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Abstract

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory
epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE)
is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering
from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom.
Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in
the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively tar-
geted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain,
SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread
infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS).
Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (mono-
cyte/macrophage lineages), was preferentially increased in the OE septum, while it was homoge-
neously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the
lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2′,3′-cyclic-nucleo-
tide 3′-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis
that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations
of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may
account for the long-lasting olfactory deficit.
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Significance Statement

Damage to the olfactory system that can lead to loss of olfaction during coronavirus disease 2019
remains controversial. Using the K18hACE2 mouse infected with SARS-CoV-2, we show the infection
of sustentacular cells and lamina propria macrophages in the olfactory epithelium but not the olfactory
sensory neurons. In the brain, we found a widespread infection of projection neurons in the olfactory
bulb (OB), piriform cortex, and tubular striatum, with microgliosis. Some SARS-CoV-2–infected micro-
glia were observed in the OB. Alterations to the integrity of myelin in the olfactory tracts were evident.
These data support the hypothesis of a nonolfactory entry pathway for SARS-CoV-2 into the brain, as
well as the presence of impairments in neuronal conductivity in the olfactory tracts.Continued on next page.
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Introduction
In 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was identified

as the pathological agent underlying coronavirus disease 2019 (COVID-19; Bergmann and
Silverman, 2020; Huang et al., 2020). SARS-CoV-2 is characterized in part by the rapid
infection of cells in the nasal cavity. The virus easily spreads into the lungs and other
organs, causing severe inflammatory reactions and tissue damage (Brodin, 2021;
Lamers and Haagmans, 2022; Merad et al., 2022; Priyal et al., 2023). The nasal cavity
mucosa is covered by two epithelia: a ciliated, nonolfactory epithelium or respiratory epi-
thelium (RE) that moistens and protects the airway from pathogens and the olfactory epi-
thelium (OE) that contains the olfactory sensory neurons (OSNs; Fig. 1A; Harkema et al.,
2006). In addition, OE includes sustentacular cells (SCs) or supporting cells that surround
the OSNs. RE and SC express the angiotensin-converting enzyme 2 (ACE2) which is used
for cell entry by SARS-CoV-2 and the protease TMPRSS2 which is important for cleavage
and priming of the spike protein (Bilinska et al., 2020; Cooper et al., 2020; Fodoulian et al.,
2020; Lee et al., 2020; Blume et al., 2021). Initially, the infection of SCs can impact the
OSNs by limiting their nutrient support (Bilinska and Butowt, 2020; Khan et al., 2021,
2022) or indirectly by causing severeOE infiltration of immune cells, reduction of OSN neu-
rogenesis, or disruption on the OSN expression of odorant receptors (Torabi et al., 2020;
Finlay et al., 2022; Zazhytska et al., 2022). All direct and indirect damage to SCs can lead to
a deficit in olfaction (Cooper et al., 2020; Tsukahara et al., 2023).
As COVID-19 progresses, a variety of neurological symptoms develop in up to 45% of

