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SUMMARY

When compared to other malignancies, the tumor microenvironment (TME) of primary and 

castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While 

androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate 

cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), 

and the effects of ADT and other treatments in this context are poorly understood. Here, 

we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic 

sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated 

standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform 

a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune 

subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in 

these immune subpopulations in response to treatment and a correlation with clinical outcomes. 

Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands 

in cell number in treatment-refractory patients.

Graphical Abstract
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In brief

TME composition of metastatic castration-sensitive prostate cancer (mCSPC) remains elusive. 

Hawley et al. perform scRNA-seq analysis of metastatic sites from mCSPC patients with ADT 

and anti-PD-1 treatment, identify tumor and immune subpopulations conserved across multiple 

metastatic sites, and reveal treatment-induced dynamic changes in these subpopulations and their 

correlation with clinical outcomes.

INTRODUCTION

Compared to other tumor types, localized prostate cancer (PC) is characterized by an 

immunologically “cold” tumor microenvironment (TME), with a relative dearth of immune 

cells.1,2 Preclinical studies in animal models and analyses of human primary PC samples 

showed that tumor infiltrating immune cells are tolerogenic and immunosuppressive, as 

revealed by a dominant fraction of terminally differentiated cytotoxic T cells and regulatory 

T cells (Treg).3-5 Several studies have shown that androgen deprivation therapy (ADT), 

the mainstay therapy for advanced prostate cancer, induces immunogenic changes in the 

TME of castration-sensitive prostate cancer.6-9 Post-ADT immune infiltration may involve 

several mechanisms, including (a) thymic regeneration and increased production of naive T 

cells, (b) decreased tolerance and clonal expansion of effector T cells, and (c) stimulation 

of antigen-specific adaptive immune response. The latter induces a robust chemokine-

mediated infiltration of functionally competent immune infiltrate into primary prostate 
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tumors.8-19 Unfortunately, these immunogenic anti-tumor effects are not durable, as they 

are likely subsequently counter-balanced by concomitant increase in immunosuppressive 

cell subpopulations and decreases in T cell priming.13,20-22 These data provide a reasonable 

therapeutic rationale to combine ADT with immunotherapy, thus leveraging anti-tumor 

immunity while mitigating the ADT-mediated induction of suppressive mechanisms. To that 

end, we designed and initiated the PRIME-CUT Phase II trial (NCT03951831) treating 

men with metastatic castration-sensitive prostate cancer (mCSPC) with a combination of 

standard of care chemo-hormonal therapy and anti-PD-1 immunotherapy using the anti-

PD-1 immunotherapy cemiplimab.

This trial addresses the knowledge gap that the majority of preclinical and clinical studies 

thus far focused on the immunogenic effects of ADT in primary prostate cancer. By contrast, 

the TME of metastatic, castration-sensitive prostate tumors and the effects of ADT-mediated 

remodeling remain poorly characterized. This knowledge gap stems from challenges 

associated with longitudinal tissue acquisition from metastatic castration-sensitive tumor 

biopsies, particularly in the pre-treatment (pre-ADT) context. In particular, whether the 

TME of treatment-naive metastatic sites is “cold”, i.e., similar to primary prostate cancer, 

is largely unknown. Indeed, it is possible that metastatic lesions might be immunologically 

distinct; as an analysis of PD-L1 protein expression showed that 31.6% of metastatic PC 

lesions had detectable PD-L1 expression, in contrast to only 7.7% of primary lesions.23 By 

contrast, spatial imaging and single-cell sequencing studies showed a paucity of immune 

infiltrates in the metastatic, castration-resistant prostate cancer (mCRPC) setting, similar to 

primary PC.24,25

Here, we comprehensively profiled both the tumor and non-tumor subpopulations that 

comprise the mCSPC TME, across distinct metastatic niches—including bone, lymph 

node, liver, and lung. These analyses leveraged our established pipeline for virtual 

inference of protein activity by enriched regulons (VIPER)26-28 to study single-cell RNA 

sequencing (scRNA-seq) profiles of single cells dissociated from these niches. In this 

approach, akin to a highly multiplexed gene reporter assay, the differential activity of 

each protein is quantified based on the differential expression of its lineage-specific 

downstream transcriptional targets. This methodology allows for full activity quantification 

of ~6,500 proteins in each single cell. Proteins analyzed include transcriptional regulators 

and signaling proteins, despite the fact that >80% of the genes are generally undetected 

in scRNA-seq due to the gene dropout effect. Critically, we previously showed that VIPER-

based protein activity measurements in single cells compare favorably with protein-level 

antibody-based assays, revealing clinically relevant subpopulations that could not have been 

detected by gene expression analysis or fluorescence-activated cell sorting (FACS).27-29

Thus, protein activity-based cluster analysis allows for deep stratification of immune 

and tumor-related subpopulations, virtually eliminating gene dropout for key regulatory 

and signaling proteins, including critical lineage markers.27-29 Here, we applied this 

methodology to a series of paired, longitudinal, metastatic tumor biopsies, including both 

pre-treatment (baseline) and on-treatment biopsies from ten patients enrolled in the PRIME-

CUT Phase 2 clinical trial. In addition to characterizing differences in TME composition 

across patients, we also quantified dynamic changes in the TME following ADT, both alone 
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and in combination with anti-PD-1. In addition, we tested whether TME subpopulations 

at baseline correlate with early prostate-specific antigen (PSA) response. To corroborate 

profiling data on the immunological composition of the TME, we performed multiplex 

immunofluorescence staining of a subset of banked FFPE trial biospecimens29,30

RESULTS

Gene expression and protein activity clustering reveal a robust immune infiltrate in 
metastatic castration-sensitive prostate cancer

Since primary prostate cancer (PC) is characterized by a relative immune desert, with low 

representation of tumor-infiltrating immune cell subpopulations,1,2 we tested whether the 

tumor microenvironment (TME) of metastatic, castration-sensitive prostate cancer (mCSPC) 

lesions was similarly immunologically “cold”. We thus collected pre-treatment (baseline) 

metastatic core-needle biopsies from 8 patients (Figure 1A, Table 1), across 4 different 

metastatic niches (bone, lymph nodes, liver, and lung). We then generated scRNA-seq 

profiles, which were first used to perform standard gene expression-based cluster analysis 

(Figures S1 and S2). Cell lineages were inferred for each single-cell using the SingleR 

algorithm,30 with clustering performed using resolution-optimized Louvain.28 Standard 

gene expression-based clustering revealed 15 overall clusters across all metastatic sites, 

corresponding to 12 distinct immune cell subpopulations, as well as clusters comprising 

fibroblasts, endothelial, and epithelial cells (Figure S1). Inspection of the top five most 

differentially upregulated genes in each cluster (Figure S2) was consistent with the ascribed 

cellular identities assigned by SingleR. For example, granzyme M (GZMM) and natural 

killer granule 7 (NKG7) were differentially upregulated in CD8+ T cells, and CD37 in B 

cells (Figure S2). SingleR does not provide a classification of tumor vs. normal cells; as a 

result, tumor cells with an epithelial origin, such as prostate cancer cells, were labeled as 

“epithelial cells” (Figure S1). Tumor-cell identity was confirmed based on the expression 

of prostate-restricted tumor marker genes, such as KLK3, and by inferred copy number 

variation analysis using lymphoid and myeloid cells as copy-number normal reference, such 

that endothelial cells were also confirmed as a negative control not to have significant 

inferred copy number variation (Figure S3).

Due to high gene dropout levels, scRNA-seq analyses can typically monitor ~20% of all 

genes in each cell.28 To address this issue, we utilized an established single cell analysis 

pipeline, which leverages the VIPER algorithm to measure protein activity from single-

cell gene expression data. By assessing protein activity based on the expression of 100 

transcriptional targets of each protein, VIPER significantly mitigates gene dropout effects, 

thus allowing detection of proteins whose encoding gene is completely undetected.28 Protein 

activity-based clustering of these scRNA-seq data revealed a much finer-grain subpopulation 

structure, comprising 24 distinct subpopulations, comprised mainly of immune cells but also 

including erythrocytes, endothelial, and three molecularly distinct transformed epithelial cell 

clusters (tumor cells) (Figure 1B). In particular, while gene expression-based cluster analysis 

yielded a single homogeneous subpopulation of monocytes and macrophages (Figures S1 

and S2), activity-based analysis stratified these cells into five subpopulations, representing 

three distinct monocyte subtypes, as well as macrophages and neutrophils (Figures 1B and 
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2). There was also further refinement of T cell populations, resulting in the identification 

of subpopulations representing regulatory T cells (Treg) and CD8+ T cells (Figures 1B and 

2). Subpopulations comprising five B cell subtypes and one plasma cell subtype were also 

identified using VIPER analysis (Figures 1B and 2), as compared to only one and two 

subtypes, respectively, by standard gene expression methods (Figures S1 and S2). Critically, 

VIPER analysis identified three distinct clusters of transformed epithelial cells (Figures 1B 

and 2), while only a single cluster was identified using gene expression analysis (Figures S1 

and S2). This is critical as these clusters may have different mechanisms of drug sensitivity.

