causal effects of MDD on CVD explained 
by the risk factors. We included only risk factors that were associated 
with MDD in the univariable MR analysis. The effects of MDD on CVDs 
were attenuated after adjusting for the psychosocial or lifestyle risk 
factors, driven by loneliness and smoking, and metabolic risk factors, 
although CIs were wide (Fig. 6c, Extended Data Fig. 10 and Supplemen-
tary Table 19). The effect of MDD liability on peripheral artery disease, 
heart failure, stroke and atrial fibrillation risk was no longer statistically 
significant after adjusting for the groups of metabolic or psychosocial 
or lifestyle factors (Fig. 6d).
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To investigate possible bias due to sample overlap, we repeated 
the analyses using MDD summary statistics based on GWAS excluding 
the UKB sample (the main source of overlap). We observed small dif-
ferences in the estimates, but the interpretation remained the same 
for all results (Extended Data Fig. 9a,b and Supplementary Table 20). 

Furthermore, we repeated the analyses using latent heritable con-
founder (LHC) MR, which is robust to sample overlap47. The results 
pattern was similar, although the point estimates were slightly attenu-
ated for CVD risk (for example, no longer statistically significant for 
heart failure and atrial fibrillation) and became stronger for most 
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heritability) that are unique to MDD (left circle), the risk factor (nonoverlapping 
part of right circle) or shared between MDD and the risk factor (overlapping  
part of circles). b, Genome-wide genetic correlation estimated by LDSC (rg,  
x axis) against the percentage of MDD causal variants that are shared with the 
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concordant effect directions on the y axis. Cardiovascular traits are also shown 
for comparison. For a and b, standard errors for MiXeR, LAVA and LDSC results 
are reported in Supplementary Tables 2–6. Sample sizes for GWAS summary 
statistics are reported in Supplementary Table 1. Note that IL6 was excluded 
from MiXeR results because it failed performance checks (Methods). Child. mal., 
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other traits (Extended Data Fig. 9c). We conclude that although sample 
overlap impacted the point estimates, the interpretation of results 
remained similar.

Discussion
Here, we showed that genetic risk factors for CVD overlap strongly 
with MDD. We modeled the shared genetic liability between MDD and 
ASCVD as a latent factor and showed that, distinct from MDD alone, it is 
associated with gene expression specific to thalamic and vascular cell 
types in the brain and is genetically correlated with immunometabolic 
factors and blood pressure. Further, we showed that the association 
between MDD and CVD is partly explained by modifiable risk factors 
and provide evidence that it is probably causal in nature.

In line with previous results22,48–50 we found moderate genome- 
wide genetic correlations between MDD and CVDs. Analysis on the 
level of shared risk variants showed that MDD was substantially more 
polygenic than the CVD traits and that most risk variants for CVD were 
in fact shared with MDD and had concordant effect directions. In addi-
tion, we found many positive local genetic correlations between MDD 
and CVD, especially for coronary artery disease, although that might 
reflect the fact that the coronary artery disease GWASs have larger 
sample size than the GWASs of the other CVDs. Interestingly, we found 
that the HLA region was a hotspot for local genetic correlation between 
MDD and CVDs. These findings suggest that genetic overlap between 
MDD and CVD is underestimated in genome-wide correlation analyses.

We modeled the shared liability between MDD and ASCVD as a 
latent MDD–ASCVD factor and performed a GWAS on the factor. Atrial 
fibrillation was excluded because it deteriorated the fit of the latent 
factor, which was in line with results that showed that atrial fibrilla-
tion was substantially less genetically correlated with the ASCVDs 
than they were with each other. Combined, these results suggest that 
atrial fibrillation and ASCVDs have partly distinct sources of genetic 
variation. We identified many loci associated with MDD–ASCVD, some 
of which were uniquely associated with the shared liability and not with 
the constituent traits. We found that heritability for the MDD–ASCVD 
latent factor was enriched for genes specifically expressed in vascular 

braincells, deep-layer corticothalamic 6b (projecting to the thalamus) 
and midbrain-derived inhibitory neurons (predominantly located in 
the thalamus). This cell-type enrichment signature was not found for 
MDD or ASCVD alone, suggesting that a distinct mechanism involving 
thalamic circuits might underlie the shared liability to MDD–ASCVD. 
Altered thalamic function has indeed been implicated previously in 
CVD51–53 and MDD54,55, and white matter integrity in thalamic radiations 
show associations with aortic area and myocardial wall thickness, sug-
gesting that it has a role in the ‘heart–brain’ connection56.

MDD showed a high degree of genetic overlap with risk factors. We 
showed that MDD was substantially more polygenic than blood pres-
sure, lipid and inflammatory traits. In contrast, psychosocial or lifestyle 
traits were equally polygenic to MDD and showed a large degree of 
overlap with MDD. Interestingly, the local and variant-level analysis 
indicated that blood pressure traits shared a substantial number of 
risk variants with MDD (in line with a previous report49), which was 
masked at the genome-wide level due to their opposing effect direc-
tions. Similarly, BMI and lipid traits showed discordant directions to 
MDD in effects of overlapping risk variants and local genetic correla-
tions. Finally, C-reactive protein shared most of its risk variants with 
MDD, predominantly in the positive direction, indicating a genetic 
relationship between C-reactive protein and MDD that was masked 
in the genome-wide genetic correlation estimate. Overall, these find-
ings refine our understanding of the polygenic overlap between MDD 
and risk factors shared between MDD and CVD, and indicate that it is 
stronger and more complex than has previously been reported.

We estimated genetic correlations between MDD and CVD adjust-
ing for risk factors and found that psychosocial or lifestyle factors 
explain a substantial part of the genetic correlation between MDD and 
CVD and highlight loneliness as an important factor in the relationship 
between MDD and CVD. In addition, we found tentative support for a 
mediating role of C-reactive protein and IL6 levels in the association 
between MDD and ASCVD.