patients (Priyal et al., 2023), suggesting that SARS-CoV-2 perturbs neuronal function.
However, although the neuroinvasive potential of SARS-CoV-2 was proposed at the out-
set of the pandemic (L. Mao et al., 2020; Li et al., 2020; Moriguchi et al., 2020; Varatharaj
et al., 2020), solid evidence to demonstrate neuronal infection in the human tissue remains
in dispute. Several reports present compelling evidence of neuronal infection (Paniz-
Mondolfi et al., 2020; Ramani et al., 2020; Burks et al., 2021; de Melo et al., 2021;
Meinhardt et al., 2021; Song et al., 2021; Cappelletti et al., 2023; Yang et al., 2024), while
others reported no direct infection of neurons (Brann et al., 2020; Pellegrini et al., 2020;
Butowt et al., 2021, 2023; Khan et al., 2021; Finlay et al., 2022; Zazhytska et al., 2022;
Luczo et al., 2024). Similarly, studies in laboratory animals report both the presence
(Golden et al., 2020, 2022; Oladunni et al., 2020; Zheng et al., 2021; Beckman et al.,
2022; Olivarria et al., 2022; Seehusen et al., 2022; Vidal et al., 2022; Yu et al., 2022;
Villadiego et al., 2023; Shimizu et al., 2024) and absence (Bryche et al., 2020; Ye et al.,
2021; Kishimoto-Urata et al., 2022; Verma et al., 2022) of neuronal infection. The possible
role of brain infection of SARS-CoV-2 contributing to olfactory deficits in humans remains
controversial (R. Choi et al., 2022). For example, Khan et al. (2021, 2022) found no evi-
dence of infection in the CNS in a postmortem analysis of 68 individuals who died acutely
diagnosed with SARS-CoV-2. However, the infection of the olfactory SC (cf. Khan et al.,
2021) is widely accepted as an entry route that subsequently compromises odor receptor
expression in sensory neurons (Frere et al., 2022; Zazhytska et al., 2022). Reports have
also provided evidence of CNS infection in animals, including the olfactory system (OS)
in hamsters (Frere et al., 2022), though the precise mechanisms providing access of
SARS-CoV-2 into the brain remain under study. These include a hematopoietic route
via infected macrophages or lymphocytes that extravasate the blood–brain barrier
(BBB) or through breakdowns in the vasculature (Awogbindin et al., 2021; Kumari et al.,
2021).
A definitive pathology that explains the diverse neurological symptoms, particularly in

the OS, is still under debate. Some scientists argue that direct damage by SARS-CoV-2
to peripheral or central neurons, compromised myelin, and affected adult neurogenesis
are still potential explanations for some of the symptoms of COVID-19 (Esposito et al.,
2022, 2023; Fernandez-Castaneda et al., 2022; Lyoo et al., 2022; Stein et al., 2022;
Ziuzia-Januszewska and Januszewski, 2022), although Monje and Iwasaki (2022) note
that neuroinvasive infection in humans is rare.
To shed some light into the mechanisms of SARS-CoV-2 infections in olfactory path-

ways, we analyzed the spread of infection and neuroinflammation in the OS in
K18hACE2 mice which can partially recapitulate the disease as seen in severely affected
COVID-19 patients. Mice were infected with a previously determined dosage of virus that
guaranteed the presence of pathology in brain tissues (Yinda et al., 2021; Dong et al.,
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Figure 1. SARS-CoV-2 infection across the OS. A, Diagram illustrating a coronal (OE) and sagittal section (entire OS and brain) of K18hACE2 mice. Cells
infected by SARS-CoV-2 are shown in red (neuronal) and orange (monocyte–macrophage lineages). B–E, Detection of SARS-CoV-2 nucleocapsid (red)
with nuclei counterstained with DAPI (blue). B–b, SARS-CoV-2–infected cells appear as small clusters in the septum (B) and turbinates (B’).
Quantification shows similar numbers of infected cells in both regions (b). C, c, SARS-CoV-2+ cells in the OB are predominantly accumulated around
the MCL-IPL. Lower numbers are found in all other layers of the OB, including the most internal and external parts of the GL and EPL, respectively (C).
Labeling of blood vessels is found in the EPL (C, arrowheads). D, d, SARS-CoV-2+ cells in PC showing extensive staining in the densely packed cell
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2022; S. Choi et al., 2024). Using this experimental design, we addressed (1) the infection of the virus throughout the
peripheral and central OS; (2) the characterization of infected cells; (3) the neuroinflammation caused by activated micro-
glia; and (4) the effect onmyelin along the olfactory myelinated tracts: the lateral olfactory tract (LOT) and the anterior com-
missure (AC).