Overall, the mean proportion of immune cells across all metastatic sites was 87% (range: 

30.9% [lung] – 94.6% [lymph node]) significantly exceeding the sparse immune infiltration 

previously reported for primary prostate cancer.5,31 While surprising, these data are broadly 

consistent with prior warm-autopsy findings in advanced castrate-resistant prostate cancer,32 

where CD14+/CD206+ macrophage proportions ranged from 10 to 50% in metastatic 

lesions of the lymph node, dura mater, liver, bone marrow, and adrenal glands. Although 

cryopreservation used for tissue processing has been shown to deplete epithelial cells, 

leading to potential methodological bias, no such bias has been previously noted from 

freshly dissociated tissue, as collected in this study.33 Further, since the primary goal of this 

study was to assess relative differences in the composition of the TME across tissue contexts 

and in response to treatment, albeit small numbers of samples, any artifactual depletion of 

non-immune cells would be expected to be consistent across samples, thus preserving the 

validity of subsequent inter-sample comparisons.

Protein activity analyses show distinct differences in immune cell subpopulations across 
metastatic sites

Prior studies showed that proportional representation of immune cell subtypes in the 

TME varies broadly, depending on tissue type.34,35 To compare the subtype composition 

of the castration-sensitive prostate cancer TME across different metastatic sites, in our 

relatively small dataset, we collapsed the initial 24 VIPER clusters (Figure 2) into eight 

lineage-specific meta-clusters, including B cells, CD4+ non-Treg (Tconv), CD8+ T cells, 

endothelial, erythrocyte, myeloid, Treg, and tumor cells (Figure 1C). We visualized the 

relative representation of these coarse-grain meta-clusters across the four metastatic niches 

sampled, prior to ADT or anti-PD-1 (Figures 1C and 1D). The baseline biopsy from the lung 

sample was comprised mostly of tumor cells, with associated CD4+ T cells, CD8+ T cells, 

and myeloid populations representing only 30.9% of all cells (Figure 1C). By contrast, the 

liver biopsies samples contained a greater proportion of immune cells, representing 77.9% 

of all cells, on average (Figures 1C and 1D). Immune cells comprised 94.6% of all cells in 

the lymph node (LN) samples (Figures 1C and 1D); perhaps unsurprisingly since LN are 

components of the primary immune system. Finally, and also consistent with their niche 

composition, bone lesions were also highly enriched in immune cells, which represented 

90.5% of all cells on average (Figures 1C and 1D).

We next compared the frequency of the 24 different cellular subpopulations (Figure 2) 

across the four different metastatic sites sampled (bone, lymph node, liver, and lung) 

(Figure 1E). In bone metastases, plasma cells were highly enriched relative to other sites 
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(p ≤ 0.05, Figure 1E). Additionally, there was an increased representation of monocyte 

1 and 2 subtypes relative to other metastatic sites (Figure 1E), with increased activity of 

transcriptional repressors (e.g., BATF3), transcriptional activators (e.g., SH3BP2), regulators 

of G-protein signaling (e.g., RGS18), and serine proteases (e.g., PRTN3) (Figure 2). We 

also noted significant over-representation of erythrocytes in bone metastases (p ≤ 0.05, 

Figure 1E) with high activity of: (1) epithelial cell transforming 2 (ECT2), (2) Rho GTPase-

activating protein 11A (ARHGAP11A), and (3) kinesis family member 14 (KIF14) (Figure 

2); these have established roles in mitosis, cell-cycle arrest, and microtubule motor proteins, 

respectively.36-38 These data may represent a population of dividing erythroid progenitor 

cells captured incidentally during bone marrow biopsy. In lymph node samples, a robust B 

cell population was detected (B cell 2) (Figure 1E). There was also an increased proportion 

of Treg (Treg 3), with elevated activity of TNFSRF18 (GITR) in the lymph nodes as 

compared to other metastatic sites (p ≤ 0.05, Figure 1E). Of interest, this T regulatory 

population (Treg 3) showed high activity levels of ETS variant transcription factor 1 (ETV1) 

(p ≤ 0.05, Figure 2), a gene known to be overexpressed in prostate cancer.39,40 This finding 

supports recent data showing that immune cells may mimic expression of tumor marker 

genes.41 Liver metastases had immune infiltrations similar to bone metastases, in both 

overall proportion (Figure 1D) and subpopulation frequency (Figure 1E). Notably across all 

tissues there was a large proportion of CD8+ T cells (CD8+ T cell 1 and 2) and conventional 

(non Treg) CD4+ cells (CD4+ T cell 1) (Figure 1E). The CD8+ T cell 2 cluster was primarily 

defined by increased protein activity of lymphocyte activation gene 3 protein (LAG-3), an 

immune checkpoint molecule (Figure 2).42 Finally, the single lung metastasis profiled was 

notably the least immune-infiltrated at baseline (Figure 1D), with only 30.9% immune cells 

overall. Taken together, these data highlight immunological heterogeneity across sites of 

metastasis in castration-sensitive PC. These analyses are based on 40,270 high-quality cells 

across 11 patients.

Combination treatment of ADT andanti-PD-1 results in a significant expansion of CD8+ T 
cells across several metastatic sites

To understand the immunologic effects of ADT on the TME of the four different metastatic 

sites, either alone or in combination with anti-PD-1 (cemiplimab), we compared the pre-vs. 

post-treatment frequency of each subpopulation across the four metastatic sites (Figure 3). 

As mentioned previously, all patients on trial were required to have a baseline metastatic 

biopsy, as well as an on-treatment biopsy, with patients randomized to one of two time 

points for the on-treatment biopsy, at either four weeks after ADT (degarelix) or after 

ADT plus two cycles of anti-PD1. Overall, sufficient patients with bone and lymph node 

metastases were enrolled to enable collection of biopsy samples at baseline and at both 

on-treatment time points. Additionally, we were also able to obtain a tumor progression 

biopsy from a patient with late tumor recurrence in the bone, after 11 months on treatment. 

The liver and lung metastatic biopsy samples shown here were collected at baseline and 

after ADT with two cycles of anti-PD-1 (Figures 3E-3H). No samples of liver and lung 

metastases were collected after ADT alone given the randomization procedures based on 

patients’ order of enrollment.
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We next leveraged pre- and on-treatment scRNA-seq profiles to determine the effects 

of ADT or ADT plus anti-PD-1-on the castrate-sensitive prostate cancer TME. Using 

the coarser meta-cluster representation mentioned previously (B cells, CD4+ non-Tregs, 

Tregs, CD8+ T cells, myeloid cells, endothelial cells, erythrocytes, and tumor cells), we 

quantified treatment-mediated changes at each metastatic site (Figures 3B, 3D, 3F, and 

3H). In bone metastases, ADT induced increased representation of myeloid cells (p = 

2.8e-118 by Fisher’s exact test), consistent with pre-clinical data13 (Figures 3A and 3B). 

In bone lesions, ADT was also associated with a decrease in CD4+ Tconv as well as in 

tumor cells (p = 0.01 and 1.1e-15) (Figures 3A and 3B). By contrast, the ADT and anti-

PD-1 combination reduced myeloid cell representation (p = 3.6e-10) while concomitantly 

increasing CD8+ T cells (p = 3.1e-115) (Figures 3A and 3B). In the lone progression biopsy 

obtained from a bone lesion, the relative subpopulation frequencies resembled that of the 

baseline samples, albeit with a greater proportion of tumor cells (Figures 3A and 3B). 

Finally, in lymph node-derived samples, ADT induced an expansion of CD4+ non-Treg (p 

= 5.3e-36) (Figures 3C and 3D) These findings are consistent with the notion that treatment-

induced immunologic changes vary based on the metastatic niche, although confirmation 

in additional datasets of pre- and on-treatment metastatic biopsies in hormone-sensitive 

prostate cancer are warranted. As external validation of these trends, we leveraged the 

only previously existing transcriptional dataset profiling metastatic castrate-sensitive tumors, 

to our knowledge, which includes bulk RNA sequencing of 17 hormone-naive and 21 

short-term castrated samples, in bone only.43 We applied the CIBERSORTx algorithm to 

infer relative abundance of each cell type in these bulk data (Figure S4), such that ADT 

was found to significantly increase myeloid infiltrate (p = 0.028) from pre-treatment mean 

abundance of 7.01% to post-treatment mean of 10.89%, with a non-significant trend toward 

decrease in CD non-Treg (p = 0.37) and in tumor cells (p = 0.14).

