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Targeting CXCR4 impaired T regulatory function through PTEN
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BACKGROUND: Tregs trafficking is controlled by CXCR4. In Renal Cell Carcinoma (RCC), the effect of the new CXCR4 antagonist,
R54, was explored in peripheral blood (PB)-Tregs isolated from primary RCC patients.
METHODS: PB-Tregs were isolated from 77 RCC patients and 38 healthy donors (HDs). CFSE-T effector-Tregs suppression assay,
IL-35, IFN-γ, IL-10, TGF-β1 secretion, and Nrp-1+Tregs frequency were evaluated. Tregs were characterised for CTLA-4, PD-1, CD40L,
PTEN, CD25, TGF-β1, FOXP3, DNMT1 transcriptional profile. PTEN-pAKT signalling was evaluated in the presence of R54 and/or
triciribine (TCB), an AKT inhibitor. Methylation of TSDR (Treg-Specific-Demethylated-Region) was conducted.
RESULTS: R54 impaired PB-RCC-Tregs function, reduced Nrp-1+Tregs frequency, the release of IL-35, IL-10, and TGF-β1, while
increased IFN-γ Teff-secretion. The CXCR4 ligand, CXCL12, recruited CD25+PTEN+Tregs in RCC while R54 significantly reduced it.
IL-2/PMA activates Tregs reducing pAKT+Tregs while R54 increases it. The AKT inhibitor, TCB, prevented the increase in pAKT+Tregs
R54-mediated. Moreover, R54 significantly reduced FOXP3-TSDR demethylation with DNMT1 and FOXP3 downregulation.
CONCLUSION: R54 impairs Tregs function in primary RCC patients targeting PTEN/PI3K/AKT pathway, reducing TSDR
demethylation and FOXP3 and DNMT1 expression. Thus, CXCR4 targeting is a strategy to inhibit Tregs activity in the RCC tumour
microenvironment.

British Journal of Cancer (2024) 130:2016–2026; https://doi.org/10.1038/s41416-024-02702-x

INTRODUCTION
Renal cell carcinoma (RCC) is the third most common newly
diagnosed urogenital cancer after prostate and bladder cancer [1].
In 2020, over 400,000 kidney cancer were diagnosed with 180,000
deaths worldwide [2]. Therapy for localised RCC is surgical [3]
though 30% presents with metastatic disease and an additional
30% eventually develops recurrence or metastasis [4, 5]. RCC
tumour microenvironment (TME) is infiltrated by CD8+ T, CD4+ T,
Natural Killer (NK) cells, macrophages, neutrophils, T regulatory cells
(Tregs), and myeloid-derived suppressor cells (MDSCs) [6–8]. Human
Tregs, identified as CD4+CD25highCD127low/-Foxp3+, represent
5–10% of peripheral CD4+ T cells. Tregs inhibitory activity depends
on cell-to-cell interaction via cytotoxic T-lymphocyte antigen 4
(CTLA-4) and CD28 co-stimulation, secretion of cytokines (IL-10, IL-
35), and consumption of T-cell growth factor, IL-2 [9]. Foxp3 locus
has conserved noncoding sequences (CNS) [10] targets of
epigenetic modifications [11]. Within the FOXP3 enhancer CNS2,

Treg-specific demethylated region (TSDR) controls Tregs stability
[12, 13]. TSDR is demethylated in natural (n)Tregs, partially
methylated in induced (i)Tregs, and completely methylated in
effector T cells [14]. In RCC patients, the role of Tregs remains a
matter of controversy [7, 15–17] and recently CIBERSORT algorithm
correlated Tregs with poorer outcomes [18]. An inhibited PI3K/AKT
pathway, negatively regulated by PTEN, is essential for functional
and stable Treg cells. PTEN inhibits PI3K and limits phosphorylation
of AKT, promoting functional Tregs [19]. Moreover, PTEN is
downstream of other Treg-activating signals such as neuropilin-1
(Nrp-1) [20]. Tregs recruitments in the TME depends also on the
CXCL12/CXCR4 axis [21]. Cervical cancer, malignant pleural
mesothelioma, ovarian cancer and renal cell carcinoma secrete
CXCL12, which recruits CXCR4 expressing Tregs [22] impaired by
the specific CXCR4 antagonist AMD3100 [23–26]. In ovarian cancer,
AMD3100 impaired Tregs function promoting the shift toward
CD40L+IL-2+ T helper-like cells through PTEN loss [26]. A new family
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of peptide CXCR4 antagonists was developed through a ligand-
based approach. A three-residue domain was identified in
CXCL12 spatially overlapping with v-MIPII, viral inhibitory chemo-
kine secreted by herpes virus 8 (HHV8) [27] (WO2011092575).
Through lead compound optimisation, new powerful analogues,
R29 and R54 were developed [28]. R54 displayed subnanomolar
affinity toward CXCR4 (IC50 ≈ 1.5 nM) and does not bind CXCR3 nor
CXCR7 [29]. R29 was previously shown to impair RCC- and HCC-
patients derived Tregs suppressive capability [30, 31]. Herein, the
mechanism of R54 mediated-CXCR4 antagonism was explored on
Tregs from 77 primary RCC patients.

