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Abstract

Background: The ergogenic effects of caffeine intake on exercise performance are well-established, even if differences exist among individuals

in response to caffeine intake. The genetic variation of a specific gene, human cytochrome P450 enzyme 1A2 (CYP1A2) (rs762551), may be one

reason for this difference. This systematic review and meta-analysis aimed to comprehensively evaluate the influence of CYP1A2 gene types on

athletes’ exercise performance after caffeine intake.

Methods: A literature search through 4 databases (Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure) was

conducted until March 2023. The effect size was expressed as the weighted mean difference (WMD) by calculating fixed effects meta-analysis if

heterogeneity was not significant (I2 � 50% and p � 0.1). Subgroup analyses were performed based on AA and AC/CC genotype of CYP1A2.

Results: The final number of studies meeting the inclusion criteria was 12 (n = 666 participants). The overall analysis showed that the cycling

time trial significantly improved after caffeine intake (WMD =�0.48, 95% confidence interval (95%CI): �0.83 to �0.13, p = 0.007). In

subgroup analyses, acute caffeine intake improved cycling time trial only in individuals with the A allele (WMD =�0.90, 95%CI: �1.48 to

�0.33, p = 0.002), but not the C allele (WMD =�0.08, 95%CI: �0.32 to 0.17, p = 0.53). Caffeine supplementation did not influence the Wingate

(WMD = 8.07, 95%CI: �22.04 to 38.18, p = 0.60) or countermovement jump test (CMJ) performance (WMD = 1.17, 95%CI: �0.02 to 2.36,

p = 0.05), and these outcomes were not influenced by CYP1A2 genotype.

Conclusion: Participants with the CYP1A2 genotype with A allele improved their cycling time trials after caffeine supplementation. However,

compared to placebo, acute caffeine supplementation failed to increase the Wingate or CMJ performance, regardless of CYP1A2 genotype.

Keywords: Countermovement jump test; Endurance; Ergogenic aid; Gene polymorphism; Wingate
1. Introduction

Caffeine is a well-established ergogenic agent, known to

enhance athletic performance.1 In particular, endurance perfor-

mance can be improved when a dose ranging from 3 to 6 mg

per kilogram of body weight is consumed.1,2 Although

numerous studies have demonstrated an improvement in
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endurance performance (i.e., a reduction in time trial) and

power performance (increase in jumping height) following

caffeine supplementation,2�4 a substantial interindividual vari-

ability still exists in response to caffeine ingestion.5 Therefore,

some individuals may experience beneficial effects from

caffeine consumption, while others may experience no

effects or even adverse reactions, such as palpitation and

insomnia. In fact, a significant proportion of individuals

fail to experience performance improvements, as nearly

30% of athletes report adverse effects (Table 1). This vari-

ability in responses could be partly attributed to genetic
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Table 1

Individual responses to exercise performance after consuming caffeine with adverse effects.

Study Exercise mode Caffeine

dosage

Ingestion

time

Sample size Did not

improve

Adverse effect

Acker-Hewitt et al. (2012)60 20-km cycling 6 mg/kg 60 min prior 10 male cyclists 4 participants Not identified

Astorino et al. (2011)61 10-km cycling 5 mg/kg 60 min prior 12 male cyclists 4 participants 5 participants (increased

energy, anxiety, mild tremor,

and nausea)

Astorino et al. (2012)62 8.2-km cycling 6 mg/kg 60 min prior 10 young females 4 participants Not identified

Beaumont et al. (2017)63 60-min cycling 6 mg/kg 60 min prior 8 healthy males 2 participants No adverse effects

Christensen et al. (2014)64 6-min maximal

test on a rowing

ergometer

3 mg/kg 60 min prior 12 elite rowers

(11 males and

1 female)

3 participants Not identified

Church et al. (2015)65 5-km running 3 mg/kg 60 min prior 20 participants

(10 males

and 10 females)

8 participants

(4 males and

4 females)

Not identified

Desbrow et al. (2012)66 Cycling time trial 3 mg/kg 90 min prior 16 well-trained male

cyclists

2 participants Not identified

6 mg/kg 4 participants

Gir�aldez-Costas et al.

