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Abstract
The capacity of forests to sequester carbon in both above-  and belowground com-
partments is a crucial tool to mitigate rising atmospheric carbon concentrations. 
Belowground carbon storage in forests is strongly linked to soil microbial communities 
that are the key drivers of soil heterotrophic respiration, organic matter decomposi-
tion and thus nutrient cycling. However, the relationships between tree diversity and 
soil microbial properties such as biomass and respiration remain unclear with incon-
sistent findings among studies. It is unknown so far how the spatial configuration and 
soil depth affect the relationship between tree richness and microbial properties. Here, 
we	studied	the	spatial	distribution	of	soil	microbial	properties	in	the	context	of	a	tree	
diversity	experiment	by	measuring	soil	microbial	biomass	and	respiration	in	subtropical	
forests	(BEF-	China	experiment).	We	sampled	soil	cores	at	two	depths	at	five	locations	
along a spatial transect between the trees in mono-  and hetero- specific tree pairs of the 
native deciduous species Liquidambar formosana and Sapindus saponaria. Our analyses 
showed decreasing soil microbial biomass and respiration with increasing soil depth and 
distance from the tree in mono- specific tree pairs. We calculated belowground overy-
ielding of soil microbial biomass and respiration – which is higher microbial biomass or 
respiration	than	expected	from	the	monocultures	–	and	analysed	the	distribution	pat-
terns along the transect. We found no general overyielding across all sampling positions 
and depths. Yet, we encountered a spatial pattern of microbial overyielding with a sig-
nificant microbial overyielding close to L. formosana trees and microbial underyielding 
close to S. saponaria trees. We found similar spatial patterns across microbial properties 
and depths that only differed in the strength of their effects. Our results highlight the 
importance of small- scale variations of tree–tree interaction effects on soil microbial 
communities and functions and are calling for better integration of within- plot variabil-
ity to understand biodiversity–ecosystem functioning relationships.
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1  |  INTRODUC TION

Forest ecosystems are crucial for the planet's health and sustainability 
by	supporting	an	extensive	range	of	biodiversity	and	ecosystem	ser-
vices, including carbon storage, primary production and water and nu-
trient cycling (Bardgett & Wardle, 2011; van der Heijden et al., 2008; 
Wagg et al., 2014). The potential of carbon storage within a forest 
depends on the interactions with the environment and the dominant 
management	practices	(Erb	et	al.,	2013).	Especially	carbon	source–sink	
dynamics are significantly influenced by the interactions between soil 
microbes and understory plants (Xu et al., 2020).

Microbial-	driven	 decomposition	 of	 organic	 matter	 and	 nutrient	
cycling is essential for maintaining ecosystem productivity in many dif-
ferent biomes (Delgado- Baquerizo et al., 2016; Gottschall et al., 2019; 
Gougoulias et al., 2014; van der Heijden et al., 2008).	Microbes	are	
the primary drivers of belowground carbon storage in forests (Schmidt 
et al., 2011). They transform organic carbon into stable soil organic 
matter through processes like aggregation or accumulation of micro-
bial necromass (Buckeridge et al., 2020;	Miltner	 et	 al.,	2012; Wang 
et al., 2021). Thus, this stabilisation of the forest carbon pool provides 
tools to mitigate climate change (Bastin et al., 2019; Lewis et al., 2019). 
Understanding the drivers of belowground carbon storage and its re-
lationship with biodiversity is crucial for effective forest management 
and	carbon	sequestration	(Messier	et	al.,	2022). In particular, soil mi-
crobial	biomass	and	respiration	could	serve	as	a	proxy	for	nutrient	cy-
cling and soil organic matter turnover (Crowther et al., 2019) and were 
shown to be correlated with soil carbon sequestration (Beugnon, Bu, 
et al., 2023; Lange et al., 2015). Therefore, these soil microbial proper-
ties together can provide important information on multiple soil eco-
system	functions	(Eisenhauer	et	al.,	2018).

Microbial	properties	generally	 vary	between	 soil	 layers	due	 to	
lower	resource	availability	(e.g.	nutrients	and	oxygen)	in	the	deeper	
soil layers leading to reduced microbial diversity and biomass 
(Goebes et al., 2019; Jobbágy & Jackson, 2001). However, rhizode-
position can increase microbial activity at deeper soil layers (Lopez 
et al., 2020), potentially leading to different drivers of microbial ac-
tivity and biomass across soil layers (Blume et al., 2002; Loeppmann 
et al., 2016).