PATIENTS AND METHODS
Patients blood samples
Heparinized peripheral blood (PB) (8 mL) was collected from 77 primary
renal cell carcinoma (RCC) patients before partial/radical nephrectomy at
the Urology Unit of Istituto Nazionale Tumori di Napoli IRCCS “G. Pascale”
and Urology Unit, University of Naples “Federico II”. Heparinized blood was
also collected from 38 healthy donors (HDs). The research protocol was
approved by the Human Ethical Committee of the Institute (n. CEI/423/13).
Clinical features of patients are shown in Table 1.

Migration assay
Tregs migration was assessed as previously described [32–34]. Briefly,
freshly isolated peripheral blood mononuclear cells (PBMCs) were obtained
from RCC patients and HDs by Ficoll–Hypaque gradients (GE Healthcare

Bioscience). 106 PBMCs were stained with APC-Cy7-anti-CD4 and PE-anti-
CD25 mAbs to evaluate percentage of CD4+CD25+ T cell in PBMCs at time
0. Cells were transferred into the upper chambers 5.0 µm pore-size
polycarbonate membrane filter 24 Transwell plates (Costar Corning,
Cambridge, MA) in a final volume of 200 µL of RPMI-1640 medium
(GE Healthcare Life Sciences, HyClone Laboratories). CXCL12 (100 ng/mL;
R&D Systems, Minneapolis, MN), was added to the lower chamber and
after 16 h the migrated cells were stained with APC-Cy7-anti-CD4 and PE-
anti-CD25 mAbs. Migrated cells were counted as CD4+CD25+ cells lower
well/ CD4+CD25+ cells in upper well X100.

Purification of T cell subsets
PB samples were processed by Ficoll–Hypaque gradients. Peripheral
CD4+CD25+ Tregs along with peripheral CD4+CD25− T effector (Teff) were
isolated through Dynabeads Regulatory CD4+CD25+ T cell kit (Invitrogen
by Life Technologies). Briefly, CD4+ cells were isolated by negative
selection. A depletion beads solution was added to remove the non-CD4
cells. Then, CD25-beads were added to CD4+ T cells to capture the
CD4+CD25+ Tregs and the remaining fraction was used as CD4+CD25−

Teff cells. Finally, Dynabeads CD25 were removed from the cells. Collected
cells were >95% pure (confirmed by flow cytometry).

Tregs suppression assay
Carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled autologous
CD4+CD25− T effector cells from PB (CellTrace CFSE Cell Proliferation Kit,
Molecular Probes, by Life Technologies) were cultured with peripheral
CD4+CD25+ Tregs at 1:1 ratio. Cells were cultured (5 × 103 cells/well) in
U-bottom 96-well plates with RPMI-1640 complete medium (GE Healthcare
Life Sciences, HyClone Laboratories). T effector cells were stimulated for
5 days in the presence of Dynabeads Human T-Activator CD3/CD28 (Gibco
by Life Technologies). At the end of the coculture, the supernatant and the
cells were collected.

Cytokine assay
ELISA for IL-35, IFN-γ, IL-10, and TGF-β1 was conducted on the supernatant
from 5 days suppression tests according to manufacture instructions
(Human IL-35 ELISA kit-Boster Biological Technology Human IFN-γ, Human
IL-10 and Human LAP (TGF-β1)(Invitrogen-Thermo Fisher Scientific.)
Samples were acquired by LB 940 Multimode Reader Mithras (Berthold
Technologies).