Materials and Methods
Animals. All experiments were performed using 8-week-old male B6.Cg-Tg(K18-ACE2)2Prlmn/J mice (common name,

K18hACE2; McCray et al., 2007) obtained from Jackson Laboratory (jax.org/strain/034860). These mice express human
angiotensin I-converting enzyme 2 (hACE2) under the regulation of the epithelial cell keratin-18 (K18) promoter. Animals
were raised and maintained in a BSL3 facility at Yale University. All protocols were approved by Yale University Animal
Care and Use Committee.

Generation of SARS-CoV-2 stocks. SARS-CoV-2 isolate hCOV-19/USA-WA1/2020 (NR-52281) was obtained from BEI
Resources and subsequently amplified using VeroE6 cells overexpressing ACE2 and TMPRSS2 as previously described
(T. Mao et al., 2022). Infectious viral titers were then determined by the plaque assay using Vero E6 cells overexpressing
hACE2 and TMPRSS2.

SARS-CoV-2 intranasal inoculation. Mice were anesthetized using 30% v/v isoflurane diluted in propylene glycol and
subsequently intranasally inoculated with 5 × 103 plaque-forming unit SARS-CoV-2 in 50 μl (25 µl per nostril) using a
200 μl pipette.

Tissue processing and immunostaining. Seven days from infection, most animals lost 20% of body weight and became
lethargic, meeting the euthanasia criteria. To obtain the OEs and brain tissues, animals were anaesthetized using amixture
of ketamine (50 mg/kg) and xylazine (5 mg/kg), injected intraperitoneally, and perfused first with 20 ml of PBS followed by
20 ml of ice-cooled 4% paraformaldehyde (PFA) in PBS. The heads were removed and fixed in 4% PFA overnight on a
rotator. Then, entire brains were dissected from skulls and transferred to 30% sucrose in PBS for cryoprotection. OEs
were first decalcified by immersing the entire nose containing the nasal cavity on 0.5 M EDTA for 1 month, then washed
several times with PBS until the pH was neutralized, and finally transferred to a 30% sucrose in PBS for cryoprotection.
Both OE and brains were embedded in Tissue-Tek optimal cutting temperature (OCT) compound (Thermo Fisher
Scientific, catalog #4585) before being frozen for cryosectioning. Using a Reichert Frigocut cryostat (E-2800), we collected
25 µm serial sections on Fisherbrand ColorFrost Plus slides (Thermo Fisher Scientific) at the coronal plane, then dried
using a slide warmer at 55°C, and stored at −80°C until use.
For immunohistochemistry (IHC), sections were thawed in a slide warmer at 60°C for 20 min and then washed with PBS

to remove the OCT compound. Next, slides were immersed into a 0.01 M citrate buffer (pH 6.0) at 65°C for 35 min, fol-
lowed by a 5 min incubation in ice-cooled 0.01 M citrate buffer, pH 6.0, to perform an antigen unmasking. Slides were
placed horizontally in a humid chamber, and sections were washed three times, 10 min each with PBS+0.1% Triton
X-100 (Millipore Sigma, catalog #x100; PBST) before blocking for 1 h at room temperature (RT), with a solution made
of PBST supplemented with 5% normal donkey serum (SouthernBiotech, catalog #0030-01) and 0.01% of protease-free
bovine serum albumin (Sigma-Aldrich, catalog #A3059). Primary antibodies were diluted in 10% diluted blocking solution
(Table 1), and sections were incubated with them overnight at 4°C. Slides were washed three times with PBST for 10 min,
and appropriate secondary antibodies (Table 1), supplemented with 1 µg/ml of DAPI (Invitrogen, catalog #1306), were
incubated for 2 h at RT. Finally, sections were washed three times for 10 min each with PBST, and slides were mounted
with Mowiol 4-88 (Sigma-Aldrich, catalog #81381) prepared in 0.1 M Tris–glycerol.