Tree diversity was shown to enhance soil microbial diver-
sity, abundance and functioning, leading to improved nutrient cy-
cling, organic matter decomposition and carbon storage (Beugnon 
et al., 2021; Gamfeldt et al., 2013; Gottschall et al., 2019; Li 
et al., 2019;	 Pei	 et	 al.,	2016); primarily due to higher diversity of 
substrates from litterfall and rhizodeposition as well as possible 
increased belowground interactions with tree species- specific soil 
microbes	 (Beugnon,	 Eisenhauer,	 et	 al.,	 2023; Huang et al., 2017). 
However, other studies showed that the tree diversity impact on 
soil microbial functions is non- significant, varies across functional 

groups such as bacteria and fungi (Cesarz et al., 2022; Rivest 
et al., 2019) or is less important than tree identity effects or abi-
otic conditions (Cesarz et al., 2022; Tedersoo et al., 2016; Yamamura 
et al., 2013). There are now empirical pieces of evidence that spatio- 
temporal dynamics along tree diversity gradients can drive soil mi-
crobial functions (Gottschall et al., 2022), which vary with the tree 
neighbourhood (Trogisch et al., 2021).

Forest soils' spatial structure and processes can become highly 
heterogeneous due to the spatial distribution of roots and root in-
puts. Soil respiration, for instance, was shown to be higher at the 
base	of	birch	trees	compared	to	150 cm	away,	indicating	‘hot-	spots’	
of	soil	microbial	activity	close	to	the	tree	(Parker	et	al.,	2017). This 
spatial distribution of soil functions is crucial when considering inter-
actions between trees or with the understory vegetation (Kuzyakov 
& Blagodatskaya, 2015;	Mao	 et	 al.,	2015).	Microbial	 communities	
were found to be more active and diverse when surrounded by 
neighbouring trees than when close to an isolated tree (Habiyaremye 
et al., 2020).	Especially,	the	effects	of	tree–tree	interactions	are	ex-
pected	to	be	maximised	in	the	interaction	zone	between	the	trees	
(Trogisch et al., 2021). This highlights the role of the neighbouring 
trees on the functioning of soil microbes in forest ecosystems, espe-
cially	in	the	context	of	highly	diverse	forests.	However,	information	
on the spatial distribution of soil processes (e.g. soil respiration) at 
finer spatial scales is missing (Friggens et al., 2020).

In this study, we aimed to understand the effects of tree–tree in-
teractions on soil microbial biomass and respiration and their spatial 
distribution. We set up small- scale transects in tree neighbourhoods 
in	a	Chinese	subtropical	 forest	experiment	 (BEF-	China),	where	we	
tested the following hypotheses: (H1) In mono- specific tree pairs, 
we	 expect	 decreasing	 microbial	 biomass	 and	 respiration	 with	 in-
creasing distance from the trees and with increasing soil depth, due 
to lower resource availability in greater distances. (H2) Due to higher 
complementarity as well as quantity and diversity of resource in-
puts	 between	hetero-	specific	 tree	 pairs,	we	 expect	 overall	 higher	
microbial biomass and respiration than in mono- specific pairs. (H3) 
We	expect	the	interaction	between	hetero-	specific	tree	pairs	to	be	
maximised	in	the	interaction	zone	between	the	two	trees;	thus,	soil	
microbial biomass and respiration are highest in the topsoil in the 
middle of the transect between two adjacent trees.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The study site was located in south- east China near the City 
of	 Xingangshan,	 Jiangxi	 Province	 (29.12°	 N,	 117.90°	 E),	 and	 is	
part	 of	 the	BEF-	China	 experiment	 (Bruelheide	 et	 al.,	2014). The 
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experiment	was	planted	in	2009,	after	a	clear-	cut	of	the	previous	
commercial plantation of Pinus massoniana and Cunninghamia lan-
ceolata,	and	 it	covers	an	area	of	26.7 ha,	 ranging	 in	altitude	from	
105	 to	 275 m.	 The	 region	 has	 a	 subtropical	 climate,	 with	warm,	
humid summers and cool, dry winters. The local mean annual 
temperature	 is	 16.7°C	with	 an	 annual	 precipitation	 of	 1821 mm	
(Yang et al., 2013). The soils of this region are Cambisols and 
Cambisol derivatives, with Regosols on ridges and crests (Geißler 
et al., 2012; Scholten et al., 2017). The natural vegetation of the 
region is characterised by species- rich, broad- leaved, subtropical 
forests dominated by evergreen and deciduous species such as 
Castanopsis eyrei, Cyclobalanopsis glauca, Daphniphyllum oldhamii 
and Lithocarpus glaber (Bruelheide et al., 2011, 2014).