Methylation studies: genomic DNA isolation, bisulfite
conversion, and qPCR
Methylation analysis was conducted on frozen PB-RCC- and PB-HD-derived
Tregs from CFSE-suppression assay. Genomic DNA (gDNA) was extracted
and bisulfite treatment of 500 ng genomic DNA was performed by using
the EZ DNA Methylation™ Kit (ZYMO Research). qPCR was prepared by
using SensiMix SYBR Kit (Bioline, London) and performed by LightCycler®

480 System (Roche Diagnostics). Primers for methylation and
demethylation-specific FOXP3-TSDR and computing of the demethylation
rate (DMR) of FOXP3-TSDR were previously described [35]. Briefly, we used
the following formula: 100/[1+ 2(CtTG- CtCG)] × 100%, where CtTG
represents the cycle threshold (Ct) achieved with TG (demethylated)
primers and CtCG represents the Ct achieved with CG (methylated)
primers. For female patients, this rate was corrected by a factor of 2 since
one TSDR allele is methylated as a result of X inactivation [36].

Real-time PCR
RNA was extracted from frozen PB-HD- and PB-RCC-derived Tregs using
the RNeasy Plus Micro kit (Qiagen). Total RNA (1 μg) was reverse
transcribed using QuantiTect Reverse Transcription Kit (Qiagen). cDNAs
were amplified using CFX96 Touch Real-Time PCR Detection System (Bio-
Rad) with iTaq Universal SYBR Green Supermix (Bio-Rad). The primers were
designed using the Primer3 tool (http://primer3.ut.ee/). Primers sequence:
CXCR4 Forward: TGAGGAGCATGACGG, CXCR4 Reverse: AGGGAAGCGTG
ATGA; DNMT1 Forward: CGGTTCTTCCTCCTGGAGAATGTCA, DNMT1 Reverse:
CACTGATAGCCCATGCGGACCA; TGFb1 Forward: TGCCCAGAGTGGTT
ATCTTT, TGFb1 Reverse: TAGTGAACCCGTTGATGTCC; FOXP3 Forward:
AGCACATTCCCAGAGTTCCT, FOXP3 Reverse: TGGCGTAGGTGAAAGGGG;
PTEN Forward: CCAGTGGCACTGTTGTTTCA, PTEN Reverse: CCTTTAGCTGGC
AGACCACA; CD25 Forward: CTGATGTGGGGACTGCTCA, CD25 Reverse:
GAATGTGGCGTGTGGGATC. Relative expressions of target genes were

Table 1. Patient characteristics.

RCC (n= 77)

N (%)

Age (median years)

<63 37 (48)

≥63 40 (52)

Gender

Male 46 (60)

Female 31(40)

Stage

pT1 9 (13)

pT2 8 (12)

pT3 15 (22)

pT4 2 (3)

Missing 34 (50)

Tumour size (cm)

≤5 26 (34)

>5 45 (58)

missing 6(8)

Histological variant

Clear cell 51(66)

Papillary 8(10)

Chromophobe 8(10)

Papillary-clearcell 3(4)

Sarcomatoid 1(2)

Missing 6(8)

ISUP/Vancouver 2012

1 5(6)

2 28 (37)

3 12 (16)

4 5(6)

Missing 27(35)
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Fig. 1 R54 impaired Tregs function in primary RCC patients. a Upper panel: CFSE-T effector proliferation in the presence of PB-RCC-Tregs
(CD4+CD25+) and PB-HD-Tregs. Tregs were pretreated for 30’ at 37 °C in 5% CO2 with R54 (10 µM) (RCC: 15 ± 3% in 1:1 vs. 50 ± 6% in 1:1+ R54
Teff: Tregs ratio, p < 0.05). The box plot represents the median and spread of data within min to max value (RCC, n= 16; HD, n= 19). Right
panel, representative density plots. a Lower panel: IFN-γ, IL-10, and TGF-β1 by ELISA assay in culture supernatant collected on day 5 from CFSE
experiments of RCC patients (IFN-γ 1:1 105 ± 7 pg/mL vs. 1:1+ R54 153 ± 12 pg/mL, p < 0.05); IL-10 (1:1 210 ± 18 pg/mL vs. 1:1+ R54 90 ± 8
pg/mL, p < 0.01); TGF-β1 (1:1 11 ± 0.7 ng/mL vs. 1:1+ R54 7 ± 0.2 ng/mL, p < 0.01). The box plot represents the median and spread of data
within the min to max value (RCC, n= 5). b PB-isolated Tregs from RCC patients were evaluated by FACS analysis for frequency of CTLA-4, PD-
1, and CD40L (CTLA-4+Treg: Tregs 19 ± 1% vs. Treg+R54 9 ± 2%, p < 0.05). Histograms represent the mean ± sem (RCC, n= 3). c Nrp1+Tregs from
CFSE assay of RCC patients and HDs (RCC: 3 ± 0.8% in 1:1 vs. 0.3 ± 0.1% in 1:1+ R54 Teff: Tregs ratio, p < 0.05). The box plot represents the
median and spread of data within min to max value (RCC, n= 7; HD, n= 6). In the right panel, representative density plots were shown. Paired
and unpaired Student’s t-test was used. (*p < 0.05; **p < 0.01; ***p < 0.001). Data are derived from at least three independent experiments.
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determined by the 2–ΔΔCt method using 18S and/or B2m as endogenous
control. All of the data are presented as means ± sem of three replicate
experiments.