We found that, compared with MDD, the latent MDD–ASCVD 
factor was characterized by genetic correlations with immunometa-
bolic factors and blood pressure, suggesting that the shared genetic 
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liability to MDD and ASCVD is associated with an immunometabolic 
subtype of depression. The existence of an immunometabolic subtype 
of depression has been proposed previously, based on a long line 
of evidence of oxidative stress and neuroendocrine and inflamma-
tory dysregulation in MDD that are preferentially associated with 
atypical symptoms of MDD (for example, weight gain and oversleep-
ing)57. Indeed, we find that poor appetite or overeating is the MDD 
symptom with the consistently greatest genetic correlations to the 
CVDs, and it is among the most genetically correlated symptoms 

with MDD–ASCVD, while it is among the least genetically correlated 
symptoms to MDD, although CIs were too wide to be conclusive. 
We did not find large genetic correlations between sleep duration 
measured using an accelerometer over 1 week and the MDD–ASCVD 
factor. However, statistically significant variants for the MDD–ASCVD 
factor were strongly enriched in statistically significant variants for 
self-reported short sleep duration (<6 h per night)58 suggesting that 
short sleep duration might be more related to MDD–ASCVD comor-
bidity than overall sleep duration.

a b

c d

MDD

PAD

HF

CAD

Stroke

AF

Metabolic

Inflammation

Psychosocial

Blood pressure

Childhood mal.

MDD <-> Z -> Y

Nothing Cardiovascular disease Blood pressure Psychosocial Childhood maltreatment Metabolic Inflammation

PAD

HF

CAD

Stroke

AF

Beta
0 0.2 0.4–0.2

Beta
0 0.5 1.0 1.5 2.0–0.5

Beta
0 0.5 1.0 1.5 2.0–0.5

No. SNP

PAD
HF

CAD
Stroke

AF
DBP
SBP

PP
Loneliness

Smoking
Exercise

Edu
Phys. act.

Sleep
Child. mal.

T2D
TG

HDL
BMI

NonHDL
TC

LDL
IL6

CRP

137
138
136
137
138
137
137
137
138
137
138
131
135
136
134
136
133
137
60
135
135
135
64
133

PAD 10
11

186
23
118
629
658
576
11
94
14

355
10
11
10

193
513
577
637
413
520
429
10

260

HF
CAD

Stroke
AF

DBP
SBP

PP
Loneliness

Smoking
Exercise

Edu
Phys. act.

Sleep
Child. mal.

T2D
TG

HDL
BMI

NonHDL
TC

LDL
IL6

CRP

No. SNPMDD -> Y X -> MDD

* *

Fig. 6 | Support for causal effects between MDD, CVD and shared risk factors. 
a, The effect of genetic instruments for MDD (exposure) on CVD and risk factors 
(outcomes). b, The effect of genetic instruments for CVDs and risk factors on 
MDD. The arrow indicates that the CI for the effect of loneliness on MDD has been 
cut to improve readability. c, The effects of genetic instruments for MDD on CVD 
while adjusting for groups of risk factors in multivariable MR. d, A schematic 
overview of levels of evidence for causal effects, with solid lines indicating 
convincing evidence (consistent across sensitivity analyses) for such effects and 
dashed lines indicating evidence for some of the relationships tested within the 

trait categories. The arrows from the risk factors to the association between MDD 
and the CVDs indicate that the combined risk factors attenuated the association 
so that it was no longer statistically significant. In a–c, the IVW estimate is shown. 
The results from the sensitivity analyses are reported in Supplementary Table 18.  
In a–d, the points and error bars represent mean effect size (regression 
coefficient) and 95% CIs. The sample sizes for GWAS summary statistics are 
reported in Supplementary Table 1. The term beta refers to the log odds ratio. 
The asterisk (*) indicates that the observed statistically significant association 
suffered from pleiotropy; possible causal effect should not be interpreted.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research | Volume 3 | June 2024 | 754–769 763

Article https://doi.org/10.1038/s44161-024-00488-y

Mental disorders that are highly comorbid with MDD, such as 
psychotic disorders, anxiety disorders and PTSD, have also been shown 
to be associated with CVD59. We find that ADHD, anxiety disorders and 
PTSD show genetic correlations with ASCVD and MDD–ASCVD. For 
ADHD and PTSD, the genetic correlation was similar between MDD and 
MDD–ASCVD. Future work should estimate latent factors represent-
ing shared and distinct sources of genetic covariance among MDD, 
ADHD, anxiety disorders and PTSD and investigate how those factors 
relate to ASCVD.

We found robust support for the likelihood of causal effects of MDD 
on CVD. Previous two-sample MR studies have observed associations 
between genetic liability to MDD and risk of coronary artery disease but 
results for heart failure and stroke have been inconsistent21,22,48,60. Using 
more recent GWAS data, we confirmed an effect of genetic liability to 
MDD on coronary artery disease and found robust associations for 
stroke, heart failure and peripheral artery disease.

Except for stroke, we found limited evidence for a causal 
effect of CVDs on MDD, which is contrary to literature suggesting 
that such effects exist23. The MDD sample is mainly based on large 
volunteer-based studies that might select against individuals with CVD. 
Indeed, participants in the UKB study are healthier than the general 
population61. In addition, interpretation of the MR estimate in this case 
is complicated by the fact that CVD is a time-varying exposure with 
late age of onset62. However, we do find that genetic instruments cap-
ture the well-established association between stroke and subsequent 
MDD63. Therefore, the findings in our study offer some indication that 
the association between CVDs and subsequent MDD might have been 
overestimated in previous studies, possibly due to reverse causation, 
surveillance bias or unmeasured confounding.