(2022)67
Backwards throw 3 mg/kg 45 min prior 13 trained shot putters 6 participants 3 participants (nervousness,

gastrointestinal problems,

activeness, muscular pain,

headache, and increased urine

production)

Standing shot put 2 participants

Complete shot put 3 participants

Gonçalves et al. (2017)68 Cycling time trial 6 mg/kg 60 min prior 40 male cyclists 20 participants 16 participants (tachycardia,

increased wakefulness and

attention)

Graham-Paulson et al.

(2016)69
3£ 20-m sprint tests 4 mg/kg 70 min prior 12 male wheelchair

rugby players

5 participants 5 participants (increased

spasticity, struggling with

decision-making, headaches,

and nausea

Pitchford et al. (2014)70 Cycling time trial 3 mg/kg 90 min prior 9 well-trained male

cyclists

3 participants Not identified

Potgieter et al. (2013)26 Olympic-distance

triathlon

6 mg/kg 60 min prior 26 triathlon athletes

(14 males

and 12 females)

6 participants 11 participants (shakiness,

heart palpitations, and gastro-

intestinal tract disturbances).

Richardson et al. (2016)71 Squat and

bench press

5 mg/kg 60 min prior 9 resistance-trained

males

3 participants Not identified

Santos Rde et al. (2013)72 4-km cycling 5 mg/kg 60 min prior 8 trained male cyclists 2 participants Not identified

Skinner et al. (2013)73 40-km cycling 6 mg/kg 60 min prior 14 trained male

cyclists

and triathletes

5 participants 4 participants (headaches,

increased alertness, nausea,

light-headedness, and muscle

cramping)

When peak serum

caffeine concentrations

will coincide with

onset of exercise.

9 participants 4 participants (headaches,

increased alertness, nausea,

light-headedness, and muscle

cramping)

Smirmaul et al. (2017)74 Incremental exercise

test on a cycle

ergometer

4 mg/kg About 70 min prior 7 male adults 1 participant Not identified

Stadheim et al. (2013)75 8-km cross-country

double poling perfor-

mance tests

6 mg/kg 75 min prior 10 trained male

cross-country skiers

2 participants Not identified

Dos Santos et al. (2023)39 8-km cross-country

double poling time

trial

4.5 mg/kg 73 min prior 13 sub-elite male

cross-country skiers

3 participants Not identified

Wang et al. (2022)76 Sprint triathlon 110 mg 60 min prior 12 male triathlon

athletes

5 participants Not identified

220 mg 9 participants
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polymorphisms, which are among the factors contributing

to individual differences.6 In particular, genetic variation of

the human cytochrome P450 enzyme 1A2 (CYP1A2) gene

(rs762551) has a substantial impact on both caffeine intake

and caffeine metabolism.7
The CYP1A2 isozyme of cytochrome P450 is only present

in the liver, where it represents around 15% of the total cyto-

chromes. It is responsible for more than 90% of caffeine

metabolism, and it decomposes caffeine into 3 metabolites:

paraxanthine (81.5%), theobromine (10.0%), and theophylline
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(5.4%).8 The substitution of A to C at position 163 (rs762551)

of the CYP1A2 genotype decreases enzyme inducibility after

caffeine intake and determines the metabolic rate of caffeine.9

This rate is reflected in the ratio of caffeine to metabolites in

plasma or urine.9 Individuals carrying the C allele (163A/C

and 163C/C) are categorized as “slow metabolizers”, which

demonstrate a slow clearance of caffeine because they metabo-

lize caffeine at a slower rate compared to individuals homozy-

gous for the A allele (163A/A), who are classified as “fast

metabolizers”.10 It is worth noting that fast metabolizers

constitute approximately 46% of the overall population.11

Therefore, the evidence shows that the A allele of the CYP1A2

genotype may be more responsive than the C allele is to

caffeine ingestion.