Flow cytometry
After 15min pre-incubation with Human BD Fc Block Ab (clone Fc1; BD
Biosciences) to block Fcγ receptor binding the following antibodies were
utilised: APC-Cy7-anti-CD4 (clone RPA-T4), APC-anti-CD25 (clone 2A3), PE-
Cy7-anti-CD127 (clone HIL-7R-M2), AlexaFluorV450-anti-Foxp3 (clone
236A/E7), PE-anti-Neuropilin-1 (clone 12C1), BV650-anti-CXCR4 (clone
12G5), anti-APC-CXCR7 (lone 11G8), PE-Cy5-anti-CTLA-4 (clone BNI3),
APC-anti-PD-1 (clone MIH4); BB700-anti-CD40L (clone TRAP1), BV605-anti-
CD25 (clone 2A3), PE-anti-PTEN (clone A2B1) and AlexaFluor647-anti-pAKT
S473 (clone D9E) (BD Biosciences and eBioscience). PTEN and pAKT Tregs were
identified by phospho-intracellular staining according to the BD Phosflow
protocol (BD protocol III, https://www.bdbiosciences.com/en-us/resources/
protocols/human-whole-blood-samples). Flow cytometry was performed
on BD LSR Fortessa X-20 flow cytometer. Data were analysed using FlowJo
10.7 Software.

Statistical analysis
Fresh peripheral blood samples were prospectively collected before
surgery from a total of 77 RCCs and 38 HDs. Available samples during

collection were grouped and used for different assays based on a priori
sample size calculation for paired and unpaired two-tailed Student’s t-test,
performed to achieve at least a power ≥80%; given α err prob = 0.05.
(G*Power software package; ver. 3.1.9.2; http://www.gpower.hhu.de/
Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany). Data are
presented as mean values±sem. The collected data followed a normal
distribution. Two-tailed Student’s t-test was the appropriate statistical
method used to estimate differences between two independent or
matched paired groups of continuous variables. P-values less than 0.05
were considered statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001).
Variance within groups was not systematically assessed. Data were
analysed using the GraphPad Prism 8.0.1 software (GraphPad Software,
Inc., San Diego, CA).

RESULTS
CXCR4 antagonist R54 impaired PB-Tregs function in RCC
patients
CXCR4 and CXCR7 expression on Treg and Teff cells was
previously reported [30, 37]. Nevertheless, to evaluate the role of
R54 on RCC-Tregs, CXCR4 and CXCR7 were evaluated on Tregs and
Teff in 5 RCC patients and 5 HDs (Supplementary Fig. S1a–c). As
the newly developed CXCR4 antagonist R29 impaired Tregs

CD4 

C
D

25
 

0.3

1 15 4

0.5 0.1

#H
D

89
8 

#R
C

C
33

 

25

20

15

10

5

0

BSA

C
D

4+ C
D

25
+  m

ig
ra

te
d

 c
el

ls

CXCL12 R54 BSA CXCL12 R54

RCC (n=5) HD (n=5)