We observed effects of genetic liability to MDD on most of the risk 
factors. We did not observe associations between genetic liability to 
MDD and blood pressure traits, although the presence of correlated 
and anticorrelated genetic components complicates interpretation. 
Indeed, using genetic instruments for the latent MDD–ASCVD factor, 
we did observe strong associations for pulse pressure. Previous MR 
studies of the association of C-reactive protein and IL6 levels with MDD 
risk have shown inconsistent results64,65. We did not find an effect of 
genetic instruments for inflammatory markers on MDD. However, we 
did find associations between genetic liability to MDD and increased 
C-reactive protein levels, lipid levels and type II diabetes, offering 
evidence that MDD might lead to long-term dysregulated immuno-
metabolic pathways57. Likewise, in line with previous evidence66, we 
find support for a causal effect of liability to MDD on smoking, which, 
in turn, can lead to inflammation.

On multivariable MR analysis, we observed that only the asso-
ciation between genetic liability to MDD and coronary artery disease 
remained statistically significant after adjusting for the psychoso-
cial or lifestyle or metabolic covariates. We found that adjusting for 
smoking status attenuates the association between genetic liability to 
MDD and peripheral artery disease, for which smoking is a strong risk 
factor67. Interestingly, we find that loneliness is an equally important 
factor explaining the relationship between MDD and peripheral artery 
disease. This emphasizes the need for interventions and preventive 
policies for reducing loneliness in the population, which has further 
increased in prevalence during the coronavirus disease 2019 pandemic 
and has been described as a pandemic itself68,69.

For most CVDs, no risk factor group could fully explain the genetic 
association between MDD and the CVD, which suggests the existence 
of additional mechanisms that are not captured by the genetic data 
used in the study. For instance, GWAS measure lifetime genetic risk 
and cannot capture dynamic processes of cumulative and interactive 
risk. Future studies should validate our findings using longitudinal 
data. Follow-up studies could also investigate the clinical usefulness 
of PRS for the shared liability to MDD–ASCVD and evaluate their abil-
ity to identify individuals at risk for immunometabolic depression, 

as we were unable to investigate this due to sample overlap in the 
present study. Another limitation is that the MiXeR model was not 
able to accurately estimate the genetic overlap between MDD and 
IL6. The likely reason the MiXeR model failed in this case is the mark-
edly different genetic architectures of the two traits, with MDD being 
highly polygenic and IL6 being the least polygenic of the traits in the 
study, combined with the low sample size of the IL6 GWAS. Finally, to 
assess generalizability, these findings should be replicated with data 
from different ancestry sources. The lack of large genetic datasets 
from non-European populations is a crucial limitation that is widely 
acknowledged and yet difficult to circumvent. Observational studies 
have shown that MDD and CVDs could demonstrate different asso-
ciations depending on ancestry70,71, and more research is needed to 
understand such differences22,48–50.

Our findings suggest that the shared genetic liability to MDD and 
ASCVD has a distinct genomic signature compared with MDD or ASCVD 
separately. Moreover, the shared genetic liability shows stronger 
genetic correlations with immunometabolic risk factors than MDD 
alone, in line with the idea of an inflammatory72 or immunometabolic57 
subtype of MDD especially associated with ASCVDs, highlighting the 
role of inflammation in MDD–ASCVD comorbidity. Indeed, we found 
that the HLA region is a hotspot of local genetic correlation between 
MDD and the CVD traits, that genetic liability to MDD is associated 
with C-reactive protein levels and tentative support that inflamma-
tory markers mediate some of the link between MDD and ASCVD. We 
highlight loneliness and smoking as important targets for intervention 
to reduce the risk of MDD and CVD, as well as CVD in individuals with 
MDD. Building on this work, tools can be developed to identify individu-
als at risk for developing immunometabolic depression (for example, 
using blood tests of high-density lipoprotein and C-reactive protein 
levels) and target them for cholesterol-lowering or anti-inflammatory 
medical interventions.

Methods
Data sources
All data sources were summary statistics from the largest and most 
recent GWAS so far (Supplementary Table 1). The MDD symptoms 
GWAS have not been published, although they have been used in other 
publications64. The symptom GWASs were based on Patient Health 
Questionnaire (PHQ-9) items measured in the UKB, that captures most, 
but not all, core symptoms of MDD and are available online73. The dis-
ease trait GWASs were mostly based on electronic health record diag-
noses. The physical activity and sleep duration traits were measured 
in the UKB using an accelerometer over a 1-week period36.

The summary statistics were processed using the cleansum-
stats pipeline (https://github.com/BioPsyk/cleansumstats). SNPs 
were aligned and harmonized against dbSNP reference data. Analy-
ses were conducted on the Tjenester for Sensitive Data cluster, 
maintained by the University of Oslo, using singularity containers. 
Containers are applications packaged with environmental depend-
encies to facilitate standardization of analyses across different sites, 
ensuring correct software versions and parameters74. All GWASs 
were ethically approved and were conducted in compliance with 
ethical guidelines. Ethics approval for the UKB study was given by 
the North West Centre for Research Ethics Committee (11/NW/0382). 
The work described here was approved by UKB under application 
number 22224.