The potential influence of polymorphism of CYP1A2

genotype on exercise performance in response to caffeine

intake has been reviewed in previous work12 that covered

all sources of caffeine intake, including caffeine gum and

mouth rinse. A preferential benefit of A/A genotype in

response to caffeine ingestion was found for trained individ-

uals in 5 studies.13�17 However, one study showed that indi-

viduals with A/A genotype had a great occurrence of

insomnia caused by caffeine intake compared with C allele

carriers.16 One study on CYP1A2 genotypes also found that

individuals with A/A genotype performed better than those

with C allele.18 Contrary to this result, a study found that

people with A/C genotype performed better in the 3-km

time trial than those with A/A genotype.19 In addition, other

studies found that there was no difference in the perfor-

mance of different genotypes after caffeine intake.20�30 The

inconclusive nature of these results could be attributed to

factors such as small sample sizes, variations in caffeine

delivery methods, differences in training status, and diverse

exercise performance outcomes.

To comprehensively assess the impact of CYP1A2 geno-

types on exercise performance following an acute caffeine

supplementation, a systematic review with meta-analysis is

essential. Since the variety of pre-exercise caffeine inter-

vention (i.e., ingesting, mouth rinse) may cause different

responses, we only focused on the intervention of caffeine

ingestion. Moreover, subgroup analyses are required to

account for genetic variations, ensuring a detailed evaluation

of the role of CYP1A2 genotypes in athletes’ performance

enhancement through caffeine intake.
Table 2

Eligibility criteria of studies based on the PICOS model.

Parameter Inclusion criteria

Population Healthy individuals

Intervention Acute caffeine ingestion

Comparator Placebo

Outcome Exercise performance

Study design Randomized and non-randomized control trials

Abbreviation: PICOS = Population, Intervention, Comparator, Outcome,

Study design.
2. Methods

2.1. Study protocol and registration

The present work has been registered to the International

Prospective Register for Systematic Reviews (PROSPERO;

registration number: CRD42022376187).

The literature search was performed for relevant studies

(including a range of publications through to March 2023)

across 4 databases: Web of Science, PubMed, Scopus, and

China National Knowledge Infrastructure, according to the

Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) guideline.31 The keywords included

“exercise”, “caffeine”, “CYP1A2”, and “genetic”.
2.2. Inclusion and exclusion criteria

Studies were selected based on the Population, Intervention,

Comparison, Outcomes and Study model (Table 2).32 Inter-

vention studies conducting caffeine ingestion were included.

The primary outcome of the present meta-analysis included

CYP1A2 genotypes, while the secondary outcome was exercise

performances. Studies were excluded if: (a) CYP1A2 geno-

types were not classified; (b) there was a mixed intervention

(i.e., if caffeine was not the only supplement); (c) exercise

performances were not measured; (d) placebo data were not

available; and (e) there was a lack of detailed results and full-

text data.
2.3. Data extraction

The initial review of records from all databases and the eligi-

bility of studies were conducted by the primary investigator,

then those results were confirmed by at least 2 separate investi-

gators. The records were imported into Endnote (Version

X9.3.3; Clarivate Analytic, Philadelphia, PA, USA) and were

automated and manually screened. Once the screening of the

included studies was finalized, the data were categorized by the

characteristics of participants (sample size, age, and sex) and

the exercise mode. The outcome data were expressed as the

weighted mean difference (WMD). If the full-text article data

were presented only in a figure format, WebPlotDigitizer

(Ankit Rohatgi, 2019, V.4.2; WebPlotDigitizer, Pacifica, CA,

USA) was used to extract the data from the figures.
2.4. Data analysis

A subgroup analysis was conducted to distinguish the

outcomes based on different CYP1A2 genotype for individual

exercise performance. CYP1A2 genotypes were categorized

into AA and AC/CC. Exercise performance included aerobic

endurance performance, anaerobic endurance performance, and

strength performance. Aerobic endurance performance was

determined as the completion time (expressed in min) during

cycling time trial. Anaerobic endurance performance was

measured by peak power (expressed in W) of Wingate test,

while strength performance was defined by jumping height

(expressed in cm) of a countermovement jump test (CMJ).
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2.5. Quality assessment

The quality of the included studies was assessed using 5

domains according to the revised Cochrane Risk of Bias tool

for randomized trials: (a) randomization process, (b) devia-

tions from intended interventions, (c) missing outcome data,

(d) measurement of the outcome, and (e) selection of the

reported result. The overall risk-of-bias was defined as “low

risk” if all domains were at low risk of bias, “some concerns”

if containing at least 1 domain at some concerns status but not

at high risk of bias for any domain, and “high risk” if at least

1 study was judged in some concerns for multiple domains.33
Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses

(PRISMA) flow diagram defining the electronic search and selection process.
2.6. Statistical analysis

Meta-analysis was performed using Review Manager

(RevMan Version 5.4.1; Cochrane, London, UK). Due to the

involvement of continuous data (mean § SD), WMD with

95% confidence intervals (95%CIs) were used to represent the

final analysis. Means and SD from placebo and caffeine condi-

tions were collected. Subgroup analyses were performed for

outcomes in relation to the type of CYP1A2 genotype. The

forest plots were produced to display WMD, SD, and the

overall effect of Z score. If publications reported the standard

error only, the SD was calculated using the following formula,

where n represented the number of participants:

SD ¼ SE � ffiffiffi

n
p

To assess the heterogeneity, tau-squared (t2), x2 Cochran’s

Q (x2) test, and I2 statistic were performed. A value of t2 > 1

indicated variability between studies. Q test measured the vari-

ation around a weighted mean, in which p < 0.10 was consid-

ered as significant heterogeneity.34 I2 statistic was used to

assess the effect consistency across the studies, with I2 inter-

preted as follows: (a) I2: 0%�29% showing no important

heterogeneity, (b) I2: 30%�49% showing moderate heteroge-

neity, (c) I2: 50%�74% showing substantial heterogeneity, (d)

I2: 75%�100% showing considerable heterogeneity.35,36

Meta-analysis was performed using a fixed-effects model

when heterogeneity was not significant (I2 � 50% and p � 0.1)

and a random-effects model was used when heterogeneity was

significant (I2 > 50% or p < 0.1). p < 0.05 was considered

statistically significant.
3. Results

3.1. Literature search

3.1.1. Selection process

The number of identified articles from the 4-database search

and selection process are shown in Fig. 1. A total of 609 inter-

vention studies were retrieved from the database search, and

292 duplicated and ineligible articles were excluded. After the

screening phase, including title and abstract screening, 26

articles were left. The authors excluded 14 articles from this

meta-analysis due to: (a) lack of sufficient data,14,20,21,25 (b)

caffeine supplement type was mouthwash and gum,19,37,38 (c)

CYP1A2 genotypes were not clearly provided,26,28,39,40 and (d)
lack of clear exercise performance outcomes.24,41,42 The

screening resulted in 12 eligible articles that were used for the

current quantitative analysis.

3.1.2. Quality assessment in individual studies

Among the included studies, no study scored in the high-

risk bias, 3 studies scored in the moderate-risk bias,15,29,43 and

9 studies scored in the low-risk bias.13,16�18,22,23,27,30,44

Results of the quality assessment are shown in Supplementary

Fig. 1.

3.1.3. Characteristics of studies

The characteristics of the studies included in the meta-anal-

ysis are summarized in Table 3.13,15�18,22,23,27,29,30,43,44 For all

studies the sample was composed of young adults (aged 15 § 2

to 29 § 7 years) comprising active (n = 525) and sedentary

(n = 141) individuals. The dosages of caffeine supplementation

varied from 2 mg/kg to 6 mg/kg and were ingested acutely

before conducting the performance test. The exercise regimen

in the current meta-analysis consisted of cycling time trial

(n = 4),13,17,22,44 Wingate test (n = 4),18,23,27,30 and CMJ test

(n = 5).15,16,23,29,43
3.2. The effect of caffeine on the time trial

A total of 4 studies measured CYP1A2 genotype differences

for cycling time trial after caffeine supplementation

(Fig. 2).13,17,22,44 Regardless of the allele genotype, caffeine

supplementation showed a small but significant effect on time



Table 3

Characteristics of studies included in the meta-analysis.

Study Information of participants Dosage

(mg/kg)

Exercise

mode

Outcome Conclusion

Sample size and sex

(male/female)

Genetic ratio

A/C

Age (year)

(mean § SD)

Giersch et al.