2.2  |  Study design and field sampling

We	selected	two	plots	with	the	same	species	mixture	of	the	decid-
uous tree species Liquidambar formosana and Sapindus saponaria. 
The selected tree species have significant and dissimilar effects on 
soil microbial properties (Beugnon et al., 2021). In each plot, we se-
lected five replicates of both mono- specific pairs (L. formosana–L. 
formosana and S. saponaria–S. saponaria) and of the hetero- specific 
pair (L. formosana–S. saponaria). The litter layer was removed prior 
to	sampling.	Prior	to	sampling	the	soil,	the	exact	distance	between	

the trees was measured to ensure an equal distribution of the 
sampling positions; the mean distance between the trees was 
1.4 ± 0.4 m.	 To	 measure	 the	 spatial	 distribution	 of	 soil	 microbial	
biomass and respiration, we took five soil cores on the transect 
line between each pair using 5- cm- diameter soil cores. To test 
for the effect of soil depth on soil microbial biomass and respira-
tion,	each	 soil	 core	was	 split	 into	depths	of	0–5 cm	and	5–10 cm	
and	sieved	through	a	2 mm	mesh	(Figure 1). The soil samples were 
stored	at	−20°C	until	being	analysed	approximately	2 months	later.	
Altogether,	300	soil	samples	were	collected	from	two	plots,	three	
combinations of trees replicated five times, five positions and two 
depths.	Additionally,	the	tree	diameter	at	breast	height	(DBH)	was	
measured for each tree pair to calculate tree biomass, following 
Beugnon, Bu, et al. (2023).

2.3  |  Soil microbial biomass and respiration 
measurements

We measured soil microbial biomass (Cmic) and respiration using 
6 g	of	fresh	soil	on	an	automated	O2 micro- compensation apparatus 
(Scheu, 1992). Soil microbial respiration was measured first, as the 
oxygen	consumption	per	hour	per	dry	weight	of	soil	 in	μl (respira-
tion given in μL O2 g

−1 dry weight h−1). This reflects the active part 
of	 the	 soil	microbial	 community	at	 the	 sampling	 time.	Afterwards,	

F I G U R E  1 Sampling	Design.	Overview	of	the	BEF-	China	experimental	Site	a	(Panel	a)	with	the	two	sampled	plots	(green)	representing	
two-	species	mixture	plots.	Plot	tree	planting	grid	pattern	with	a	marked	tree	pair,	here	only	a	small	section	of	the	20 × 20	trees	plot	was	
drawn.	Positions	of	the	five	soil	cores	between	the	tree	pair	with	the	in-	core	division	of	the	depths.	Tree	species	combinations	are	shown	in	
Panel	b.
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the microbial biomass (given in μg	microbial	 carbon g−1 dry	weight)	
was	measured	by	adding	glucose	(8 mg	per	gram	of	dry	soil)	to	the	
samples (substrate- induced respiration [SIR] method). The microbial 
biomass	measurement	was	recorded	for	approximately	12 h	to	quan-
tify the total metabolically active biomass of soil microorganisms of 
the sample (Scheu, 1992).

2.4  |  Statistical analysis

A	description	 of	 all	 the	 variables	 used	 in	 this	 study	 can	 be	 found	
in Table S1.	All	data	handling	and	statistical	calculations	were	per-
formed using the R statistical software version 4.2.2 (www. r-  proje 
ct. org), and R- scripts are provided on https:// github. com/ henri ettec 
hrist el/ Soil-  micro bes_ Tree-  Inter action. git, model fit and statistical 
assumptions can be found in Supplement S2.

2.4.1  |  Spatial	distribution	of	microbial	biomass	and	
respiration (H1)

To test the effects of distance to the closest tree and depth on the 
soil	microbial	biomass	and	respiration,	we	used	linear	mixed-	effects	
models and normal distribution assumptions that included plot as a 
random	effect,	and	distance	and	depth	as	fixed	effects.	The	model	
was fitted on mono- specific pairs and was used to predict the soil 
microbial properties over a distance to the closest tree from 0 to 
90 cm	and	a	depth	from	0	to	10 cm	(Supplement	S2).