Genetic overlap
Genetic correlation. We estimated genetic overlap on the genome- 
wide, polygenic and local levels. For the genome-wide level, we esti-
mated genetic correlations using LD score regression (LDSC45). We 
excluded the HLA region from the analysis because its complex LD 
structure can bias both heritability and genetic correlation results75. 
Note that LDSC performs well in the presence of sample overlap.
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Local genetic correlation. We used LAVA25 to assess genetic correla-
tion in regions of the genome. We assessed local genetic correlation in 
2,495 genomic regions that cover the autosomes and have been defined 
to minimize LD between the regions while simultaneously keeping the 
regions approximately equal in size. These regions are provided with 
the LAVA software package. We only considered local genetic correla-
tion in loci where both traits showed marginally significant heritability 
(P < 0.05). For these loci, we adjusted local genetic correlation P values 
for multiple testing using the Benjamini–Hochberg method. This 
adjustment was done separately for all pairs of traits considered. To 
match the results from LDSC and MiXeR (see below), we excluded the 
HLA region from the main analyses. For pairwise local genetic correla-
tions between MDD and the CVD traits, we performed an additional 
analysis in the HLA region.

Genetic overlap. To investigate genetic overlap beyond genetic  
correlation, we used MiXeR v1.3 (ref. 24) to assess the number of shared 
and distinct nonzero genetic variants between MDD and another trait 
required to explain at least 90% of heritability in the two traits, referred 
to as ‘causal’ variants. As it assesses overlap regardless of the effect 
direction of each variant, it gives a more adequate picture of local 
genetic correlations of opposite directions that cancel each other 
out in the genome-wide genetic correlation estimate. We excluded 
the HLA region, following the software recommendations24. To assess 
the stability of point estimates and estimate their standard deviations, 
we fitted the MiXeR model 20 different times for 2 million randomly 
selected SNPs with minor allele frequency of at least 5% (Supplementary 
Table 6). The number of 20 runs follows recommendations published 
previously5.

The MiXeR model was evaluated for each trait by (1) comparing the 
Akaike information criterion (AIC) of the univariate MiXeR model with 
the LDSC model, which does not include a parameter representing poly-
genicity (Supplementary Table 5); (2) comparing the AIC of the bivariate 
MiXeR model with the AIC of the model with the least possible amount 
of polygenic overlap required to explain observed genetic correlation; 
(3) comparing the AIC of the bivariate MiXeR model with the AIC of the 
model with maximum amount of polygenic overlap (in such a model, all 
risk variants of the least polygenic trait are also risk variants of the other 
trait) and (4) evaluating the stability of the point estimates over the 20 
runs (Supplementary Table 6). These metrics have been described in 
detail previously5. Except for the univariate test, the MiXeR model failed 
these checks for IL6, which was therefore excluded from the results. 
The MiXeR model performed poorly for the IL6 probably because it 
is a trait with low polygenicity and was measured in a relatively small 
sample (Extended Data Fig. 2 and Supplementary Table 1).

To complement the univariate polygenicity analysis in MiXeR, we 
estimated polygenicity using a Bayesian framework implemented in 
SBayesS46. We used a 15,000-sample Markov chain with a 5,000-sample 
burn-in. The SBayesS methods did not converge for peripheral artery 
disease, possibly due to low number of cases in the GWAS.

Shared liability to MDD and ASCVD
To move beyond bivariate association to multivariate overlap, we 
conducted factor analysis on MDD and the CVDs using genomic SEM26 
to assess whether genetic latent factors could explain the genetic 
covariance between the traits. Genomic SEM uses LDSC to estimate 
the genetic covariance matrix between traits. It then uses the genetic 
covariance matrix in a SEM framework to identify multivariate relation-
ships in the data. We set CFI at >0.90, SRMR at <0.03 and standardized 
factor loadings β > 0.3 as criteria for acceptable model fit. The best 
model fit was found for a factor with coronary artery disease, peripheral 
artery disease, heart failure and stroke as indicators, which we interpret 
as a latent genetic factor representing ASCVD. To model a genetic fac-
tor for shared liability to MDD and ASCVD, we defined a higher-order 
factor with this ASCVD factor plus MDD as indicators. The standardized 

loading of the first indicator (coronary artery disease) was set to 1. 
The residual variance of the ASCVD factor was forced to be 0, so that 
all variance was forced into the MDD–ASCVD factor. For comparison, 
we also estimated a common factor model for ASCVD without MDD 
(Extended Data Fig. 3a).

We conducted a summary statistics-based GWAS on the MDD–
ASCVD second-order latent factor to identify variants associated with 
this latent shared liability. We used the package-default diagonally 
weighted least squares estimator. To derive genome-wide significant 
independent loci we used the plink clumping procedure as imple-
mented in FUMA76, with R = 0.6 and distance or 250 kb, and reference 
data from 1000 Genomes. To assess the heterogeneity of the SNP 
effects, we fit an independent pathway model for each SNP, where each 
indicator was regressed on the SNP directly instead of forcing the effect 
through the latent factor. We compare the common pathway χ2,comSNP  to 
the independent pathway χ2, indSNP  to derive the heterogeneity measure 
QSNP. For follow-up analyses, we filtered out all SNPs that had effects 
that were more consistent with an independent pathway model at PQSNP 
<0.05. This stringent procedure filters out SNPs with heterogeneous 
effects on MDD and the ASCVD factor. This way, variants are excluded 
that should be considered risk variants for MDD or CVDs separately 
rather than risk variants for MDD–ASCVD. We did not observe genomic 
inflation, indicating that results were not strongly affected by popula-
tion stratification (LDSC intercept of 1.02).

We used FUMA to check whether genome-wide significant SNPs 
for the MDD–ASCVD factor were enriched in genome-wide significant 
SNPs for traits in the GWAS catalog. To define unique loci, we over-
laid the independent genomic risk loci (now clumped at R2 = 0.1 and 
3,000 kb window) for MDD–ASCVD with the risk loci for the constitu-
ent traits (MDD, peripheral artery disease, coronary artery disease, 
heart failure and stroke). We used the ‘intersect’ function in bedtools 
to assess whether risk regions were overlapping. If they were independ-
ent (according to the clump criteria) they were regarded as novel loci. 
We also identified genes whose regulation is significantly impacted 
by the top significant SNPs to interpret the biological implications 
of our findings. For this, we use eQTL estimates from FUMA based on 
PsychENCODE reference data77. We conducted a GWAS for the latent 
ASCVD factors using the same procedure (though without filtering 
out heterogeneous SNPs).