(2018)22
20 participants

(20/0)

8/12 25 § 8 6 3-km cycling Caffeine ingestion made a

2.2% improvement

Serum caffeine concentration

C > A after 1 h; caffeine

improved performance, but

no difference between allele

types

Grgic et al.

(2020)23
22 trained

males (20/0)

13/9 28 § 5 3 CMJ test;

Wingate test

Caffeine ingestion enhanced

power output in the Wingate

test and vertical jump height

Caffeine improved perfor-

mance, but no difference

between allele types

Guest et al.

(2018)13
101 athletes

(101/0)

49/52 24 § 5 2; 4 10-km cycling Performance increased 4.8%

for 2 mg/kg caffeine and

6.8% for 4 mg/kg caffeine

in participants with AA;

performance decreased

13.7% for 4 mg/kg caffeine

in participants with CC

Only those with the A allele

improved

Guest et al.

(2022)44
100 athletes

(100/0)

49/51 25 § 4 2; 4 10-km cycling 2 mg/kg caffeine decreased

completion time by 1.7 min

for participants with AA

Only those with the A allele

improved

Minaei et al.

(2022)18
16 trained males

(16/0)

6/10 22 § 7 6 Wingate test Participants with AA

improved 5.8% following

caffeine ingestion

Only those with the A allele

improved

Mu~noz et al.
(2020)15

31 handball

players

(16 /15)

14/17 24 § 3 3 CMJ test;

sprint test;

handgrip

strength test

Jump height increased 3.4%

for participants with AA and

4.3% for those with the

C-allele

A > C when pitching 7 m

after caffeine intake

Puente et al.

(2018)16
19 basketball

athletes

(10/9)

10/9 28 § 5 3 CMJ test Caffeine increased jump

height 2.9% in participants

with AA; no significant effect

for those with the C-allele

Only those with the A allele

improved

Salinero et al.

(2017)27
21 participants

(14/7)

5/16 29 § 7 3 Wingate test Caffeine ingestion increased

peak power by 1.7%

Caffeine improved perfor-

mance, but no difference

between allele types

Sicova et al.

(2021)30
100 athletes

(100/0)

46/53 25 § 4 2; 4 Wingate test No difference Caffeine had no effect, and

genes did not modify the

effects of caffeine

Spineli et al.

(2020)29
100 adolescents

(no mention)

49/51 16 § 2 6 handgrip

strength test;

CMJ test;

No difference Caffeine improved perfor-

mance, but no difference on

between allele types

Womack et al.

(2012)17
35 cyclists

(35/0)

16/19 25 § 7 6 40-km cycling 4.9% decrease in completion

time for participants with

AA; completion time

increased 1.8% in those with

the C allele

The A allele showed a greater

ergogenic effect

Wong et al.

(2021)43
102 athletes

(102/0)

50/52 25 § 4 2; 4 CMJ test;

handgrip

strength test

Participants with CC experi-

enced a 12.8% decrease in

handgrip strength with

4 mg/kg of caffeine

Handgrip strength in those

with the CC genotype

declined in response to

4 mg/kg of caffeine

Abbreviation: CMJ = countermovement jump test.
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trial improvement (WMD =�0.48, 95%CI: �0.83 to �0.13,

p = 0.007). However, the subgroup analysis demonstrated a

large effect size among individuals with the A allele who

ingested caffeine (WMD =�0.90, 95%CI: �1.48 to �0.33,

p = 0.002) compared to individuals with the C allele, who did

not confirm the effect on time trial when caffeine was ingested

(WMD =�0.08, 95%CI: �0.32 to 0.17, p = 0.53). In the

present meta-analysis, the average decrease in completion

time among individuals with the A allele following caffeine
ingestion across the included studies was 5.8%, whereas it was

only 0.6% for individuals with the C allele.
3.3. The effect of caffeine on the Wingate test