2.4.2  |  Belowground	overyielding	between	
hetero- specific tree pairs (H2)

Belowground overyielding of soil microbial biomass and 
respiration was calculated as the difference between ob-
served soil microbial properties between a hetero- specific 
pair	 and	 what	 would	 be	 expected	 based	 on	 the	 weighted	
means of the mono- specific pairs for a given position be-
tween the trees 

(

overyielding(position=i,depth=j) =observed(i,j)−  	  
(

expectedL. formosana
(i,j)

+expected
S. saponaria

(i,j)

)

∕2
)

 ,	 where	 ‘i’	 is	 the	 posi-
tion	between	the	trees	and	‘j’	is	the	depth.	Positive	results	indi-
cate	soil	microbial	properties	in	mixed	pairs	are	overyielding	(i.e.	
producing	more	biomass	or	respiration	than	expected	based	on	
mono- specific pairs), and negative results indicate soil microbial 
properties	 in	mixed	 pairs	 are	 underyielding	 (i.e.	 producing	 less	
biomass	 or	 respiration	 than	 expected	 based	 on	 mono-	specific	
pairs).	The	expected	values	were	predicted	from	the	model	fits	
from H1.

We used belowground overyielding as a response variable to test 
for the effect of the hetero- specific pair on the average value of the 
soil	samples.	Additionally,	we	tested	for	the	effect	of	depth	using	a	
linear	mixed-	effects	model	with	plot	as	 random	effect	and	pair	as	
fixed	effect.

To determine differences between soil depths, we used a Tukey 
HSD	test	based	on	an	analysis	of	variance	(ANOVA	type	1).

2.4.3  |  Spatial	distribution	of	belowground	
overyielding (H3)

To test the effects of distance to the tree species and depth on the 
belowground overyielding of soil microbial biomass and respiration, 
we	used	linear	mixed-	effects	models,	which	included	plot	as	a	ran-
dom effect and distance in centimetres from the trees and depth as 
fixed	effects	(Supplement	S2).	We	fixed	the	positions	of	the	trees	
to L. formosana being tree 1 and S. saponaria	being	tree	2	in	a	mixed	
pair.	Like	this,	the	positioning	of	the	trees	was	fixed	within	the	data	
and could be analysed in terms of a spatial gradient.

All	 linear	 mixed-	effect	 models	 were	 fitted,	 using	 the	 ‘lmer’	
function of the R package lme4 (Bates et al., 2015). To define the 
quality	of	the	model	fits	of	all	used	linear	mixed-	effects	models,	
the	‘check_model’	function	of	the	R	package	performance (Lüdecke 
et al., 2021) was used to investigate various model assumptions, 
such as normality of residuals, normality of random effects, lin-
ear relationship, homogeneity of variance and multicollinearity 
(Briggs & Cheek, 1986).

3  |  RESULTS

The analyses showed on average a high variability in soil microbial 
biomass	 (mean ± SD = 381.48 ± 137.02 μg Cmic g−1 dry weight) and 
soil	basal	respiration	(1.77 ± 0.93 μL O2 g

−1 dry weight h−1) among the 
samples from the investigated plots.

3.1  |  Spatial distribution of soil microbial 
biomass and respiration (H1)

The analyses showed on average higher microbial biomass 
(mean ± SD = 380.97 + 123.49 μg Cmic g−1 dry weight) and respira-
tion	 (1.91 + 0.93 μL O2 g

−1	dry	weight h−1) in the mono- specific tree 
pairs of Sapindus saponaria in comparison to Liquidambar formosana 
(microbial	 biomass:	 mean ± SD = 355.05 ± 138.55 μg	 Cmic g−1 dry 
weight;	 microbial	 respiration:	 1.65 ± 0.77 μL O2 g

−1	 dry	 weight h−1). 
However, we could observe a similar trend in relation to space for 
both species (Figures S2 and S3).