To externally validate the latent MDD–ASCVD GWAS results, 
we computed PRS using LDpred2 (automatic mode with HapMap3 
LD reference data), as implemented in the R package bigsnpr. We 
compared the MDD–ASCVD PRS with a PRS based on MDD only and 
with a PRS based on latent CVD without MDD. As a target sample we 
used the UKB. Summary statistics for ASCVD traits excluding the 
UKB were unavailable, and we chose to leave the UKB in for all traits. 
Sample overlap is likely to lead to overfitting, resulting in an infla-
tion of explained variance. However, this is less of a concern when 
comparing PRS among themselves, rather than assessing absolute 
predictive value. As target phenotypes, we extracted CVD and MDD 
cases according to healthcare registry International Classification of 
Diseases (ICD) codes from data field 41270 (Supplementary Table 14). 
We used logistic regression analysis to predict case status from each 
PRS while controlling for the first ten principal components for ances-
try, sex and year of birth. Continuous variables were standardized and 
centered. We used Nagelkerke’s R2 to estimate explained variance in 
the disease traits.

Tissue and cell-type analysis
To gain insight into the biological mechanisms underlying the shared 
genetic liability to MDD and ASCVD, we performed a tissue and cell-type 
analysis using partitioned LDSC. Cell-type identification was based on 
the top decile of specifically expressed genes (referred to as top decile 
expression proportion (TDEP) genes). The methodology has been 
described extensively in previous studies78–80.
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We identified TDEP genes for brain cell types from single-nucleus 
RNA sequencing data measured in dissections of three adult human 
postmortem brain samples for the Adult Human Brain Atlas27, part of 
the Human Cell Atlas. We used the manually annotated 31 superclusters 
and 461 clusters provided by the atlas28. We considered a curated set 
of 18,090 protein-coding autosomal genes, excluding those in the HLA 
region (because the method relies on LDSC), with expression in at least 
one of the 461 cell clusters.

To establish TDEP genes for 16 human tissues, we utilized bulk RNA 
sequencing data from GTEx v8 (ref. 81). In line with previous research, 
we removed tissues with <100 donors and nonnatural tissues (for 
example, cell lines) as well as testis tissues (expression outlier)78. Before 
analysis in partitioned LDSC, we expanded the boundaries of TDEP 
genes by 100 kb to include possible enhancers or promoters.

We tested the associations between GWAS traits and tissue or cell 
types by estimating heritability enrichment within the TDEP genes for 
each tissue or cell type. To ensure that annotation enrichment could not 
be better explained by other overlapping annotations, we adjusted for 
enrichment in 53 previously defined baseline LDSC annotations (LDSC 
v1.0.1) of different types of genomic regions: coding, untranslated, pro-
moter, intronic, enhancer, histone marks and other epigenetic marks80.

Pathways linking MDD and CVDs
Adjusted genetic correlation and mediation in genomic SEM. We 
employed several different techniques to assess whether the associa-
tion between MDD and CVD could be explained by shared risk factors.

First, we estimated the genetic correlations of MDD with the indi-
vidual CVD traits as well as the latent ASCVD factor adjusting for the 
effects of risk factors using genomic SEM. To aid interpretation, we 
added the covariates in groups, controlling for all trait groups sepa-
rately (psychosocial or lifestyle, childhood maltreatment, metabolic 
or inflammation traits; Supplementary Table 1). We only included traits 
in the covariate groups that showed statistically significant genetic 
correlation with MDD. We did not adjust for blood pressure traits 
since none of the blood pressure traits showed statistically significant 
genetic correlations with MDD. Attenuation of genetic correlation after 
adjustment was taken to indicate that shared risk factors account for 
some (or all) of the association between MDD and CVD.

Next, we modeled the risk factors explicitly as mediators in 
genomic SEM. If the direct effect is attenuated in the mediation 
model as compared with the covariate model, we view this as tentative  
support for the existence of mediation (following procedures sug-
gested by the software developers82). Note however that this inter-
pretation relies on untestable assumptions. Finally, we also tested the 
effects of individual risk factors (both as covariates and mediators) 
instead of grouping them.

Univariable and multivariable MR. To assess tentative causal asso-
ciations between MDD and CVD and risk factors, we used two-sample 
MR. We assessed the effects of MDD on the CVDs and risk factors, the 
effect of the CVDs and risk factors on MDD and the effect of latent 
MDD–ASCVD on risk factors. MR uses genetic variants as instrumental 
variables to assess the presence of causal effects of an ‘exposure’ on an 
‘outcome’. Core assumptions include that the instrumental variables 
are robustly associated with exposure and are not associated with the 
outcome (other than through the effect from exposure) or unmeas-
ured confounders. We used the IVW estimate in the two-sample MR 
R package83 as our main estimate. As instrument SNPs, we selected 
independent GWAS hits at P < 5 × 10−8, R2< 0.001 and distance <5 Mb. 
In the analysis of the effect of genetic instruments of peripheral 
artery disease, physical activity, childhood maltreatment and IL6 
on MDD risk, we allowed instruments with higher P values to be able 
to reach a total of ten instruments (P < 1 × 10−5). For the MDD–ASCVD 
exposure, we used SNPs that showed no significantly heterogeneous 
effects in the genomic SEM model (QPvalue >0.05, see above), to limit 

the possibility of pleiotropic effects of this, by nature, heterogene-
ous instrument.