Four studies measured CYP1A2 genotype differences for

the Wingate test after caffeine supplementation

(Fig. 3).18,23,27,30 When gene type was not considered, caffeine

supplementation did not have a beneficial effect on the



Fig. 2. Forest plot of standardized mean difference for caffeine intake on TT outcome. 95%CI = 95% confidence interval; df = degree of freedom; I2 = inconsis-

tency between studies; TT = time trial; WMD = standardized mean difference.
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Wingate performance (WMD = 8.07, 95%CI: �22.04 to 38.18,

p = 0.60). Subgroup analysis confirmed the lack of effect in

both AA (WMD = 29.83, 95%CI: �16.77 to 76.44, p = 0.21)

and AC/CC (WMD =�7.52, 95%CI: �46.96 to 31.92,

p = 0.71) allele types.
3.4. The effect of caffeine on the CMJ test

Five studies measured CYP1A2 genotype differences for the

CMJ test after caffeine supplementation (Fig. 4).15,16,23,29,43

CMJ performance was not improved by caffeine supplementa-

tion (WMD = 1.17, 95%CI: �0.02 to 2.36, p = 0.05). Subgroup

analysis confirmed the lack of effect in both AA
Fig. 3. Forest plot of standardized mean difference for caffeine intake on Wingate t

of freedom; I2 = inconsistency between studies; WMD = standardized mean differen
(WMD = 1.14, 95%CI: �0.41 to 2.68, p = 0.15) and AC/CC

(WMD = 1.23, 95%CI: �0.63 to 3.09, p = 0.20) allele types.
4. Discussion

To our knowledge, the present review provides a compre-

hensive quantitative analysis to confirm the polymorphism

effect of CYP1A2 genotype on exercise performance in

response to caffeine intake. In the current meta-analysis, we

found that acute caffeine supplementation significantly

decreased the completion time during a cycling time trial in

individuals with the A allele but not in individuals with the C

allele. We observed no significant effects of acute caffeine

supplementation on peak power in the Wingate test or on the
est outcome relative to placebo. 95%CI = 95% confidence interval; df = degree

ce.



Fig. 4. Forest plot of standardized mean differences for caffeine intake on CMJ outcome relative to placebo. 95%CI = 95% confidence interval; CMJ = counter-

movement jump test; df = degree of freedom; I2 = inconsistency between studies; WMD = standardized mean difference.
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CMJ test, and these outcomes were not influenced by CYP1A2

genotype. These findings suggest that the influence of CYP1A2

genotype on caffeine metabolism is complex and may interact

with specific aspects of athletic performance.

The current meta-analysis elucidated the impact of CYP1A2

genotype polymorphism on aerobic endurance. Notably,

caffeine intake demonstrated performance improvements

exclusively for participants with the AA genotype. In a 10 km

cycling time trial, distinct genetic profiles revealed discernible

disparities. Despite C allele carriers’ demonstrated higher

serum caffeine concentrations compared to that of A allele

carriers 1 h after intake, AA homozygotes exhibited a perfor-

mance enhancement of approximately twice the amount as the

C allele carriers.22 The greater magnitude of the effect was

particularly pronounced among A allele carriers, suggesting a

potential association with exercise duration.13,17,44 Although

the precise mechanism through which caffeine enhances exer-

cise performance remains to be fully elucidated, a leading

hypothesis suggests that caffeine exerts a central effect by

antagonizing adenosine receptors.45 This action inhibits the

adverse effects of adenosine on nerve transmission, arousal,

and pain perception. Additionally, caffeine stimulates skeletal

muscle contractility through the excitation-contraction

coupling mechanism.46,47 Biologically, caffeine acts as an

adenosine receptor antagonist, alleviating endogenous adeno-

sinergic inhibition, thereby triggering muscle contraction via

calcium release.48,49 The genetic variability in CYP1A2 geno-

type may determine the 10-km cycling time trial outcome, as

A allele carriers exhibit faster metabolism, resulting in a more

rapid biological effect. Conversely, C allele carriers may

necessitate a longer ingestion period to induce perfor-

mance-enhancing effects. Moreover, theophylline and

1,7-dimethylxanthine (paraxanthine), which are metabolites

of caffeine and adenosine antagonists, exhibit higher
binding affinities for adenosine receptors and may play a

bigger role in improving exercise performance than

caffeine itself.50 This could explain the greater benefits for

AA homozygotes compared to C allele carriers. Across the

studies included in this meta-analysis, caffeine ingestion

typically occurred about 60 min prior to exercise. Future

research should consider both the duration of endurance

exercise and the timing of caffeine intake before exercise

to optimize performance outcomes.