Soil microbial biomass decreased significantly with increasing 
distance to the tree (estimate ±	 SE = −1.60 ± 0.57 μg	 Cmic g−1 dry	
weight cm−1, p = .006)	 and	 with	 soil	 depth	 (−44.96 ± 8.20 μg Cmic 
g−1 dry weight cm−1, p < .001,	Figure 2). The interaction of distance 
and depth was not significant (p = .064).	Likewise,	soil	microbial	res-
piration	decreased	with	increasing	depth	(−0.14 ± 0.06 μL O2 g−1 dry 
weight h−1 cm−1, p = .01),	but	distance	to	the	tree	and	the	interaction	
of distance and depth had no significant effects (p = .08,	p = .315,	re-
spectively, Figure 2).

http://www.r-project.org
http://www.r-project.org
https://github.com/henriettechristel/Soil-microbes_Tree-Interaction.git
https://github.com/henriettechristel/Soil-microbes_Tree-Interaction.git
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3.2  |  Spatial distribution of belowground 
overyielding (H2–H3)

Our analyses showed no general belowground overyielding for 
microbial	 biomass	 or	 respiration	 between	 the	 mixed	 tree	 species	
pairs (Figure 3a,d).	An	 increasing	depth	reduced	soil	microbial	bio-
mass overyielding (estimate ±	SE = −150.67 ± 42.17 μg Cmic g−1 dry 
weight cm−1, p < .001)	but	increased	microbial	respiration	overyield-
ing	(0.71 ± 0.21 μL O2 g−1 dry weight h−1 cm−1, p = .001,	Figure 3b,e, 
respectively).

We studied the spatial distribution of microbial properties over-
yielding by testing for the interacting effects of increasing distance 
to L. formosana (tree 1, i.e. closeness to tree 2) and depth.

We found that an increased distance (from L. formosana) had 
a significant negative effect on the microbial biomass overyielding 
(−452.51 ± 34.90 μg Cmic g−1 dry weight cm−1, p < .001).	The	analy-
sis showed overyielding close to L. formosana (i.e. tree 1), turning 
into underyielding close to S. saponaria (i.e. tree 2, Figure 3c). This 
pattern	was	even	stronger	in	the	shallower	soil	(0–5 cm)	compared	
to	the	deeper	soil	 layer	 (5–10 cm),	as	 indicated	by	a	significant	 in-
teraction effect between distance and depth (interaction estimate 
±	 SE = 30.01 ± 10.07 μg Cmic g−1 dry weight cm−1, p = .004).	 We	
found similar results for the overyielding of microbial respiration: 
increased distance to L. formosana (tree 1) decreased the microbial 
respiration	 overyielding	 significantly	 (−0.77 ± 0.19 μL O2 g−1 dry 
weight h−1 cm−1, p < .001)	with	overyielding	close	to	L. formosana, and 

F I G U R E  2 Distance	to	tree	and	depth	effects	on	microbial	biomass	(top)	and	respiration	(bottom)	in	mono-	specific	tree	pairs.	Effects	are	
predicted from the model (soil properties ~ depth × distance to tree) with plot as random effect. Distance to tree reports the distance to the 
closest	tree	from	mono-	specific	tree	pairs.	Microbial	biomass	is	coloured	blue	(low)	to	red	(high),	and	microbial	respiration	is	coloured	purple	
(low) to orange (high). The significance levels were standardised across the panels (*p < .05;	**p < .01;	***p < .001).

F I G U R E  3 Distance	to	tree	and	depth	
effects on microbial biomass (top) and 
respiration (bottom) overyielding in 
hetero-specific tree pairs. The mean value 
(grey square) of overyielding for microbial 
biomass (a) and respiration (d) across 
all depths and positions, for each depth 
(microbial biomass: b, yellow circle for 
0–5 cm;	brown	triangle	for	5–10 cm,	and	
microbial respiration: e, light blue circle 
for	0–5 cm;	dark	blue	triangle	for	5–10 cm)	
and each sampling point by depth 
(microbial biomass: C and respiration: f). 
Confidence intervals were predicted from 
models	using	the	‘ggpredict’	function	of	
the R package ggeffects. The significance 
levels were standardised across the panels 
(*p < .05;	***p < .001).
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underyielding close to S. saponaria (Figure 3f). Contrary to microbial 
biomass, this pattern was stronger in the deeper soil compared to 
the shallower soil layer (interaction estimate ±	SE = −0.38 ± 0.05 μg 
Cmic g−1 dry weight cm−1, p < .001).