We performed several sensitivity analyses to test and adjust for 
violation of MR assumptions. All analyses were Steiger filtered, mean-
ing that all SNPs that explained statistically significantly more variance 
in the outcome than the exposure were excluded as instruments84. 
Weighted median and mode regression were used to correct for effect 
size outliers that could represent pleiotropic effects85. MR–Egger 
regression was used to assess pleiotropy (pleiotropy leads to a signifi-
cant intercept) and correct for it (unless I2 indicated violation of the 
NO Measurement Error assumption, in which case we did not report  
MR–Egger results86,87). We detected statistically significant pleiotropy 
in the analysis of the association between MDD and triglycerides, 
rendering the IVW estimates uninterpretable. Second, to assess the 
strength of our instruments, we used Cochran’s Q to assess heterogene-
ity in the SNP effects88 and the F-statistic to control for weak instrument 
bias89. Third, we performed sensitivity analyses to gauge the effect 
of sample overlap in the GWASs that were used. Although sample 
overlap has been suggested to not greatly impact MR results when the 
source GWASs have a large sample size and the overlap is limited90, we 
wanted to ensure sample overlap did not lead to bias in our findings. We 
assessed the genetic covariance intercepts for all MDD–trait pairs from 
the LDSC analyses and observed that most were more than 1 s.d. away 
from 0, indicating that sample overlap was present (Supplementary 
Table 2). We repeated the analyses with MDD summary statistics leav-
ing out the UKB sample, which is the sample responsible for most of 
the overlap, and compared the results. Also, we repeated the analyses 
using LHC MR47, which aims to correct for the presence of unmeasured 
heritable confounders as well as sample overlap.

We also investigated associations of genetic liability to MDD and 
CVD adjusted for the effect of risk factors using multivariable MR 
(MVMR) analyses. The difference with the mediation test in genomic 
SEM is that the MVMR analysis use instrument variables for MDD 
instead of all genetic variants, which yields results more in line with a 
causal interpretation. As MVMR relies on regression analysis, it cannot 
formally test mediation; instead, the causal estimate is adjusted for the 
risk factor. To support a directional interpretation, we included only 
risk factors as mediators that were statistically significantly affected 
by MDD according to the results from the univariable analysis. For the 
MVMR analysis, we only derive an IVW estimate. Steiger filtering was 
performed on the exposure–outcome association. These analyses were 
not replicated in LHC, which does not accommodate multivariable anal-
yses. For ease of interpretation, we again grouped the mediators and 
adjusted for all mediators in a group concurrently. We only included 
a mediator in a group if it was significant in the univariate analysis. 
Additionally, we performed analyses adjusting for single mediators. 
We selected instruments for each variable in a model by a clumping 
step with the same parameters as in the univariate MR case (P < 5 × 10−8, 
R2 < 0.001). We then combined instruments for all variables in a model 
into a single set of instruments and performed another clumping step 
with the same parameters. These instruments were then aligned to the 
same effect allele. We estimated the effect of genetic liability to MDD 
on CVD traits adjusting for covariates using multivariate MR with the 
MVMR R package91.

Statistics and reproducibility
To ensure robust results, we considered only summary statistics 
of GWAS involving more than 10,000 cases. We maximized sample 
sizes available for individual analyses instead of performing replica-
tion analyses. In addition, we ensure robust results by triangulating  
evidence from multiple methods and statistical frameworks. These 
results rely on GWASs of population samples, which are not rand-
omized. Processing and analysis was performed using the R language 
for statistical computing (version 4.1.0) and the Python programming 
language (version 2.7.13).
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Links to download publicly available published GWAS summary sta-
tistics data used as inputs in this study are listed in Supplementary 
Table 1. Single-nucleus RNA sequencing data in the adult human brain 
can be found at https://github.com/linnarsson-lab/adult-human-brain. 
Researchers can request access to the UKB data resources at https://
www.ukbiobank.ac.uk/enable-your-research/apply-for-access; data 
for PRS analysis described in this study were accessed under accession 
number 22224. Gene expression data from human tissues can be found 
at https://www.gtexportal.org/home/datasets. Summary statistics for 
GWAS of the MDD–ASCVD and ASCVD latent factors are available via 
figshare at https://doi.org/10.6084/m9.figshare.25737537 (ref. 92).

Code availability
Code used for processing and analyzing data in this work can be found 
at https://github.com/jacobbergstedt/MDDCVD_genetics. Code for 
singularity containers can be found at https://github.com/comorment.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Genetic correlation of MDD and MDD symptoms with 
CVDs. a, Results are based on LD Score Regression analysis. Points and error bars 
represent mean genetic correlation and 95% CIs. b, Local genetic correlation 
between MDD and CVDs in 16 loci in the HLA region. Only loci with marginally 
statistically significant local heritability for both traits are shown. Points 
above the vertical line are significant based on multiple testing adjustment for 
considered loci performed for each CVD trait separately. Multiple testing was 

adjusted for using the Benjamini-Hochberg procedure. Empirical P-values were 
obtained via a permutation procedure with partial integration, evaluating the 
two-sided hypothesis of no association using the estimated parameters as test 
statistics a-b Sample sizes for underlying GWAS summary statistics are reported 
in Supplementary Table 1. AF=Atrial Fibrillation; CAD=Coronary Artery Disease; 
HF=Heart Failure; MDD=Major depressive disorder; PAD=Peripheral Artery 
Disease.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Polygenicity and genetic correlation for MDD, 
CVD, and risk factors. a, Heatmap of the genetic correlations between MDD, 
the CVDs, and the risk factors, with the color indicating the effect direction 
(negative: red, positive: blue) and the size and shade of the square illustrating 
the size of the correlation. Results are based on LD Score Regression analysis. 
b, Polygenicity estimates from SBayesS (y-axis) and MiXeR (x-axis) for MDD, 
the CVDs, and the risk factors. Note that for PAD polygenicity estimates did 
not converge for SBayeS, possibly because of the few number of cases. Points 
and error bars represent the mean number of estimated non-zero variants 