Few cells were recovered from lymph nodes after combination treatment with ADT and 

anti-PD-1. However, the recovered cells showed a greater proportion of Treg (p = 0.002) 

and myeloid cells (p = 1.4e-8), with virtually no representation of CD8+ T cells or B 

cells (Figures 3C and 3D). Surprisingly, in both the bone and lymph node samples, there 

was a relative increase in tumor cell composition following combination therapy with 

ADT and anti-PD-1, as compared to baseline and ADT-only samples (Figures 3A-3D). 

This was surprising, and contrasts with observations from the viscera (liver and lungs), 

where combination therapy was associated with a substantial reduction in overall tumor cell 

composition (p = 4.1e-119 in liver, p = 4.0e-222 in lungs) (Figures 3E-3H). Additionally, 

the myeloid compartment expansion observed in bone-derived samples (after ADT) and in 

lymph node-derived samples (after combination therapy) (Figures 3A-3D) was not detected 

in the viscera (liver and lungs) (Figures 3E-3H. In contrast, and similar to bone samples, 

combination therapy induced significant increase in CD8+ T cells in liver and lung-derived 

samples (p = 1.6e-29 and 7.5e-66, respectively), which was not observed with ADT alone. 

Taken together, these data show that anti-PD-1 increased CD8+ T cell infiltration into 

metastatic sites, when used in combination with ADT to an extent that was not observed 

with ADT alone.

We next focused on the finer-grain subpopulations detected by inferred protein activity 

analysis (Figure 2). Specifically, we assessed which subpopulations showed a treatment-

Hawley et al. Page 8

Cancer Cell. Author manuscript; available in PMC 2024 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



related relative increase or decrease (Figure 3I). After ADT, the fraction of Cluster 2 

CD8+ T cells decreased relative to baseline (p = 0.034 by Mann-Whitney U test), while 

all monocyte subtypes increased, across all metastatic sites (p = 0.036) (Figure 3I). In 

contrast, following combination therapy, we observed significant expansion of Cluster 1 

CD4+ T cells (characterized by high TNF-α activity; Figure 2), Cluster 2 CD8+ T cells 

(characterized by high LAG-3 activity; Figure 2), and Cluster 3 Treg cells (characterized by 

high TNFRSF18 activity; Figure 2), across all metastatic sites (p = 0.033, 0.026, and 0.008, 

respectively) (Figure 3I). These three immune cell subpopulations represented the bulk of 

tumor-infiltrating immune cells whose composition is increased by anti-PD-1 therapy and 

are broadly consistent with reported effects of PD-1 blockade on the T cell compartment.44

Immune infiltration correlates with quantitative multiplex immunofluorescence analysis 
(QmIF)

To confirm the significant degree of immune infiltration observed by scRNA-seq profiling at 

the protein level, we performed quantitative multiplex immunofluorescence (qmIF) staining 

on banked FFPE tissue from a subset of six patient samples, including two baseline 

pre-treatment samples, two ADT-only samples, and two ADT+anti-PD-1 samples. Of 

these, paired pre-treatment baseline and on-treatment specimen were profiled for the same 

patient for one set of samples. The quantitative immunofluorescence panel used included 

markers designed to profile tumor cells (panCK), T cells (CD4+ or CD8+), Treg (CD8-

CTLA-4+CD4+), myeloid cells (CD68/163+), and LAG-3+ CD8+ T cells. Representative 

slide sections highlighting differences in T cell infiltrate are shown in Figure 4A.

Importantly, the overall degree of T cell infiltration determined by scRNA-seq 

was significantly correlated with the degree of T cell infiltration by quantitative 

immunofluorescence (R2 = 0.7304, p = 0.031), such that T cell cumulative frequency ranged 

from 5 to 65% of total cell count by qmIF, versus 20–80% by scRNA-seq (Figure 4B). These 

data support the notion that the significant immune infiltrates determined by scRNA-seq 

were not an artifact of tissue dissociation. Further, immunofluorescence analysis confirmed 

the treatment-induced increase in immune infiltrate described previously (Figure 4B), as 

well as a treatment-induced reduction in tumor cell count (Figure 4C), with tumor cell 

frequencies similarly well-correlated between the two orthogonal tissue profiling modalities 

(R2 = 0.7454, p = 0.026).

Although immunofluorescence analysis is limited in the number of cell subtypes which 

can be simultaneously profiled, the treatment-induced fold-change in each cell population 

profiled by qmIF was consistent with scRNA-seq for paired analysis of baseline and on-

treatment tissue in the same patient (Figure 4D). Specifically, combination therapy was 

shown to induce an increase in T cells (overall as well as for CD4+, CD8+, and LAG-3+ 

CD8+ T cells) (Figure 4B), as well as an overall decrease in tumor cells (Figure 4C), 

Treg, and myeloid cells. Directionality of fold-change was consistent between qmIF and 

scRNA-seq across all cell types, and fold-change values are significantly correlated (R2 = 

0.9102, p = 0.004) (Figure 4D). Taken together, these qmIF data provide key protein-level 

support for the scRNA-seq data.
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Baseline immune cell population frequencies correlate with treatment response

We next correlated baseline subpopulation composition with treatment response, with the 

goal of determining whether the presence of specific pre-treatment subpopulations was 

associated with PSA response or progression after therapy. To that end, we empirically 

categorized patients into three treatment response groups (early PSA response, stable 

disease, or late progressors) based on PSA log10 fold-change (Figure 5A). In this 

classification, early responders showed a PSA decrease to below 1% of the pre-treatment 

value, indicating robust response, while late progressors initially responded to therapy, with 

marked PSA decrease, but showed a PSA increase by week 28. We then compared the 

frequencies of each of the 24 subpopulations in “early responders” vs. “late progressors” 

(Figure 5B). To mitigate potential confounding factors, patients with stable disease were 

excluded from these analyses.

At baseline, increased Cluster 2 LAG-3+ CD8+T cell representation was significantly 

associated with early PSA response (p = 0.006, Figure 5B). Interestingly, this represents 

the same population of LAG-3+ CD8+ T cells whose representation was expanded following 

anti-PD-1 therapy (Figure 3I). The subpopulation of TNFRSF18+ Treg (Cluster 3 Tregs) 

also trended with an early PSA response, though the association was not statistically 

significant (p = 0.13, Figure 5B). Conversely, over-representation of Cluster 1 CD4+ T 

cells was significantly associated with late PSA progression (p = 0.024, Figure 5B). Notably, 

one of the most differentially active proteins in this CD4+ subtype was tumor necrosis 

family (TNF-α, Figure 2), a multifunction proinflammatory cytokine implicated in tumor 

progression45-47 as discussed in the following text.

Transformed cells show transcriptional heterogeneity across metastatic sites

An initial analysis of tumor cells by inferred protein activity-based clustering resulted in 

three “epithelial” subtypes (EPI1, EPI2, and EPI3) (Figure 1B). Copy number alteration 

(CNA) inference and expression of the KLK3 prostate tumor marker gene confirmed 

that all three subtypes represent malignantly transformed epithelial cells (Figure S3). 

Following identification of transformed epithelial cells across pre-treatment samples from 

all metastatic sites, we found that all three epithelial subtypes were represented in bone, 

lymph node, and lung-derived samples (Figure 6). To further understand heterogeneity in 

the tumor cell compartment, we performed a more stringent cluster analysis by excluding 

all non-transformed cells. This analysis yielded eight molecularly distinct, co-existing tumor 

cell subclusters (REF-EPI1–REF-EPI8) (Figure 6A) that were further analyzed to assess 

enrichment of cancer hallmarks and cancer-related pathways in differentially active proteins 

(Figure S5). We found that REF-EPI1 was the subtype most enriched in androgen response 

proteins, REF-EPI2 and REF-EPI3 were defined by upregulation of E2F and MYC targets, 

and G2M checkpoint proteins, REF-EPI4 and REF-EPI5 were defined by upregulation 

of TNF-α signaling and interferon response proteins, REF-EPI6 was identified by heme 

metabolism, REF-EPI7 by unfolded protein response and androgen response, and finally 

REF-EPI8 by activation of the reactive oxygen species pathway (Figure S5).