Imaging, quantifications, and statistics. To analyze the morphology of microglial cells in response to the SARS-CoV-2
infection, we performed a fractal analysis similar to the methods reported before (Soltys et al., 2001; Meller et al., 2023).
Individual microglia cells (IBA1+) were randomly selected in Layers 1 and 2 of the piriform cortex (PC) and imaged with a
ZEISS LSM 900 confocal microscope using a 63× objective. Three images of an IBA1+ cells were selected per animal for
18 total images for analysis. Images from the Alexa Fluor 488 channel were preprocessed using ImageJ Macro to binarize
the image and isolate ionized calcium-binding adapter molecule 1 (IBA1) stained pixels from the background. Using the
paintbrush tool, adjacent cell processes and background noise were removed. The binary image was converted to an out-
line using the ImageJ outline tool. The FracLac ImageJ plugin was used to perform fractal analysis on the outline. Num G
was set to 4, and the metrics, convex hull, and bounding circle options were checked. The fractal dimension (DB), which

�
Layers 2 and 3 and in horizontal cells in Layer 1, located beneath the LOT (D). E, e, SARS-CoV-2+ cells in TuS accumulated mostly in the densely packed
cell Layers 2 and 3. CP, cribriform plate; EPL, external plexiform layer; GCL, granule cell layer; GL, glomerular layer; IPL, internal plexiform layer; LOT, lateral
olfactory tract; MCL, mitral cell layer; OB, olfactory bulb; OE, olfactory epithelium; ONL, olfactory nerve layer; PC, piriform cortex; RE, respiratory epithe-
lium; RMS, rostral migratory stream (bulbar part); TuS, tubular striatum. Statistics in Table 2. Scale bars: 200 µm.
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quantifies cell complexity, was recorded. Differences between control noninfected and SARS-CoV-2–infected groups
were assessed using a Welch’s unpaired t test in the GraphPad Prism 10.1.2 software. P≤ 0.05 was considered statisti-
cally significant (Table 2). Data is presented as mean ±SEM.
To quantify the number of cells infected with SARS-CoV-2, we used the antibody that recognizes the nucleocapsid

protein of the virus (SARS-CoV-2-NC+). To study inflammation, we used the staining for IBA1+ (microglial cells), as well
as IBA+/Clec7A+, to determine the phagocytic-activated microglia. All images were acquired in a ZEISS LSM 800 con-
focal microscope using the 10×/20× objectives along the different OS areas: (1) the OE; (2) the olfactory bulb (OB); (3) the
anterior PC; and (4) the tubular striatum (TuS), formerly the olfactory tubercle (Wesson, 2020). The OE was divided into
two subsections, the septum and turbinates, and cells were quantified within the area from the edge of the epithelium to
the lamina propria in randomly selected sections along the anterior to posterior axis. The OB was divided into its con-
stitute layers, the olfactory nerve layer (ONL), glomerular layer (GL), external plexiform layer (EPL), mitral cell and internal
plexiform layers (MCL-IPL) combined, granule cell layer (GCL), and the bulbar part of the rostral migratory stream (RMS),
and quantified across themedial–lateral plane. The PCwas divided into and quantified within its four layers: the LOT and
Layers 1–3. The TuS was divided into and quantified within its three layers (1–3). The number of cells expressing the
different markers were manually counted using ImageJ on 20× magnification confocal images. Cell counts were divided
by their respective areas to calculate the average count per area. For each marker, images of the respective OS areas
were captured across three consecutive sections separated by 250 µm. Images were taken in a total of three mice (N= 3)
per group (noninfected controls vs SARS-CoV-2). Raw data were adjusted to represent the number of cells per mm2

before the statistical analysis. Statistical comparisons between the regions/layers for each olfactory area were made
conducting a two-way ANOVA for SARS-CoV-2 quantifications and multiple unpaired t tests for IBA+ and IBA+/
Clec7A+ using the GraphPad Prism 10.1.2 software. P≤ 0.05 was considered statistically significant (Table 2). Data
is presented as mean ±SEM.
The effect on myelin was studied in the main olfactory tracts: the AC and the LOT. Images were taken in the coronal