For the current meta-analysis, peak power during the

Wingate test was not improved by caffeine supplementation

regardless of gene type. Caffeine doses may influence the

efficacy of caffeine supplementation for improving anaerobic

performance in individuals with the A allele. Among them,

the study conducted by Sicova et al.30 demonstrated that

performance did not improve in both supplemented groups

with caffeine dosages of 2 mg/kg or 4 mg/kg. However,

when participants ingested 6 mg/kg of caffeine, A allele

carriers improved their anaerobic capacity.18 In addition, an

improvement in exercise performance was obtained with the

ingestion of 3 mg/kg of caffeine in 2 studies, without any

influence of gene type.23,27 Up to now, the influence of

genetic variability for the effect of caffeine ingestion on

anaerobic capacity have remained inconclusive. A meta-anal-

ysis measuring the effect of caffeine ingestion on Wingate

performance regardless of gene variability has been

conducted previously, and it showed a small effect on

enhancing power output.51 The discrepancy between our

results and those of the previous meta-analysis can be

explained by the fact that only studies considering gene vari-

ability were included in our meta-analysis.

When jumping performance was evaluated, the current

meta-analysis demonstrates that caffeine intake did not

improve jumping height, regardless of genotype. Among the
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included studies, caffeine intake increased jumping height of A

allele participants only in the Puente study,16 while CYP1A2

genotype did not influence jumping height in most other

studies.15,23,29,43 Although jumping ability after caffeine

intake is not affected by gene type, improved sport-related

performances in handball and basketball were observed in

individuals with the A allele compared to those with the C

allele after caffeine was supplemented.15,16

Our meta-analysis confirmed that the ergogenic effect of

caffeine is associated with CYP1A2 genotype variability,

providing evidence of the benefits of caffeine supplementation

(with proper dosage and timing) before exercise training. The

CYP1A2 activity influenced by the A allele has been previ-

ously reported.9 In addition, other factors can affect the

activity of CYP1A2 genotypes,10,52 such as diet (cruciferous

vegetables: broccoli and cabbage,53 and high curcumin

foods54), smoking status,8 drinking habits,55 exogenous

estrogens,53,56 oral contraceptives, and other drugs (fluvox-

amine, omeprazole).57 In a previous meta-analysis, smoking

habits was associated with the CYP1A2 activity in individuals

with homozygous AA and heterozygous A/C.58 Therefore, it is

crucial to note that dietary control and habits may influence

study outcomes. However, for the studies included in the

present meta-analysis, dietary records and smoking status

were not reported. The choice of caffeine delivery method for

enhancing exercise performance assumes an important value,

given the varying absorption rates between ingestion and the

chewing method.59 Importantly, ingestion involves an interac-

tion with the gastrointestinal tract, potentially leading to an

extended absorption period. Increasing peak power output in

participants with the A allele after an acute caffeine supple-

mentation with dosage 6 mg/kg had showed similar improve-

ment with C allele.18 Therefore, more studies are required to

confirm the results.

The limited number of included studies may lead to inaccu-

rate interpretations of the anaerobic and power outcomes.

Therefore, more studies are required to obtain consistency in

the results. Our meta-analysis offers a comprehensive estima-

tion of the effect for individual exercise categories, as well as

an aggregated effect for subgroup analysis, to derive conclu-

sions regarding caffeine’s ergogenic effects with respect to

distinct genetic alleles.

The results of previous studies collected up to the present

time could guide us toward a new approach: Profiling endur-

ance athletes with an aim to enhance the impact of caffeine

consumption on their endurance performance, particularly

before a competition. A higher caffeine dose could compensate

for the slower metabolism associated with the C allele, poten-

tially improving endurance performance in athletes who

possess this genetic variant.
5. Conclusion

Regardless of the CYP1A2 variability, an acute caffeine

supplementation improved cycling time trial but not Wingate

or CMJ performance. When considering CYP1A2 genotype,

only A allele carriers improved their performance in the
cycling time trial; the Wingate and CMJ performances had no

associations with gene type. Therefore, individual differences

should be considered when consuming caffeine to enhance

exercise performance.
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