The relative frequency of each tumor cell subcluster varied across metastatic sites at 

baseline, after ADT, after combination therapy, and at recurrence (Figures 6B-6E) in our 
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small cohort of patients. At baseline, there was wide variability in the composition of tumor 

subclusters across metastatic sites (Figures 6B-6E). Bone and lymph node samples were the 

most heterogeneous, with representation of nearly all tumor cell subclusters (Figures 6B and 

6D). In contrast, liver and lung-derived samples were less heterogeneous (Figures 6C and 

6E). In particular, the lung sample was comprised nearly entirely of cells from the REF-EPI1 

and REF-EPI2 subtypes (Figure 6E). These data are consistent with reports that patients 

with pulmonary-only prostate cancer metastases may have an overall favorable prognosis.48 

Post-treatment, tumor subcluster representation was differentially affected across distinct 

metastatic sites (Figures 6B-6E). In bone samples, there was an increase in REF-EPI6 

cells following ADT (p = 4.4e-14, Figure 6B). With the addition of anti-PD-1 REF-EPI6 

cells became almost undetectable (p = 0.02, Figure 6B), while REF-EPI5 cells increased 

to comprise 65% of tumor cells (p = 9.9e-27, Figure 6B). However, in the recurrent bone 

sample, REF-EPI6 cells comprised nearly 75% of all tumor cells, while REF-EPI5 were 

reduced to only 1% of all tumor cells (Figure 6B), suggesting that REF-EPI6 may play an 

important role in treatment resistance.

In lymph node pre-treatment samples, the REF-EPI1 subcluster accounted for nearly 50% of 

all tumor cells; after ADT, their representation increased to ~65% (Figure 6D). Similar to 

bone-derived samples, following ADT, the fractional representation of tumor cell subtypes 

in lymph node samples changed slightly, while preserving the original heterogeneity (Figure 

6D). However, addition of anti-PD-1 led to the emergence of REF-EPI2 as a predominant 

subcluster, comprising 89% of cells (p = 9.4e-7, Figure 6D). Liver and lung samples also 

maintained heterogeneity but did not show the emergence of a predominant tumor cell 

subcluster after combination therapy (Figures 6C and 6E). We were unable to assess the 

effects of ADT alone on liver or lung metastases as no patients with those lesions were 

randomized to the ADT only biopsy time point.

We next determined whether the presence of individual tumor cell subclusters at baseline 

was associated with differential PSA response (early responders vs. late progressors) (Figure 

6F). Indeed, REF-EPI1, associated with an androgen response signature, was significantly 

overrepresented in baseline samples from “early responders” (p = 0.05) as compared to 

“late progressors” (Figure 6F). In contrast, REF-EPI2 and REF-EPI3 were overrepresented 

in baseline samples from “late progressors”, who ultimately progressed on treatment (p = 

0.0008 and 0.08, respectively) (Figure 6F).

Interestingly, two proteins (TMPRSS2 and NKX3.1), which are regulated by the androgen 

receptor (AR) were among the most differentially active in REF-EPI1.49-51 Taken 

together, these data are consistent with the notion that activation of AR-regulated proteins 

in subclusters representing the majority of tumor cells is associated with an early 

treatment response. Notably, REF-EPI2 is characterized by aberrant activity of KIF14 

(most-upregulated protein), which has previously been described as a candidate oncogene 

correlating with poor prognosis in prostate cancer.38

Validation of association between tumor cell subclusters and outcome

To assess the correlation of the tumor cell subclusters identified previously with outcome, 

we tested for enrichment of each subcluster within larger cohorts of bulk RNA-sequencing 
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data. For these analyses, we defined the set of differentially active proteins in each 

subcluster as a unique protein activity signature. With these signatures and our protein 

activity inference algorithm, we next assessed the prognostic significance of each tumor cell 

subcluster across treatments in the TCGA dataset. By Cox regression on patient-by-patient 

normalized enrichment scores (Figure 7A), enrichment of tumor cell subcluster REF-EPI2 

was significantly associated with a shorter recurrence-free survival (hazard ratio 1.37, p 

= 0.002). The leading-edge genes in the REF-EPI2 protein activity signature differentially 

enriched in patients with recurrence compared to non-recurrence are shown in Figure 7B 

and include KIF14 as well as TOP2A, both significant markers of REF-EPI2. Log rank 

testing of enrichment scores binarized to “high” vs. “low” showed significant association of 

both REF-EPI2 and REF-EPI3 protein activity profiles with shorter recurrence-free survival 

(p = 0.0087 and 0.022, respectively) (Figures 7C and 7D), and significant association 

of REF-EPI1 and REF-EPI7 protein activity profiles with longer recurrence-free survival 

(p = 0.0062 and 0.042, respectively) (Figures 7E and 7F). No other subcluster specific 

signature was statistically significantly associated with survival. In two smaller datasets 

that profiled metastatic CRPC (East Coast Stand Up to Cancer, West Coast Stand Up to 

Cancer),52,53 trends were observed toward association of REF-EPI2 and REF-EPI3 with 

decreased overall survival (Figures S6 and S7). Specifically, REF-EPI3 was significantly 

associated with worse overall survival in the East Coast SU2C dataset (p = 0.045) (Figure 

S7B), while REF-EPI2 did not achieve statistical significance. Additional correlations were 

not possible, since neither dataset includes recurrence-free survival or PSA response in 

the clinical metadata. Taken together, these results are consistent with the concept that 

overrepresentation of REF-EPI1 cells at baseline correlates with an improved treatment 

response while overrepresentation of REF-EPI2 and REF-EPI3 at baseline is associated with 

less favorable treatment response.

DISCUSSION

Studies on primary prostate cancer and metastatic, castration-resistant disease using high-

throughput transcriptomic sequencing,25,41,54-56 showed that the TME is relatively immune-

depleted. Here, we used scRNA-seq profiles to comprehensively characterize the TME of 

metastatic, castration-sensitive prostate cancer (mCSPC), across a variety of tissue types. 

Using longitudinal samples from 10 patients over a treatment course with ADT and anti-

PD-1, we profiled the baseline TME and tumor cells, longitudinal changes induced by 

treatment, and correlated baseline features with PSA response. These studies leveraged 

our expertise in inferred protein-activity computational methods to increase resolution of 

the immune cell subpopulations and tumor cell subclusters as compared to conventional 

gene expression and transcriptomic methods. In particular, inferred protein activity enabled 

stratification of tumor cell subclusters and associations with post-treatment outcome, 

whereas tumor cells did not subcluster by standard gene expression methods at all due 

to excessive transcriptional background noise.

Profiling transcriptomes from a cumulative 40,270 single-cells, our study uncovered a 

previously undescribed and rich immune infiltrate in untreated mCSPC samples, albeit 

in a small cohort of 11 patients. Here, baseline bone, lymph node, and liver samples 

were similarly immune-infiltrated while the lung metastasis was relatively immune-depleted 
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(Figures 1C and 1D) and distinctly different; the latter should be considered within the 

context of a small sample size. These data add to the notion that pulmonary-tropic and non-

pulmonary metastatic mCSPC may be biologically and/or immunologically fundamentally 

distinct.48 Regarding the metastatic castration-sensitive tumor cells (transformed epithelial 

cells), our data adds to the literature by demonstrating significant intra- and inter-

patient tumor cell heterogeneity.57 However, these results expand our knowledge through 

the identification of 8 distinct tumor cell subclusters and reporting their differential 

representation in patients as a function of response to treatment and in pre vs. on-treatment 

samples (Figure 6A) (Figures 6B-6E). These subclusters were not apparent using standard 

gene expression profiling (Figures S1 and S2) and could only be detected by VIPER-based 

inferred protein activity analysis. In that regard, we showed phenotypic changes in tumor 

cell types induced by treatment, correlated baseline tumor cell phenotypes with clinical 

response, and defined pathways enriched longitudinally and upon recurrent, progressive 

disease.

Limitations of the study

These findings are somewhat limited by the total number of patient samples per tissue 

type and analysis of a single metastatic site per patient. However, even this relatively 

small sample size was sufficient to arrive at statistical significance based on over or under 

representation of specific clusters in the mCSPC TME. In addition, longitudinal analyses 

of prostate cancer tumor metastases at the single cell level, over a course of treatment in 

a carefully conducted clinical trial, have not been previously reported or even collected 

to our knowledge. Other thus far published single-cell datasets in prostate cancer have 

notable differences from ours, specifically (1) that prior single-cell metastasis data are in 

the castration-resistant setting and (2) prior datasets reflect substantial heterogeneity with 

respect to treatment length and regimen at time of biopsy.58 Indeed, to our knowledge 

previous data in the metastatic castrate-sensitive setting are limited to bulk RNA sequencing 

in a cohort of 17 hormone-naive and 21 short-term castrate samples.43 A second limitation 

is that our findings are potentially biased toward more aggressive biology given that only 

patients with radiographically apparent disease at the time of on-treatment biopsy were 

able to safely undergo the procedure. As such, we are unable to comment regarding the on-

treatment changes in the TME and tumor cell profiles of participants who rapidly responded 

to therapy. The time points for on-treatment biopsies were fixed due to the design of the 

clinical trial and are not based on tumor kinetics - although that may be an option in future 

studies. Here, we focused on cell types that were represented across all tissue types to 

avoid analyzing subpopulations that may be less relevant to tumor-immune crosstalk given 

their presence in a specific metastatic niche. This approach highlights broad changes in 

transcriptional program across tissue types in lieu of a deep dive on tissue-specific features.