plane with a ZEISS LSM 900 confocal microscope using a 20× objective. Two and three sections per animal were obtained
for the AC and LOT, respectively. Myelin damage was measured by analyzing the 2′,3′-cyclic-nucleotide
3′-phosphodiesterase (CNPase) labeling intensity, which is an indirect indicator of myelin integrity. Images were pro-
cessed using ImageJ Macro to binarize the image and isolate CNPase stained pixels from the background. Using a fixed
area within the AC and LOT, the intensity of all CNPase pixels was measured and averaged to obtain the average intensity
of the stained pixels. Statistical comparisons were made running a multiple unpaired t test using the GraphPad Prism
10.1.2 software. P≤0.05 was considered statistically significant (Table 2). Data is presented as mean ±SEM.

Table 1. Primary and secondary antibodies

Antigen Primary Ab Source (catalog #) Dilution Secondary Ab Source Dilution

CNPase Goat Poly. Novus Biologicals
(NBP3-05551)

RRID: AB_3076521

1:1,000 Donkey anti-goat IgG
Alexa Fluor 647

Thermo Fisher
Scientific

1:1,000

Cytokeratin 8 Rabbit clone
EP1628Y

Abcam (ab53280)
RRID: AB_869901

1:300 Donkey anti-Rb IgG
Alexa Fluor 488

Thermo Fisher
Scientific

1:1,000

CLEC7A (Dectin-1) Rat IgG2a, κ InvivoGen (mabg-mdect)
RRID: AB_2753143

1:30 Donkey anti-rat IgG
Alexa Fluor 555

Thermo Fisher
Scientific

1:1,000

Ctip2 Rat IgG2a Abcam (ab18465)
RRID: AB_2064130

1:500 Donkey anti-rat IgG
Alexa Fluor 488 and
647

Thermo Fisher
Scientific

1:1,000

IBA1 Rabbit Poly. FUJIFILM Wako
Chemicals (016-20001)

RRID: AB_839506

1:200 Donkey anti-Rb IgG
Alexa Fluor 488

Thermo Fisher
Scientific

1:1,000

OMP Goat Poly. FUJIFILM Wako
Chemicals (019-22291)

RRID: AB_664696

1:500 Donkey anti-goat Alexa
Fluor 647

Thermo Fisher
Scientific

1:1,000

Reelin recombinant Rabbit clone
EPR26278-30

Abcam (ab312310)
RRID: AB_3076463

1:100 Donkey anti-Ms IgG
Alexa Fluor 488

Thermo Fisher
Scientific

1:1,000

SARS-CoV-2
Nucleocapsid

Mouse IgG Sino Biological
(40143-MM05)

RRID: AB_2827977

1:100 Donkey anti-Ms IgG
Alexa Fluor 555

Thermo Fisher
Scientific

1:1,000

Sox2 Rat IgG2a, κ Thermo Fisher Scientific
(14-9811-82)

RRID: AB_11219471

1:500 Donkey anti-rat IgG
Alexa Fluor 488

Thermo Fisher
Scientific

1:1,000

Tbr1 Rabbit Poly. Abcam (ab31940)
RRID: AB_2200219

1:500 Donkey anti-Rb IgG
Alexa Fluor 488

Thermo Fisher
Scientific

1:1,000
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Results
Distribution of SARS-CoV-2–infected cells across the OS
We examined cells targeted by SARS-CoV-2 in the OS in K18hACE2 mice, which expresses human ACE2 under the

cytokeratin-18 promoter. At 7 d postinfection, we quantified their distribution across the different regions of the OS.
OSNs have the initial exposure to SARS-CoV-2 following intranasal inoculation of the virus, followed by three regions
in the CNS: the OB, the PC, and the TuS, formerly known as the olfactory tubercle (Wesson, 2020; Fig. 1A).
The OE is anatomically separated into the medial septum and the lateral turbinates, the latter of which has been sug-