BSA CXCL12 R54

105

104

103

103 104 105

-103

-103

0

0

105

104

103

103 104 105

-103

-103

0

0

105

104

103

103 104 105

-103

-103

0

0

105

104

103

103 104 105

-103

-103

0

0

105

104

103

103 104 105

-103

-103

0

0

105

104

103

103 104 105

-103

-103

0

0

CD4+CD25+ migrated cells

Fig. 2 R54 impaired Tregs migration in primary RCC patients. CD4+CD25+ migration toward CXCL12 (100 ng/ml) plus R54 (10 µM) in RCC
patients and HDs (RCC: CXCL12 19 ± 1% vs. BSA: 6 ± 2%; p < 0.01; RCC: R54 8 ± 2% vs. CXCL12: 19 ± 1%; p < 0.01). The box plot represents the
median and spread of data within min to max value (RCC, n= 5; HD, n= 5). In the lower panel representative experiments were shown.
Migrated cells were calculated as CD4+CD25+ cells lower well/CD4+CD25+ cells in the upper well X100. Paired and unpaired Student’s t-test
was used. (*p < 0.05; **p < 0.01; ***p < 0.001). Data are derived from at least three independent experiments.

S. Santagata et al.

2019

British Journal of Cancer (2024) 130:2016 – 2026

https://www.bdbiosciences.com/en-us/resources/protocols/human-whole-blood-samples
https://www.bdbiosciences.com/en-us/resources/protocols/human-whole-blood-samples
http://www.gpower.hhu.de


function [28, 30], we evaluated the efficacy of the most powerful
R54 [29]. In Fig. 1a, R54 impaired Tregs suppression of Teff
proliferation in PB-RCC-Tregs (p < 0.05) but not in PB-HD-Tregs
(Fig. 1a, upper panel). According to that, R54 increased IFN-γ
(p < 0.05) and decreased IL-10 and TGF-β1 (p < 0.01) secretion
(Fig. 1a, lower panel). Moreover, IL-35 increased in the culture
media of PB-RCC-Tregs (p < 0.01) and R54 significantly reduced it
(Supplementary Fig. S2). Anti-CD3/CD28-Teff stimulation did not
affect CXCR4 frequency (Supplementary Fig. S3a) and R54 did not
affect Teff proliferation (Supplementary Fig. S3b) in both RCC- and
HD-samples. Interestingly, RCC-Tregs treated with R54 displayed
lower CTLA-4 (p < 0.05) and PD-1 while no significant changes
were observed for TH1-helper-like marker CD40L (Fig. 1b). R54
reduced Nrp-1+Tregs [38, 39] in RCC patients (p < 0.05) but not in
HDs (Fig. 1c, gating strategy in Supplementary Fig. S4). CXCL12-
CXCR4 axis was evaluated through CXCL12 dependent-Tregs
migration. PB-RCC-Tregs (CD4+CD25+) migrated toward CXCL12,
while PB-HD-Tregs did not, probably due to lower CXCR4 on HD-
Tregs. R54 treatment significantly impaired Tregs migration only in
PB-RCC (Fig. 2). Thus, R54 impaired PB-RCC Tregs function and
reduced peripheral Tregs migration.

R54 decreased CD25+PTEN+Tregs while inducing pAKT+Tregs in
PB-RCC patients
To investigate the mechanism through which R54 affects Tregs
function, PTEN was investigated [24]. PTEN and α chain of the
high-affinity IL-2 receptor (CD25) were evaluated on R54-treated
PB-RCC-Tregs. PTEN and CD25 mRNA were significantly reduced in
PB-RCC-Tregs (p < 0.05) but not in PB-HD-Tregs (Fig. 3a). Moreover,
as shown in Fig. 3b, R54 reduced the percentage of CXCL12
induced CD25+PTEN+Tregs (left panel, p < 0.05) and the PTEN+Tregs

MFI (right panel, p < 0.05) (Fig. 3b and Supplementary Fig. S5a).
Although not statistically significant, lower frequency of
CD4+CD25+Foxp3+PTEN+ was reported in R54-PB-RCC-Tregs in
culture with autologous Teff cells (Supplementary Fig. S5b). The
effect of R54 was evaluated on AKT, crucial for Tregs activity [19].
Treated R54-PB-RCC and -HDs were stimulated with IL-2/PMA and
pAKT+Tregs cells were evaluated. In IL-2/PMA-Tregs a significant
reduction of pAKT was detected (p < 0.05) while R54 increased it
(p < 0.05) (Fig. 4a). To confirm that, PB-RCC-Tregs and PB-HD-Tregs
were incubated with the AKT inhibitor triciribine (TCB) (20 µM) for
16 h before treatment with R54. Increased frequency of pAKT+Tregs
was detected in PB-RCC treated with R54 (p < 0.05) while TCB plus
R54 reduced the R54 induced pAKT+Tregs (p < 0.01). No significant
changes in pAKT+Tregs in PB-HD was observed (Fig. 4b). Together,
these data suggested that R54 impairs Tregs activity reducing
PTEN and increasing pAKT.