4  |  DISCUSSION

In this study, we tested the effect of tree–tree interactions and the 
spatial distribution of microbial biomass and respiration in subtropical 
forest soils. We found negative effects of increased distance to the 
tree and depth on soil microbial biomass and respiration within mono- 
specific	 pairs.	 Although	 the	 effects	were	 different	 for	 Liquidambar 
formosana and Sapindus saponaria, we observed similar trends in rela-
tion to space. In the hetero- specific pairs, we did not find any signifi-
cant tree–tree interaction effects on the average soil sample value at 
the species pair level. However, there were substantial variations in 
tree–tree interaction effects at the small spatial scale. In fact, effects 
on both soil microbial properties were spatially distributed, ranging 
from overyielding near Liquidambar formosana to underyielding close 
to Sapindus saponaria.

4.1  |  Spatial distribution of soil microbial 
biomass and respiration (H1)

Soil microbial biomass decreased with increasing distance from 
the	trees	 in	mono-	specific	 tree	pairs.	This	could	be	explained	on	
the one hand by higher water availability due to stemflow near 
the tree base, which can leach and transport nutrients and micro-
organisms from the canopy layer to the soils (Bittar et al., 2018). 
Soil moisture was shown to be important in many studies before 
(Cesarz et al., 2022; Schimel, 2018; Serna- Chavez et al., 2013); 
we also found this effect in our study (see Figure S6). High lev-
els	of	 soil	moisture	 can	 increase	 soil	 enzyme	activities,	 fluxes	of	
soil	nutrients	and	oxygen	availability	(Brockett	et	al.,	2012; Stark & 
Firestone, 1995), and higher soil humidity can furthermore buffer 
possible negative changes in soil pH, suggesting it to be a key 
driver of soil microbial biomass (Cesarz et al., 2022). On the other 
hand	it	could	also	be	explained	by	a	higher	rhizodeposition	closer	
to	the	trees	(Parker	et	al.,	2017). Our findings would suggest the 
importance of forest density in modulating soil functioning.

As	expected,	we	also	 found	a	negative	effect	of	 soil	 depth	on	
both microbial properties. This is in line with previous findings 
where a lower amount of carbon and nutrients was found in deeper 
soil layers, as the main decomposition happens in the leaf litter cover 
and top soil layers (Goebes et al., 2019; Jobbágy & Jackson, 2001; 
Prescott	 &	Grayston,	2013).	 Additionally,	 deeper	 soil	 layers	 often	
have	 a	 decreased	 amount	 of	 oxygen,	 soil	water	 content	 and	 con-
tain	less	plant	root	biomass	(Engelhardt	et	al.,	2018; Fall et al., 2012; 
Serna- Chavez et al., 2013). Thus, the present results at the small 
scale are in line with previous findings at the larger scales, where soil 
organic carbon decreased with increasing soil depth and distance 

to trees (Rabearison et al., 2023). These similar results suggest that 
understanding interaction effects at small scales have the potential 
to be upscaled.

4.2  |  Spatial distribution of belowground 
overyielding (H2–H3)

Our study showed no overyielding for the average value (across all 
soil core positions and depth layers). However, we found significant 
differences between the soil depths for both soil microbial functions. 
Microbial	 biomass	 showed,	 on	 average,	 higher	 overyielding	 in	 the	
shallower	soil	 (0–5 cm),	whereas	microbial	respiration	showed	higher	
overyielding	in	the	deeper	soil	 (5–10 cm).	The	BEF-	China	experimen-
tal	 Site	A	was	 established	 in	 2009	 after	 a	 clear-	cut	 of	 the	 previous	
plantation (Yang et al., 2013). In grasslands, plant diversity effects on 
soil organic matter are getting stronger in the topsoil layer over time 
(Lange et al., 2023).	These	findings	from	experimental	grasslands	are	
also suggested in forests top soil layers since soil microbial biomass and 
organic matter content are affected by forest productivity (Beugnon, 
Eisenhauer,	 et	 al.,	 2023), and tree diversity effects on productivity 
could get stronger with stand age (Huang et al., 2018;	Perles-	Garcia	
et al., 2021). This could indicate that overyielding would similarly in-
crease over time in diverse stands. The increased average overyield-
ing of microbial respiration in the deeper soils could suggest increased 
carbon sequestration by adding soil microbial necromass to the carbon 
pool. Higher microbial respiration indicates a higher microbial activ-
ity related to the decomposition and recycling of fresh material. Here, 
easily accessible organic matter such as leaves are turned into more 
stable	 forms	 of	 organic	 matter,	 for	 example,	 microbial	 necromass,	
and contributes to carbon storage over time (Buckeridge et al., 2020; 
Schmidt et al., 2011).	A	higher	respiration	can	indicate	a	higher	release	
of	carbon	dioxide	 into	 the	atmosphere.	However,	 it	was	also	shown	
that higher plant diversity and therefore increased rhizosphere carbon 
input can result in both increased microbial activity and carbon storage 
(Lange et al., 2015).

