Skip to main content
. 2024 Jun 4;12:1405780. doi: 10.3389/fped.2024.1405780

Table 1.

Comparison of the performance of five deep learning models.

Model Name Acc AUC 95% Cl SENS SPE PPV NPV Precision Recall F1 Threshold Cohort
Densenet121 0.839 0.912 0.877–0.948 0.805 0.873 0.864 0.817 0.864 0.805 0.833 0.519 TRAIN
0.722 0.768 0.661–0.874 0.821 0.667 0.575 0.872 0.575 0.821 0.676 0.313 Val
0.65 0.637 0.460–0.813 0.737 0.571 0.609 0.706 0.609 0.737 0.667 0.313 TEST
Resnet18 0.919 0.973 0.956–0.990 0.924 0.915 0.916 0.923 0.916 0.924 0.92 0.494 TRAIN
0.873 0.886 0.801–0.972 0.714 0.961 0.909 0.86 0.909 0.714 0.8 0.513 Val
0.85 0.876 0.766–0.986 0.737 0.952 0.933 0.8 0.933 0.737 0.824 0.513 TEST
SimpleViT 0.513 0.443 0.370–0.517 0.178 0.855 0.538 0.508 0.538 0.178 0.268 0.56 TRAIN
0.62 0.591 0.463–0.719 0.786 0.529 0.478 0.818 0.478 0.786 0.595 0.36 Val
0.65 0.497 0.305–0.691 0.842 0.5 0.593 0.769 0.593 0.842 0.696 0.36 TEST
Resnet50 0.924 0.907 0.861–0.954 0.907 0.941 0.939 0.91 0.939 0.907 0.922 0.501 TRAIN
0.65 0.622 0.435–0.808 0.842 0.476 0.593 0.769 0.593 0.842 0.696 0.379 VAL
0.722 0.661 0.533–0.789 0.321 0.941 0.75 0.716 0.75 0.321 0.45 0.481 TEST
Resnet101 0.919 0.973 0.957–0.990 0.915 0.924 0.923 0.916 0.923 0.915 0.919 0.498 TRAIN
0.675 0.638 0.456–0.820 0.842 0.524 0.615 0.786 0.615 0.842 0.711 0.142 VAL
0.595 0.587 0.460–0.714 0.857 0.451 0.462 0.852 0.462 0.857 0.6 0.128 TEST