R54 decreased DMR of FOXP3-TSDR and downregulated
DNMT1 and FOXP3 in PB-RCC-Tregs
Functional Tregs present demethylation of TSDR within the FOXP3
locus [12, 14, 40]. Previously, high DMR of FOXP3-TSDR was
reported in suppressive PB-Tregs from RCC patients [30]. Herein, we
analysed the effect of R54 on FOXP3-TSDR methylation in Tregs
from PB-RCC and PB-HD. After 5 days of coculture with autologous
Teff, a significant decrease in DMR of FOXP3-TSDR was observed in
R54-treated PB-RCC-Tregs (p < 0.05). Conversely, R54 did not affect
the DMR of FOXP3-TSDR in Tregs from HD (Fig. 5a). Tregs function
increased with the demethylating agent 5-Azacitidine (5-Aza)
treatment [41]. Herein, R54 efficiently reversed RCC-Tregs mediated
suppression of Teff proliferation (p < 0.05) while the demethylating
agent 5-Aza reverted the R54 effect (p < 0.05); thus, R54-Tregs,
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Fig. 3 R54 reduced expression of PTEN and CD25 in PB-RCC Tregs. a PTEN and CD25 RNA expression in PB-Tregs treated for 30’ with R54
(10 µM) (Treg vs. Tregs+R54, p < 0.05). Histograms represent the mean ± sem (PTEN-RCC, n= 7; CD25-RCC n= 6 and PTEN-HD, n= 5; CD25-HD
n= 6). b Flow cytometry CD25+PTEN+Tregs from RCC patients and HD. Isolated-Tregs were treated for 30’ with R54 (10 µM), washed and
stimulated with CXCL12 (100 ng/mL) for 2’. In RCC (left): % CD25+PTEN+Tregs CXCL12 treated= 68 ± 3 vs. % CD25+PTEN+Tregs CXCL12 treated
+R54= 52 ± 6%, p < 0.05; (right): MFI PTEN+Tregs CXCL12 treated= 846 ± 60 vs. MFI PTEN+Tregs CXCL12 treated +R54 652 ± 59, p < 0.05. The
box plot represents the median and spread of data within min to max value (RCC, n= 6; HD, n= 5). Paired and unpaired Student’s t- test was
used. (*p < 0.05; **p < 0.01; ***p < 0.001). Data are derived from at least three independent experiments.
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potentiated Teff proliferation and the addition of 5-Aza to R54
reduced it, confirming R54-mediated functional Tregs impairments
(Fig. 5b). As consequence of TSDR modulation, the expression of
Tregs regulating genes (TGF-β1, FOXP3, DNMT1 and CXCR4) were
tested in R54 treated PB-RCC patients and PB-HDs. R54 significantly

decreased the expression of DNMT1 and FOXP3 in PB-RCC-Tregs
(p < 0.05) but not in PB-HD-Tregs (Fig. 6). No significant changes
were observed in Teff from both R54-PB-RCC patients and PB-HDs
(Supplementary Fig. S6). In the graphical abstract, the described
results are recapitulated (Fig. 7).
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DISCUSSION
In this manuscript, the efficacy of the new CXCR4 antagonist, R54,
was evaluated on peripheral Tregs isolated from 77 primary renal
cancer patients. R54 impaired PB-RCC Tregs function decreasing
PTEN and potentiating AKT signalling. PB-RCC Tregs were more
frequent and suppressive in RCC patients as compared to healthy
donors. Higher IL-35, immunosuppressive, and anti-inflammatory
cytokine [42] was reported to increase Tregs tumour recruitment
promoting immunosuppression [43, 44]. IL-35, TGF-β, and IL-10
Tregs suppress the activity of APCs and Teff cells [45] while CTLA-4,

PD-1Tregs promote the suppressive function [46]. Herein, R54
impaired PB-RCC-Tregs function reducing frequency of Nrp-