We	expected	hetero-	specific	 tree–tree	 interaction	effects	 to	
be	maximised	in	the	middle	between	the	planted	trees.	Contrary	
to our hypothesis (H3), we found an overyielding of soil microbial 
biomass and respiration close to L. formosana and underyielding 
close to S. saponaria,	 showing	 that	microbes	 in	mixed	 pairs	 per-
form	 better	 than	 expected	 close	 to	 L. formosana but less well 
than	 expected	 close	 to	 S. saponaria. The gradient from over-  to 
underyielding of microbial respiration was less pronounced in the 
shallower soil than in the deeper soil. This could indicate that the 
presence of S. saponaria had a positive effect on microbes close to 
L. formosana	and	 it	 is	stronger	 in	 the	deeper	soil	 layer	 (5–10 cm),	
possibly	through	fine	root	exudates	(Zheng	et	al.,	2017).	Microbial	
respiration	was	 less	 affected	by	 the	mixture	 than	microbial	 bio-
mass	 in	 the	 topsoil	 layer	 (0–5 cm).	 It	was	 shown	 that	 the	balsam	
of L. formosana contains acidic compounds, which were reported 
to be inhibitory for fungi (Chien et al., 2013). These could also 
be	present	in	the	leaf	litter	or	root	exudates	(Öztürk	et	al.,	2008) 
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and inhibit microbial respiration more than microbial biomass. 
Together with a spatial distribution of litter in the hetero- specific 
pairs	(Beugnon,	Eisenhauer,	et	al.,	2023), this might lead to a small- 
scale change in soil pH. Soil pH was found to be a strong driver 
of microbial growth (Fierer & Jackson, 2006), and additional pH 
measurements should be performed in future studies to better 
understand the opposing species identity effects of S. saponaria 
and L. formosana. It was shown that soil fungi and bacteria react 
differently to changes in soil pH: bacterial growth decreased with 
a more acidic pH, whereas fungal growth was shown to increase 
(Rousk et al., 2009).	This	might	also	explain	the	significant	negative	
effect of L. formosana	on	microbial	respiration	in	this	experiment	
(Supplement S2: Figure S6). To better understand distribution pat-
terns of microbial properties, belowground tree traits (e.g. spe-
cific root length and root diameter) should be taken into account. 
Recent	studies	could	link	them	to	carbon	exudation	and	fine	root	
density (Bergmann et al., 2020; Sun et al., 2021), as well as soil 
organic	matter	decomposition	(Adamczyk	et	al.,	2019).

The positive tree–tree interaction effect of the hetero- specific 
tree pair on soil microbial biomass and respiration shows that neigh-
bourhood effects are acting at small spatial scales, which could 
explain	 the	 inconsistencies	 of	 BEF	 relationships	 reported	 in	 pre-
vious forest studies (Beugnon et al., 2021; Cesarz et al., 2022; Li 
et al., 2019;	Pei	 et	 al.,	2016). Our results stress the need to stan-
dardise sampling methods by considering small- scale interactions to 
understand the mechanisms behind tree–soil interactions. In addi-
tion, measurements of soil microbial properties across a wider range 
of species transects are now needed to better understand tree–tree 
interactions in space and their biological drivers.

5  |  CONCLUSION

In the present study, we were able to show in a subtropical tree 
diversity	 experiment	 (BEF-	China)	 that	 soil	 microbial	 biomass	 and	
respiration show a fine spatial pattern in the tree- tree interaction 
zone, both vertically and horizontally. Whereas the average value 
of the soil samples was not affected by tree–tree interactions, tree–
tree interactions ranged from overyielding close to Liquidambar 
formosana to underyielding close to Sapindus saponaria. Our find-
ings suggest that tree–tree interactions are driving soil functioning 
when zooming to the appropriate spatial scale. Therefore, in order 
to understand relationships between trees and soil processes, future 
research	 should	 focus	 on	 fine-	scale	 spatial	 variability	 (Eisenhauer	
et al., 2023).
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