The observation that treatment induces changes in both the TME cellular composition and 

transcriptional program of tumor cells, i.e., lineage plasticity, is consistent with other studies 

in prostate cancer.59-61 However, the TME immune subpopulation changes we observed 

after administration of ADT in mCSPC were in contrast to those described in primary 

prostate cancer. In primary prostate cancer, an immune infiltrate rich in T cells invades the 

TME after ADT administration,6,13 whereas in mCSPC biopsies we observed a decrease in 
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CD4+ and CD8+ T cells after ADT. Of note, the combination of ADT and anti-PD-1 was 

effective at recruiting CD8+ effector T cells. It is possible that these observed differences 

between primary and metastatic CSPC are due to the baseline TME composition, i.e., an 

“immune desert” vs. “immune replete,” respectively, and additional immunomodulatory 

factors already present in the milieu.

Importantly, in our study, we observed significant increases in TNF-α + CD4+ non-T reg 

T cells (CD4+ 1), LAG-3+ CD8+ T cells (CD8+ 2), and GITR+ T regs (Treg 3) after 

combination therapy (Figure 3I). These data highlight the notion that combination therapy 

with ADT and anti-PD-1 therapy in men with castration-sensitive prostate cancer may be an 

immunologically active combination, even in bone metastasis. This is also in contrast to the 

metastatic castration resistant state, where two large Phase III randomized controlled trials 

comparing next generation hormonal therapy (NHT) alone to the combination of NHT + 

anti-PD(L)-1 were negative.62,63

Upregulation of lymphocyte activation gene-3 (LAG-3, CD223) is of interest; this a CD4+ 

homolog that binds to MHC class II,42 and which remains expressed on CD8+ T cells in the 

context of chronic antigen exposure; thus mediating T cell exhaustion.64,65 Dual-inhibition 

of PD-1 and LAG-3 was recently shown to improve outcomes in patients with melanoma in 

a large phase 3 clinical trial.66 In prostate cancer models that are resistant to single-agent 

PD-1, dual blockade of PD-1 and LA-G3 improved vaccine efficacy providing evidence 

that combination immune checkpoint therapy may be critical to improving clinical response 

outcomes.67 Taken together, these data suggest that LAG-3 may be a potential adjunct 

to combination immune checkpoint therapy in prostate cancer. Another potential target, 

glucocorticoid-induced TNFR-related (GITR) protein is an immune checkpoint receptor that 

belongs to tumor necrosis factor receptor superfamily (TNFRSF). GITR is preferentially 

expressed on CD8+ and Treg cells and agonistic antibodies have been shown to potentiate 

the former and reduce functionality of the latter.68-70 Although several preclinical and early 

phase studies showed that anti-GITR agonist antibodies are safe, clinical results have been 

modest thus far.71,72 Trials of dual immune checkpoint blockade targeting GITR and PD-1 

have shown slight advantage over single-agent anti-GITR agonists antibodies,73,74 although 

data in mCSPC is limited.

Tumor necrosis factor alpha (TNF-α), an innate cytokine that can signal either as a 

membrane-bound protein and or a soluble ligand, was initially implicated as an anti-tumor 

cytokine but has since been strongly associated with tumor progression.45,46,75 In prostate 

cancer, our group previously found that elevated TNF-α levels were associated with 

PSA progression in men with biochemically recurrent prostate cancer, consistent with 

studies in metastatic prostate cancer.76-78 Related mechanistic data showed that TNF-α 
promotes prostate cancer dissemination from metastatic lymph nodes through activation 

of the CCL21/CCR7 axis79 and that inhibiting TNF-α, and its downstream pro-survival 

signaling molecules such as NF-κB and Bcl-2, may be a therapeutic approach for androgen-

independent prostate cancer.80 Taken together, the novel data presented here showing 

significant upregulation of TNF-α in CD4+ T cells after ADT and anti-PD-1 (Figures 2 

and S5), suggest that inhibiting TNF-α, either concurrently or sequentially, with ADT and 

immune checkpoint therapy in CSPC may be a rational treatment combination.
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Due to the general tropism of metastatic prostate cancer to bone, tissue-specific changes 

occurring in the TME of bone samples were of particular interest. Notably, following 

ADT alone, we observed a relative increase of myeloid cells (Figures 3A and 3B) and a 

noticeable decrease in CD4+ non-Treg (Tconv) as well as tumor cells. As discussed earlier, 

the observed expansion of CD8+ T cells was most pronounced in the bone TME after 

combination therapy compared to other tissue types (Figure 3B). Although these findings 

should be confirmed in subsequent carefully controlled clinical trial datasets, these data 

highlight the notion that future precision medicine approaches for prostate cancer will likely 

need to incorporate data on tissue location.

As previously noted, the association of baseline immune subpopulations with PSA response 

showed that TNF-α + CD4+ T cells (CD4+ 1) were statistically significantly associated with 

late PSA progression, and also that LAG-3+ CD8+ T cells (CD8+ 2) and GITR+ T reg cells 

(T reg 3) were both statistically significantly associated with early PSA response (Figure 

5B). In the case of Treg this is somewhat paradoxical as these cells are classically considered 

to be an immune suppressive subpopulation. However, a recent analysis of Treg using high-

dimensional flow cytometry from an NPK-C1 transplantable prostate tumor model revealed 

significant phenotypic diversity within Tregs, including a Treg subpopulation enriched in 

regressing tumors.81 Thus, our data are consistent with the preclinical observation that 

“favorable” Tregs may be present in the TME at various states of treatment. Taken together, 

these data demonstrate the capacity of single-cell and high-dimensional data to provide more 

granularity on immune subpopulations and may even challenge the definitions of classical 

“immunosuppressive” or “immune effector cells.”

We observed both expected and unexpected findings upon association of baseline tumor 

subclusters with PSA response. REF-EPI1, which has high protein activity levels of the 

androgen receptor (AR) regulated proteins (TMPRSS2 and NKX3.1), was unsurprisingly 

associated with early PSA response (Figure 6F). Using the “hallmarks of cancer” pathway 

enrichment analysis,82 we further confirmed that REF-EPI1 was enriched with androgen 

response genes (Figure S5). We also found positive association between this gene set and 

clinical outcomes in the TCGA dataset using GSEA (Figure 7E). In contrast, REF-EPI2 

and REF-EPI3, defined by upregulation of E2F targets, Myc targets, and G2M checkpoint 

(Figure S5), were associated with late on-treatment PSA progression (Figure 6F). These 

associations were validated in a similar manner (Figures 7C, 7D, and S7). Interestingly, 

we did not observe tumor REF-EPI4, the subcluster enriched with TNF-α signaling genes 

(Figure S5), to be associated with worse outcomes (Figure 6F). This association is opposite 

to what we observed in the TNF-α + CD4+ T cells (CD4+ 1), which was associated with 

decreased clinical outcomes (Figure 5B). Taken together, these observations highlight the 

notion that the specific cell of protein activity and/or expression (CD4+ T cells vs. tumor 

cells) reflects the underlying immunologic processes at play.

Building on this rich longitudinal transcriptomic dataset, we propose that the ultimate 

treatment paradigm for men with mCSPC requires a multi-pronged and adaptive 

combination regimen to elicit complete and durable responses. Similar to terminology used 

in the HIV field, we propose the term “Highly Active Anti-Tumor Therapy” (or HAATT), 

to describe a potential regimen with the following properties: (1) potent upfront tumor cell 
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killing perhaps directed at known resistant tumor cell clones, (2) activation of CD8+ effector 

T cell function via combination immune checkpoint therapy (anti-PD-1 with anti-LAG-3, 

anti-GITR agonist antibodies), (3) depletion or blocking of regulatory T cells, and (4) 

targeting immunosuppressive or tumor-permissive molecules in the TME (i.e., cytokines, 

chemokine receptors, metabolomic pathways, or transcription factors). In summary, the data 

presented here highlight the importance of deeply profiling the underlying tumor biology 

and immunology using advanced systems biology methods in an effort to drive future 

clinical trial design.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Charles G. Drake, MD, PhD 

(cgd2139@columbia.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All original code and scRNA-seq data generated by this study have been 

deposited at Mendeley and are publicly available as of the date of publication 

at https://doi.org/10.17632/5nnw8xrh5m.1. Any additional information required 

to reanalyze the data reported in this paper is available from the lead contact 

upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical cohort—The PRIME-CUT study (modulating the PRostate cancer Immune 

MicroEnvironment with ChemoimmUnoTherapy for metastatic prostate cancer), is an open-

label, single-arm, phase 2, single institution trial (NCT03951831) conducted at Columbia 

University Irving Medical Center (New York, NY). The study was approved by the IRB 

at Columbia University Irving Medical Center. The trial examined the clinical activity of 

phased administration of ADT, anti-PD-1, and docetaxel in men with newly diagnosed 

metastatic, castration-sensitive prostate cancer. The study was approved by the institutional 

review board at Columbia University and all participants provided written consent. Key 

eligibility criteria included a diagnosis of metastatic, castration-sensitive prostate cancer 

with a non-castrate testosterone level (> 150 ng/dL). Recruitment was restricted to patients 

with metastatic lesions amenable to biopsy. Patients with bone metastases were allowed. 