and 95% CIs. a, b Sample sizes for underlying GWAS summary statistics are 
reported in Supplementary Table 1. AF=Atrial Fibrillation; CAD=Coronary 
Artery Disease; Child. Mal.=Childhood Maltreatment; CRP=C-Reactive Protein; 
DBP=Diastolic Blood Pressure; Edu=Educational attainment; HDL=High-Density 
Lipoprotein; HF=Heart Failure; IL6=Interleukin-6; LDL=Low-Density Lipoprotein; 
MDD=Major Depressive Disorder; NonHDL=Non-High-Density Lipoprotein; 
PAD=Peripheral Artery Disease; Phys. Act.=Physical activity; PP=Pulse Pressure; 
Psychosocial=Psychosocial/lifestyle; SBP=Systolic Blood Pressure; T2D=Type II 
Diabetes; TC=Total Cholesterol; TG=Triglycerides.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research

Article https://doi.org/10.1038/s44161-024-00488-y

Extended Data Fig. 3 | Genetic liability to ASCVD latent factor. a, Latent 
atherosclerotic CVD (ASCVD) model, defined by stroke, peripheral artery disease 
(PAD), heart failure (HF), and coronary artery disease (CAD). All ‘observed’ traits 
are based on GWAS summary statistics. Results are from confirmatory factor 
analysis in Genomic SEM, and standardized factor loadings are given for each 
path. Circular dashed arrows give the trait variance. b, Manhattan plot of the 
GWAS on ASCVD, with each dot representing a SNP with its position on the x-axis 
and its P-value on the y-axis. Genome-wide significant SNPs with a significant 

heterogeneity Q (with a strong effect on one or some of the indicators that was 
not well explained through the common latent factor) are displayed in grey. The 
dashed line indicates the genome-wide significance threshold (P < 5e-8). P-values 
were computed using a two-sided Z-test. a-b Sample sizes for underlying GWAS 
summary statistics are reported in Supplementary Table 1. AF=Atrial Fibrillation; 
CAD=Coronary Artery Disease; HF=Heart Failure; MDD=Major depressive 
disorder; PAD=Peripheral Artery Disease.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | The genetic signature of MDD-ASCVD. a, Enrichment 
for the MDD-ASCVD GWAS SNPs in genome-wide significant SNPs for traits in the 
GWAS catalog computed using FUMA. The traits are as reported in the original 
study. Note that sleep duration here is a dichotomization of self-reported sleep. 
The dashed grey line indicates the significance threshold after FDR-adjustment. 
Adjustment for multiple testing was conducted over all traits in the GWAS catalog 
using the Benjamini-Hochberg procedure. P-values were computed using a one-
sided hypergeometric test. b, The five SNPs that were significantly associated 
with MDD-ASCVD, but not with any of the constituent traits, with their P-value in 
the GWAS of the constituent traits. The dashed line indicates the genome-wide 

significance threshold (P < 5e-8). P-values from constituent traits are taken from 
the original GWAS, see Supplementary Table 1. P-values for MDD-ASCVD were 
computed using a two-sided Z-test c, Genetic correlation of MDD symptoms with 
MDD, and MDD-ASCVD. d Genetic correlation of MDD, MDD-ASCVD, ASCVD, 
with five mental disorders. c-d Points and error bars represent mean genetic 
correlation and 95% CIs. Results are computed using LD Score Regression 
analysis. a-d Sample sizes for underlying GWAS summary statistics are reported 
in Supplementary Table 1. ADHD = Attention Deficit and Hyperactivity Disorder; 
PTSD = Posttraumatic Stress Disorder.
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Extended Data Fig. 5 | Genetic correlation between CVDs and risk factors. 
Results are based on LD Score Regression analysis. Points and error bars 
represent mean genetic correlation and 95% CIs. Sample sizes for underlying 
GWAS summary statistics are reported in Supplementary Table 1. Open 
dots indicate a non-significant genetic correlation. AF=Atrial Fibrillation; 
CAD=Coronary Artery Disease; Child. Mal.=Childhood Maltreatment; 

CRP = C-Reactive Protein; DBP=Diastolic Blood Pressure; Edu=Educational 
attainment; HDL=High-Density Lipoprotein; HF=Heart Failure; IL6=Interleukin-6; 
LDL=Low-Density Lipoprotein; MDD=Major Depressive Disorder; NonHDL=Non-
High-Density Lipoprotein; PAD=Peripheral Artery Disease; Phys. Act.=Physical 
activity; PP=Pulse Pressure; Psychosocial=Psychosocial/lifestyle; SBP=Systolic 
Blood Pressure; T2D=Type II Diabetes; TC=Total Cholesterol; TG=Triglycerides.
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Extended Data Fig. 6 | Genetic correlation between MDD traits and risk 
factors. Results are based on LD Score Regression analysis. Points and 
error bars represent mean genetic correlation and 95% CIs. Sample sizes for 
underlying GWAS summary statistics are reported in Supplementary Table 1. 
Open dots indicate a non-significant genetic correlation. AF=Atrial Fibrillation; 
CAD=Coronary Artery Disease; Child. Mal.=Childhood Maltreatment; 