1+Tregs/CTLA-4+Tregs, reducing immunosuppressive cytokines
(IL-35, IL-10, and TGF-β), T effector proliferation, Tregs migration,
DMR of TSDR and FOXP3 and DNMT1 transcription. PTEN
signalling plays a crucial role in this process. During PI3K-AKT
activation, PI3K phosphorylates the membrane phospholipid PIP2,
generating PIP3, which acts as an anchor for AKT. Full active AKT is
phosphorylated at S473 and T308 by the kinases mTORC2 and
PDK1. PTEN opposes PI3K-AKT activation by catalysing the reverse
reaction, dephosphorylating PIP3 into PIP2 [47]. Active Tregs
exhibit comparable PI3K activity but dampened AKT activation,
particularly at the mTORC2-dependent S473 phosphorylation site
[48, 49]. Low AKT activity is functionally relevant in Tregs, as
overexpression of constitutively active AKT inhibits mouse Tregs
development in vivo and in vitro [19, 49–51]. Small molecule AKT
activator, SC79, impaired the growth of poor immunotherapy
responder murine tumours, B16 and EMT-6 suppressing
CD4+Foxp3+Treg TILs through the conversion of Tregs to
IFNγ+CD4+Th1-like T cells [52]. Nevertheless, PTEN can play a
double, opposite role: as a powerful tumour suppressor in
tumours cell and as an immune suppressor in Tregs [53–55].
PTEN absence results in reduced CD25 expression, the accumula-
tion of Foxp3+CD25- cells, and ultimately, the loss of Foxp3
expression [56]. Downstream of PTEN, reduced AKT activation
maintains FOXO transcription factor activity, which is needed for
Tregs development and function [57]. CD4, CD8, and DCs-
expressed ligand semaphorin-4a and the Tregs expressed Nrp-1
potentiates in vitro Tregs stability and function. Particularly,
semaphorin-4a ligation of Nrp-1 restrained AKT phosphorylation
via PTEN, which increased nuclear localisation of the transcription
factor FOXO3a [20]. FOXO1 and FOXO3 promote Foxp3 expres-
sion, upregulate CTLA-4 and other Treg-associated genes, and
inhibit the expression of the inflammatory cytokine IFN-γ [57–59].
TSDR methylation in Foxp3+CD25+ and Foxp3+CD25− cells
purified from wild-type and PTEN-ΔTreg mice revealed a moderate
reduction of TSDR demethylation in CD25+ PTEN-deficient Tregs
compared to wild-type CD25+Tregs [56]. Herein, R54 reduced
Foxp3 and DNMT1 transcription, as previously reported in murine
ovarian cancer, where the CXCR4 inhibitor, AMD3100, selectively
reduced intratumoral Foxp3 Tregs [23] and DNMT1 determining
loss of Tregs suppressive function in vitro and in vivo [56, 60].
Several evidence demonstrate a transcriptional link between
CXCR4 and PTEN activity focusing on AKT. In osteosarcoma, PTEN
loss activates AKT/CXCR4 signalling while in vivo PTEN over-
expression correlates with reduced CXCR4 expression [61]. In
colon cancer, CXCL12 induced transcriptional down-regulation of
activated PTEN promoting cell survival [62]. Consequently, the
downstream targets of PI3K/AKT, Nuclear factor κB (NF-κB), and
activator protein 1 (AP-1) can be abnormally activated [63, 64]. In
ovarian cancer, CXCR4 was detected among 681 hypo methylated-
upregulated genes while PTEN, and FOXO-1 were mentioned
among the hypermethylated repressed genes [65] and in vascular
smooth muscle cell (SMC), vascular injury increased PTEN/AKT
signalling through CXCL12- HIF-1alpha [66]. As NFkB is a target of
the CXCR4-CXCL12 pathway [67, 68] and HIF-1alpha controls
CXCR4 transcription [69] it is possible to speculate that the

transcriptional link between the axis CXCL12-CXCR4 relies on
HIF-1alpha, NFkB and/or methylation processes.
In conclusion, the CXCR4 antagonist R54 reduces CD25 and

PTEN expression on PB-RCC Tregs, resulting in a pAKT increase
and, thus, a defect of Tregs activity. Taken together, our findings
demonstrated that R54 causes impairment of peripheral Tregs in
primary RCC patients through regulation of the PTEN/PI3K/AKT
pathway, reduction in TSDR demethylation and Foxp3 and DNMT1
expression. CXCR4 targeting is a strategy to inhibit Tregs activity
contributing to the CXCR4 function in the RCC tumour
microenvironment.
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