Treatment consisted of ADT (degarelix 240 mg subcutaneously (SC) for one dose, followed 

by leuprolide 22.5 mg SC every 12 weeks) followed by anti-PD-1 antibody (cemiplimab-

rwlc 350 mg IV every 3 weeks) beginning four weeks after ADT initiation. With the intent 

of immune priming, a two-cycle lead-in of anti-PD-1 therapy was administered prior to 

standard of care docetaxel (75 mg/m2 every 3 weeks for six cycles). Participants received 

ADT and anti-PD-1 until study completion (52 weeks) or until a lack of clinical benefit or 
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intolerable side effects. The primary clinical activity endpoint was the rate of undetectable 

PSA at 6 months after chemotherapy initiation (37 weeks on-study) as compared to the 

historical rate following ADT plus chemotherapy from the phase III CHAARTED trial.86 

Secondary endpoints included time to progression to CRPC and rate of radiographic 

response at study completion. To ensure patient safety within the limitations of a small 

phase 2 study, toxicity was monitored using a Bayesian method which provided continuous 

monitoring boundaries for termination of the trial if the toxicity rate was unacceptable.87

Sample collection—From May 2019 through December 2020, twelve patients were 

enrolled. At the time of enrollment, all patients were scheduled for a pretreatment, 

interventional radiology-guided baseline biopsy of the most accessible metastasis. For on-

treatment biopsies, subjects were randomized to one of two time points, either 4 weeks or 

10 weeks on-study. Subsequent biopsies at the time of disease progression were optional. 

All on-treatment biopsies were obtained from the same anatomical location as the baseline 

biopsy. Patients randomized to the week 4 time point had been treated with four weeks 

of ADT (degarelix) alone at the time of second biopsy. Patients randomized to the week 

10 time point were treated with 10 weeks of ADT (4 weeks of degarelix and 6 weeks of 

leuprolide) as well as two cycles (6 weeks) of anti-PD-1 at biopsy. We subsequently refer 

to these time points as ‘ADT only’ and ‘ADT+anti-PD-1,’ respectively. Given the phased 

administration of ADT and anti-PD-1, these data allowed us to compare the effects of ADT 

monotherapy versus ADT+anti-PD-1 on the transcriptional program of immune cell and 

tumor cell populations in the TME across a variety of tissues.

Of the twelve enrolled patients, two patients’ samples were excluded from further analyses 

due to either an insufficient number of viable cells for loading onto the 10X Genomics 

instrument or a lack of tumor cells identified in the biopsy sample using copy number 

inference (see STAR Methods below). We thus report on ten patients’ samples from bone, 

lymph node, liver, and lung metastases. We recovered an adequate number of cells in 

both baseline and on-treatment biopsy samples from six of the ten patients (four patients 

with bone metastases, one patient with lymph node metastases, and one patient with lung 

metastases). In the four remaining patients, only one of the two samples (baseline or 

on-treatment) per patient yielded adequate cells for sequencing and analysis (one baseline 

lymph node sample, one baseline liver sample, and one on-treatment bone sample [ADT 

only], and one on-treatment [ADT+anti-PD-1] liver sample.

METHOD DETAILS

Tissue dissociation—Fresh biopsy material was minced to 2-4 mm sized pieces with 

micro-scissors. For bone metastases, minced tissue was resuspended and examined with 

light microscopy. If dissociated to a single-cell suspension, the entire sample was passed 

through a 70-um filter for downstream processing. For bone metastases not found to be 

dissociated. and for all other sites, tissue was digested with 2.5 mL of tumor dissociation 

medium (L-15 medium with 1g/L glucose, 5% FBS, 15 mM HEPES, 800 U/ml collagenase 

IV, and 0.1 mg/ml DNase I) with gentle agitation in a glass vial in a 37°C water bath for 30 

min. Dissociated cells were passed through a 70-um filter and centrifuged at 300 g for 5 min 

at 4°C. If the resulting pellet showed signs of red blood cells (RBC), cells were incubated 

Hawley et al. Page 17

Cancer Cell. Author manuscript; available in PMC 2024 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with ACK lysis buffer and centrifuged a second time at 300 g for 5 min at 4°C. Cells were 

then resuspended in L-15 medium with 1g/L glucose, 5% FBS, and 15 mM HEPES and 

counted with Trypan Blue for viability. An aliquot of 10,000-20,000 cells per sample was 

used for subsequent scRNA-seq analysis.

Single-cell RNA sequencing and data processing—Single-cell RNA sequencing 

(scRNA-seq) was performed using the 10x Genomics (Pleasanton, CA) Chromium Single 

Cell 5’ Library & Gel Bead Kit at the Columbia University Human Immune Monitoring 

Core (HIMC). Manufacturers’ protocols were followed for the preparation of gene 

expression libraries and sequencing on the Illumina (San Diego, CA) NovaSeq 6000 

Sequencing System. Sequencing reads (base call files) were converted to FASTQ files using 

the 10x Genomics data processing pipeline “cellranger mkfastq”, followed by “cellranger 

count” for cell calling, gene mapping to the pre-built human reference set of 30,727 genes 

(10x Genomics), and gene counting. Cell-gene count matrix data were processed using the 

publicly available Seurat package to filter for cells with less than 10% mitochondrial RNA 

content, more than 1,500 UMI counts, and fewer than 15,000 UMI counts, followed by the 

Seurat SCTransform command to perform a regularized negative binomial regression based 

on the 3000 most variable genes.

Due to separate harvesting a processing of each specimen as fresh surgical tissue, without 

anchor integration, significant patient-level batch effect was observed, with cells clustering 

by patient rather than cell type. Thus, after filtering low-quality cells and scaling each 

sample separately with SCTransform, all samples were combined for subsequent analyses 

by the Seurat AnchorIntegration algorithm. To ensure statistically valid clustering, the 

combined matrix was clustered using the Louvain Algorithm at a range of resolution 

values from 0 to 1 in intervals of 0.01, with optimal resolution selected to maximize 

mean silhouette score, as previously described in.28 Gene Expression data were projected 

into their first 50 principal components using the RunPCA function in Seurat, and further 

reduced into a 2-dimensional visualization space using the RunUMAP function with method 

umap-learn and Pearson correlation as the distance metric between cells. Differential Gene 

Expression between clusters was computed by the MAST hurdle model for single-cell gene 

expression modeling, as implemented in the Seurat FindAllMarkers command, with log fold 

change threshold of 0.5 and minimum fractional expression threshold of 0.25, indicating that 

the resulting gene markers for each cluster were restricted to those with log fold change 

greater than 0 and non-zero expression in at least 25% of the cells in the cluster.

Semi-supervised cell type calling—For each single cell gene expression sample, cell-

by-cell identification of cell types was performed using the SingleR package30 and the 

preloaded Blueprint-ENCODE reference, which includes normalized expression values for 

259 bulk RNA-seq samples generated by Blueprint and ENCODE from 43 distinct cell 

types representing pure populations of stroma and immune cells.88,89 The SingleR algorithm 

computes the correlation between each individual cell and each of the 259 reference 

samples, and then assigns both a label of the cell type with highest average correlation 

to the individual cell and a p-value computed by Wilcox test of correlation to that cell type 

as compared to all other cell types. Cell-by-cell SingleR labels were restricted to those with 
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p < 0.05, and unsupervised clusters are labelled as a particular cell type based on the most-

represented SingleR cell type label within that cluster. Since tumor cells are not represented 

within the Blueprint-ENCODE reference, tumor cells are assigned as ‘epithelial’. The tumor 

cell identity of these cells was confirmed by expression of KLK3, a prostate cancer marker 

gene, as well as by inference of copy number variations using the InferCNV algorithm84 

with all lymphoid and myeloid cell clusters specified as a copy-number-normal reference.