CRP = C-Reactive Protein; DBP=Diastolic Blood Pressure; Edu=Educational 
attainment; HDL=High-Density Lipoprotein; HF=Heart Failure; IL6=Interleukin-6; 
LDL=Low-Density Lipoprotein; MDD=Major Depressive Disorder; NonHDL=Non-
High-Density Lipoprotein; PAD=Peripheral Artery Disease; Phys. Act.=Physical 
activity; PP=Pulse Pressure; Psychosocial=Psychosocial/lifestyle; SBP=Systolic 
Blood Pressure; T2D=Type II Diabetes; TC=Total Cholesterol; TG=Triglycerides.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Local genetic correlations between MDD and risk 
factors. Volcano plots based on LAVA results. Local genetic correlation between 
MDD and each of the risk factors (x-axis) and the corresponding -log10 
transformed P-value (y-axis). Empirical P-values were obtained via a permutation 
procedure with partial integration, evaluating the two-sided hypothesis of no 
association using the estimated parameters as test statistics. Correlations were 
estimated in the loci that showed marginally significant local heritability in 2,495 
considered genomic regions. Loci exceeding the horizontal line are significant at 
PFDR<.05. Multiple testing was adjusted individually for each trait over 

considered loci using the Benjamini-Hochberg procedure. Sample sizes for 
underlying GWAS summary statistics are reported in Supplementary Table 1. 
Child. Mal.=Childhood Maltreatment; CRP = C-Reactive Protein; DBP=Diastolic 
Blood Pressure; Edu=Educational attainment; HDL=High-Density Lipoprotein; 
IL6=Interleukin-6; LDL=Low-Density Lipoprotein; MDD=Major Depressive 
Disorder; NonHDL=Non-High-Density Lipoprotein; Phys. Act.=Physical activity; 
PP=Pulse Pressure; Psychosocial=Psychosocial/lifestyle; SBP=Systolic Blood 
Pressure; T2D=Type II Diabetes; TC=Total Cholesterol; TG=Triglycerides.
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Extended Data Fig. 8 | Genetic correlation between MDD and CVD adjusting 
for individual risk factors. Results from Genomic SEM. Points and error 
bars represent mean genetic correlation and 95% confidence intervals. 
Reference estimates of the association without any adjustment are printed in 
black. Sample sizes for underlying GWAS summary statistics are reported in 
Supplementary Table 1. AF=Atrial Fibrillation; CAD=Coronary Artery Disease; 
Child. Mal.=Childhood Maltreatment; CRP=C-Reactive Protein; DBP=Diastolic 

Blood Pressure; Edu=Educational attainment; HDL=High-Density Lipoprotein; 
HF=Heart Failure; IL6=Interleukin-6; LDL=Low-Density Lipoprotein; 
MDD=Major Depressive Disorder; NonHDL=Non-High-Density Lipoprotein; 
PAD=Peripheral Artery Disease; Phys. Act.=Physical activity; PP=Pulse Pressure; 
Psychosocial=Psychosocial/lifestyle; SBP=Systolic Blood Pressure; T2D=Type II 
Diabetes; TC=Total Cholesterol; TG=Triglycerides.
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research

Article https://doi.org/10.1038/s44161-024-00488-y

Extended Data Fig. 9 | Sensitivity analyses providing additional support for 
causal effects between MDD, CVD, and shared risk factors. a, Effect of genetic 
instruments for MDD (exposure) on CVD and risk factors (outcomes) after 
excluding the UKB sample from the MDD GWAS (which was responsible for most 
of the sample overlap in the exposure and outcome GWAS summary statistics).  
b, Effect of genetic instruments for CVD and risk factors on MDD after excluding 
the UKB sample from MDD GWAS. c, Results from LHC MR, that corrects for 
heritable confounders and sample overlap, with the IVW MR estimate given 
as reference, for the effect of MDD on CVD and risk factors. d Effect of genetic 
instruments for MDD-ASCVD on outcomes and risk factors. a-d Significantly 
pleiotropic estimates are indicated with a red asterisk. IVW estimate shown. 

Results from sensitivity analyses are reported in Supplementary Table 20. Points 
and error bars represent mean effect size (regression coefficient) and 95% CIs. 
Sample sizes for GWAS summary statistics are reported in Supplementary  
Table 1. The term beta refers to the log odds ratio. AF=Atrial Fibrillation; 
CAD=Coronary Artery Disease; Child. Mal.=Childhood Maltreatment; 
CRP = C-Reactive Protein; DBP=Diastolic Blood Pressure; Edu=Educational 
attainment; HDL=High-Density Lipoprotein; HF=Heart Failure; IL6=Interleukin-6; 
LDL=Low-Density Lipoprotein; MDD=Major Depressive Disorder; NonHDL=Non-
High-Density Lipoprotein; PAD=Peripheral Artery Disease; Phys. Act.=Physical 
activity; PP=Pulse Pressure; Psychosocial=Psychosocial/lifestyle; SBP=Systolic 
Blood Pressure; T2D=Type II Diabetes; TC=Total Cholesterol; TG=Triglycerides.
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Extended Data Fig. 10 | Support for causal effect of MDD on CVDs when 
adjusting for individual risk factors. Results from multivariable MR. Points 
and error bars represent mean effect size (regression coefficient) and 95% 
CIs. IVW estimate shown. Reference estimates of the association without 
any adjustment are printed in black. Sample sizes for GWAS summary 
statistics are reported in Supplementary Table 1. The term beta refers to the 
log odds ratio. AF=Atrial Fibrillation; CAD=Coronary Artery Disease; Child. 

Mal.=Childhood Maltreatment; CRP=C-Reactive Protein; DBP=Diastolic Blood 
Pressure; Edu=Educational attainment; HDL=High-Density Lipoprotein; 
HF=Heart Failure; IL6=Interleukin-6; LDL=Low-Density Lipoprotein; 
MDD=Major Depressive Disorder; NonHDL=Non-High-Density Lipoprotein; 
PAD=Peripheral Artery Disease; Phys. Act.=Physical activity; PP=Pulse Pressure; 
Psychosocial=Psychosocial/lifestyle; SBP=Systolic Blood Pressure; T2D=Type II 
Diabetes; TC=Total Cholesterol; TG=Triglycerides.
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