Regulatory network and protein activity inference—Protein activity was quantified 

from single-cell gene expression profiles according to the pipeline previously described90 

and subsequently used for analysis of single-cell ccRCC samples.28 From the combined and 

batch-corrected dataset of all patients, metaCells were independently assembled from each 

distinct single cell subpopulation, as identified by gene expression clustering. Specifically, 

metaCells were generated by summing SCTransform-corrected template counts for the 10 

nearest neighbors of randomly selected cells, based on Pearson correlation distance in 

gene expression space. 200 cells were randomly sampled from each cluster to generate 

metaCells and the latter were then used to generate cluster-specific regulatory networks 

using the ARACNe algorithm.27-29 ARACNe was run with 100 bootstrap iterations using 

1,785 transcription factors (genes annotated in gene ontology molecular function database 

as GO:0003700, “transcription factor activity”, or as GO:0003677, “DNA binding” and 

GO:0030528, “transcription regulator activity”, or as GO:0003677 and GO:0045449, 

“regulation of transcription”), 668 transcriptional cofactors (a manually curated list, not 

overlapping with the transcription factor list, built upon genes annotated as GO:0003712, 

“transcription cofactor activity”, or GO:0030528 or GO:0045449), 3,455 signaling genes 

(annotated in GO biological process database as GO:0007165, “signal transduction” and in 

GO cellular component database as GO:0005622, “intracellular” or GO:0005886, “plasma 

membrane”), and 3,620 surface markers (annotated as GO:0005886 or as GO:0009986, “cell 

surface”). ARACNe was used to analyze each of these gene sets independently to ensure 

that the data processing inequality (DPI) was not affected by different baseline mutual 

information for different protein classes. Moreover, we did not use ARACNe to infer the 

regulatory targets of proteins with no known signaling or transcriptional activity, for which 

the effect on downstream transcriptional targets may be difficult to interpret. Parameters 

were set to zero DPI tolerance and Mutual Information (MI) p-value threshold of p = 10−8, 

computed by shuffling the original dataset as a null model.

Protein activity was inferred by VIPER applying all ARACNe networks to the integrated 

and scaled gene expression signature of the combined dataset across all patients. The 

resulting protein activity matrix was loaded into a Seurat Object, then projected into its 

first 50 principal components using the RunPCA function, and further reduced into a 

2-dimensional visualization space using RunUMAP function with method umap-learn and 

Pearson correlation as the distance metric between cells. Clustering on protein activity 

was performed exactly as above for clustering on gene expression, with optimal Louvain 

resolution selected to maximize silhouette score as an objective metric of robust cluster 

separation. Differential protein activity between clusters identified by resolution-optimized 

Louvain was computed using Student’s t-test, and the top proteins for each cluster were 

ranked by p-value.
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Association of TME subpopulations with tissue site and PSA response—
Cluster frequencies were computed as a percentage of patient cells within each cluster 

divided by the total number of patient cells. For example—in a sample of 1000 total cells 

with 200 T-cells, the frequency of T-cells would be computed as 200/1000=0.2. Subsequent 

comparisons were made between cluster frequencies in different tissue sites, treatment 

time-points, and at baseline between patients who responded or did not respond to treatment, 

as assessed by change in PSA over time. Specifically, for each set of comparisons the 

combined clustering across all patients was used to define clusters, and relative abundance 

of each cluster in each sample was computed. Cluster frequencies were compared by 

Mann-Whitney U-test. A separate sub-clustering of tumor cells only was also performed 

by Louvain algorithm with silhouette score optimization as above, with relative abundance 

representing percentage of each tumor cell subcluster among total tumor cell count per 

sample.

Differential protein activity was computed for each tumor cell subcluster by Student’s t-test, 

and pathway enrichment within each cluster was assessed by the Enrichr browser tool.91 

Cluster frequencies were compared with respect to tissue site, treatment timepoint, and 

subsequent response to treatment, such that early response to treatment was defined by 

reduction to less than 1% of initial PSA within 10 weeks of treatment.

Tumor cell subcluster association with outcome in external datasets—For each 

tumor cell subpopulation, a protein signature was defined based on the proteins that were 

significantly differentially activated in that cluster. Relative enrichment of these protein 

signatures was assessed in three independent, external, prostate cancer bulk RNA-seq 

datasets, (TCGA, East Coast SU2C, West Coast SU2C)52,53,92; for these analyses the 

bulk RNA-seq dataset was first internally scaled by z-score, then VIPER protein activity 

inference was performed using the single-cell ARACNe networks, and finally enrichment of 

each tumor subcluster signature was determined in each bulk RNA-seq sample using Gene 

Set Enrichment Analysis (GSEA),82 where genes were ranked from the highest to lowest 

activity of their encoded protein. The resulting normalized enrichment scores were tested 

for correlation with recurrence-free-survival in TCGA or with overall survival time in SU2C 

by Cox regression. Since enrichment of tumor cell cluster 1 was found to be significantly 

associated with a shorter recurrence-free-survival in TCGA, the genes in the leading-edge, 

and their encoded proteins, were further identified by GSEA analysis of all proteins ranked 

by differential activity in TCGA samples with and without recurrence. Finally, patient-by-

patient enrichment scores were binarized to less than zero = “low” and greater than zero = 

“high” and assessed for effect on survival by log-rank test and Kaplan-Meier curve.

Quantitative immunofluorescence analysis—Quantitative immunofluorescence 

(QmiF) was performed as previously described.93 Briefly, FFPE sections were dewaxed 

and stained for seven relevant proteins (key resources table). Slides were cured at room 

temperature, then whole slide images were acquired on the Vectra Polaris Quantitative 

Pathology Imaging System (Akoya Biosciences, Marlborough, MA). The entire tissue was 

selected for imaging using Phenochart and multispectral image tiles were acquired using the 
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Polaris. Images were spectrally unmixed using Phenoptics inForm software and exported as 

multi-image TIF files.

Images were analyzed with HALO image analysis software (Indica Labs, Cooales, NM) 

using the Highplex FL module, v4.1.3. Cellular analysis was performed by first identifying 

cells based on nuclear recognition (DAPI stain), then measuring fluorescence intensity of the 

estimated cytoplasmic areas of each cell. A mean intensity threshold above background was 

used to determine positivity for each fluorochrome within the cytoplasm, thereby, defining 

cells as either positive or negative for each marker. The positive cell data was then used to 

define co-localized populations.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantitative and statistical analyses were performed using the R programming 

environment and packages as described above. Differential gene expression was assessed at 

the single-cell level by the MAST single-cell statistical framework as implemented in Seurat 

v3, and differential VIPER activity was assessed by t-test, each with Bonferroni multiple-

testing correction. Comparisons of cell frequencies were performed by non-parametric 

Wilcox rank-sum test, and survival analyses were performed by log-rank test and cox 

regression. In all cases, statistical significance was assigned for p values ≤ 0.05.

ADDITIONAL RESOURCES

The phase 2 clinical trial is registered on clinicaltrials.gov and registration number is 

NCT03951831.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Protein-inferred activity clustering shows complex immune cells in CSPC 

metastases

• ADT and aPD-1 treatment induces robust infiltrates of CD8+, CD4+ T cells, 

and Tregs

• T cell infiltration determined by scRNA-seq correlated with T cells shown by 

qmIF

• Baseline tumor and immune clusters associated with clinical outcomes
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Figure 1. Baseline Composition of Micro-Environment by Tissue Site
(A) Phase 2 trial design schema.

(B) Uniform manifold projection (UMAP) plot constructed from VIPER-inferred protein 

activity of all cells in aggregate across baseline pre-treatment patient samples. Cells are 

clustered by resolution-optimized Louvain algorithm with cell type inferred by SingleR.

(C) Stacked barplot of the frequency of each major cell lineage within each baseline patient 

sample, with each column representing a unique patient and patients grouped by metastatic 

site. Cell clusters from B are aggregated by shared cell type.

(D) Stacked barplot of immune vs. non-immune cell frequencies, from C.

(E) Boxplot showing distribution of frequencies for each cell cluster in B at baseline, 

comparing tissue sites. Also see Figure S1.
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Figure 2. Top Protein Activity Cell Cluster Markers
Heatmap of top 5 most differentially activated proteins for each cell type cluster from 

aggregate scRNA-seq data across all patient samples. Each row represents a protein, grouped 

by cluster in which they are the most active, with cluster labels on the x and y axes. Each 

column represents a single cell. Above the x axis cluster label there is also a treatment label 

indicating time point at which a given cell was profiled. Also see Figure S2.
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Figure 3. Treatment with ADT+anti-PD-1 Induces Dramatic Changes in the Tumor Micro-
Environment
(A) UMAP plot of all cells from patients with metastatic bone lesions, split by treatment 

time point (Baseline, ADT-only, ADT+anti-PD-1, and post-treatment recurrence) and 

labeled by cell cluster.

(B) Stacked barplot showing the relative frequency of each major cell lineage by treatment 

time point for patients with metastatic Bone lesions, with each column representing 

aggregate of all samples profiled at a specific treatment time point.

(C) UMAP plot, as in A, for patients with metastatic lymph node lesions.

(D) Stacked barplot, as in B, for patients with metastatic lymph node lesions.

(E) UMAP plot, as in A, for patients with metastatic liver lesions.

(F) Stacked barplot, as in B, for patients with metastatic liver lesions.

(G) UMAP plot, as in A, for patients with metastatic lung lesions.

(H) Stacked barplot, as in B, for patients with metastatic lung lesions.

(I) Boxplot showing distribution of frequencies for each cell cluster, comparing frequencies 

across treatment time points including baseline, ADT-only, and ADT+anti-PD-1. Also see 

Figure S4.
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Figure 4. Immune Infiltration at Baseline and in Response to Treatment is Recapitulated by 
Immunofluorescence Analysis
(A) Representative immunofluorescence staining images of samples with low T cell 

infiltration (top – a baseline lymph node slide section) and high T cell infiltration (bottom – 

an on-treatment liver slide section). Images on the left show PanCK tumor cell staining and 

images on the right additionally overlay CD4+ and CD8+ staining intensity.

(B) Comparison of cumulative T cell frequencies in paired specimens as determined by 

scRNA-seq (y axis) versus quantitative immunofluorescence (x axis), where pre-treatment 

samples are colored in red at lower T cell frequency and on-treatment samples are colored 

in blue at higher frequency. Linear regression line is plotted, with correlation value as shown 

and p value = 0.031.

(C) Comparison of cumulative tumor cell frequencies in paired specimens as determined by 

scRNA-seq (y axis) versus quantitative immunofluorescence (x axis), where pre-treatment 

samples are colored in red at higher frequency and on-treatment samples are colored in blue. 

Linear regression line is plotted, with correlation value as shown and p value = 0.026.

(D) Comparison of treatment-induced fold-change for a representative patient where 

baseline and on-treatment tissue was profiled by both scRNA-seq and quantitative 

immunofluorescence. Fold-change in each major cell population profiled by quantitative 

immunofluorescence is shown in blue, and fold-change by scRNA-seq is shown in orange. 

Fold-changes are broadly concordant across all cell populations between the two modalities, 

with statistically significant correlation across cell types (p value = 0.00442).
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Figure 5. Differences in Baseline Immune Composition Associate with Differences in Treatment 
Response
(A) Spider-plot of log10(Fold-Change) from baseline in prostate-specific antigen (PSA) over 

time with treatment, for each patient, such that four patients, labeled in blue, exhibited 

rapid and dramatic decrease to below 1% of initial PSA and were identified as early 

responders to treatment, and two patients, labeled in orange, initially responded to treatment 

with a rapid increase in PSA observed after on-treatment week 28. These were considered 

late progressors on-treatment. The remaining patients, in gray, generally trended toward a 

decreasing PSA, though not as rapidly as the early responders.

(B) Boxplot showing distribution of frequencies at Baseline for each cell cluster, comparing 

frequencies in early responders vs. late progressors, such that clusters with significant 

difference at baseline (p < 0.05 by Student’s t test) included CD4+ T cell 1, CD8+ T cell 2, 

Treg 3, and Epithelial 2.
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Figure 6. Sub-Clustering Reveals Heterogeneity of Tumor Cells by Tissue Site
(A) UMAP plot showing sub-clustering by resolution-optimized Louvain algorithm of 

only tumor cells (Epithelial 1, Epithelial 2, and Epithelial 3 from Figure 1B). Plot shows 

aggregate of all 2,550 tumor cells across all patients at all time-points.

(B) Stacked barplot of tumor cluster frequency by treatment time point in patients with 

metastatic bone tumors.

(C) Stacked barplot of tumor cluster frequency by treatment time point in patients with 

metastatic liver tumors.

(D) Stacked barplot of tumor cluster frequency by treatment time point in patients with 

metastatic lymph node tumors.

(E) Stacked barplot of tumor cluster frequency by treatment time point in patients with 

metastatic lung tumors.

(F) Boxplot showing distribution of frequencies at Baseline for each tumor subcluster, 

comparing frequencies in early responders vs. late progressors, such that the only cluster 

with significant difference at baseline (p < 0.05 by Student’s t test) was REF-EPI2, with 

higher baseline frequency in late progressors. Also see Figures S3 and S5.
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Figure 7. Tumor Single-Cell Subcluster Signatures Associate with Differential Outcomes in 
TCGA
(A) Forest plot of Cox regression hazard ratios testing association in TCGA of patient-by-

patient normalized enrichment score for each tumor subcluster gene set with recurrence-free 

survival. REF-EPI2 gene set enrichment is significantly associated with worse survival 

outcomes (p = 0.002).

(B) Heatmap of leading-edge gene set from REF-EPI2 comparing all recurrent vs. non-

recurrent patients in TCGA.

(C) Kaplan-Meier curve testing association of binarized REF-EPI2 gene set enrichment 

(greater than 0 = high, less than 0 = low) with recurrence-free survival in TCGA, such that 

REF-EPI2 enrichment significantly associates with worse recurrence-free survival.

(D) Kaplan-Meier curve testing association of binarized REF-EPI3 gene set enrichment 

(greater than 0 = high, less than 0 = low) with recurrence-free survival in TCGA, such that 

REF-EPI3 enrichment significantly associates with worse recurrence-free survival.

(E) Kaplan-Meier curve testing association of binarized REF-EPI1 gene set enrichment 

(greater than 0 = high, less than 0 = low) with recurrence-free survival in TCGA, such that 

cluster 0 enrichment significantly associates with improved recurrence-free survival.

(F) Kaplan-Meier curve testing association of binarized REF-EPI7 gene set enrichment 

(greater than 0 = high, less than 0 = low) with recurrence-free survival in TCGA, such that 

REF-EPI7 enrichment significantly associates with improved recurrence-free survival, up to 

2800 days. Kaplan-Meier curves are not shown for the remaining clusters as log rank p 

values for these were not statistically significant (p > 0.05). Also see Figures S6 and S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-CTLA-4 BioSB Cat#BSB2884; RRID: AB_2762365

Rabbit monoclonal anti-PD-L1 Cell Signaling Technology Cat#13684; RRID: AB_2687655

Mouse monoclonal anti-CD8 Dako Cat# M7103; RRID: AB_2075537

Rabbit monoclonal anti-CD163 BioSB Cat#BSB3276

Mouse monoclonal anti-CD68 Dako Cat#M0876; RRID: AB_2074844

Rabbit monoclonal anti-LAG-3 BioSB Cat#BSB3366

Mouse monoclonal ant-PanCK Dako Cat#M3515; RRID: AB_2132885

Rabbit monoclonal anti-CD4 Cell Marque Cat#104R-15; RRID: AB_1516770

LAG-3 BioSB Cat# BSB3366; RRID: AB-3073657

CD163 Cell Marque Cat# AC-0316; RRID: AB_3073656

Biological samples

Untreated metastatic castration-sensitive needle core 
biopsies: Fresh Samples

Columbia University Irving 
Medical Center

N/A

On-treatment (ADT or ADT + a-PD-1) metastatic 
castration-sensitive needle core biopsies: Fresh 
Samples

Columbia University Irving 
Medical Center

N/A

Untreated metastatic castration-sensitive needle core 
biopsies: FFPE tissue

Columbia University Irving 
Medical Center

N/A

On-treatment (ADT or ADT + a-PD-1) metastatic 
castration-sensitive needle core biopsies: FFPE tissue

Columbia University Irving 
Medical Center

N/a

Critical commercial assays

10X Genomics Chromium Single Cell 5’ Library & 
Gel Bead Kit

10X Genomics N/A

Illumina NovaSeq 6000 Sequencing System Illumina N/A

Opal-7-color multiplex IHC kit Akoya Biosciences SKU NEL811001KT

Deposited data

Raw and Analyzed data used to generate analyses 
shown in this Manuscript: scRNASeq, bulkRNASeq, 
qmIF

This manuscript Available on Mendeley Data https://doi.org/
10.17632/5nnw8xrh5m.1

Software and algorithms

HALO Image Analysis Software Indica Labs http://www.indicalab.com/halo/

Seurat v3 Stuart et al., 201983 https://cran.r-project.org/web/packages/Seurat/
index.html

SingleR Aran et al., 201930 https://bioconductor.org/packages/release/bioc/
html/SingleR.html

InferCNV (Tickle et al., 2019)84 https://github.com/broadinstitute/infercnv

ARACNe Lachmann et al., 201685 https://github.com/califano-lab/ARACNe-AP

VIPER Alvarez et al., 201627 http://bioconductor.org/packages/release/bioc/html/
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