gested to be more sensitive to viruses (Urata et al., 2021). Here, we found that SARS-CoV-2 nucleocapsid-positive cells
were sparsely distributed in both the septum and the turbinates. Uninfected mice showed no labeling with
SARS-CoV-2-nucleocapsid (NC; data not shown). Infected cells had a polygonal morphology resembling SC and
occurred individually or in small clusters of ∼10 cells (Fig. 1B,B’). The numbers of SARS-CoV-2+ cells did not differ
between the septum and turbinates (Fig. 1b). In the OB, the majority of SARS-CoV-2+ cells were found in the MCL-IPL,
where the largest projection neurons of the OB (mitral cells) are located (Fig. 1C,c). Fewer cells were found in the superficial
ONL, as well as in the region of the GL and EPL where tufted cells, the second population of OB projection neurons, are
located (Fig. 1C,c). In the EPL, some blood vessels were labeled for SARS-CoV-2 nucleocapsid (Fig. 1C, arrowheads),
suggesting that endothelial cells were also targeted by the virus.
The cortical (PC) and subcortical (TuS) regions of the OS are the main areas of the brain receiving direct input from the

OB. Both are arranged in layers and are innervated by the axons coming from the OB that form the LOT. In PC, these layers
are as follows: a plexiform Layer 1, where the LOT axons make synapses with the apical dendrites of projection neurons; a
densely packed Layer 2, where the projection neuron somata are located; and a thicker but less dense Layer 3 (Martin-
Lopez et al., 2019a,b). Here, most infected cells were pyramidal/projection neurons located in Layers 2 and 3 (Fig. 1D,
d), resembling the infections reported in neocortical pyramidal neurons (Golden et al., 2020; Vidal et al., 2022). Deep
into the LOT, some SARS-CoV-2+ were occasionally observed in the superficial Layer 1 (Fig. 1D), likely belonging to local

Table 2. Statistical analysis with significance

Analysis/figure Test Statistical value Pairwise comparisons p value

Number of SARS-CoV-2
cells (Fig. 2)

Two-way ANOVA+Tukey’s
multiple-comparison test

Mean diff. −851.7
95.00% CI of diff.
−1,601 to −102.5

PC - LOT vs L1 0.0202

Mean diff. −804.3
95.00% CI of diff.
−1,554 to −55.13

PC - L1 vs L2 0.0309

Mean diff. −964.2
95.00% CI of diff.
−1,920 to −8.442

TuS - L1 vs L2 0.0476

Fractal analysis (cell
morphology; Fig. 3)

Welch’s unpaired t test t=3.746, df = 12.58 Control vs infected 0.0026

Macrophages counts in
the OE (Fig. 4)

Multiple unpaired t tests t=2.917, df = 4.000 IBA1+ in septum 0.0434

Microglia counts in the
OB (Fig. 5)

Multiple unpaired t tests t=5.104, df = 4.000 IBA1+ total (average) 0.006963
t=3.147, df = 4.000 IBA1+/Clec7A+ total

(average)
0.034601

t=3.992, df = 4.000 IBA1+ in ONL 0.016240
t=3.955, df = 4.000 IBA1+ in GL 0.016746
t=5.812, df = 4.000 IBA1+/Clec7A+ in GL 0.004362
t=3.541, df = 4.000 IBA1+ in EPL 0.023985
t=3.989, df = 4.000 IBA1+ in GCL 0.016275
t=2.878, df = 4.000 IBA1+ in RMS 0.045123

Microglia counts in PC
and TuS (Fig. 6)

Multiple unpaired t tests t=12.46, df = 4.000 IBA1+ in PC - total
(average)

0.000239

t=8.485, df = 4.000 IBA1+ in PC - LOT 0.001058
t=10.85, df = 4.000 IBA1+ in PC - L1 0.000409
t=19.35, df = 4.000 IBA1+ in PC - L2 0.000042
t=9.483, df = 4.000 IBA1+ in PC - L3 0.000690
t=6.632, df = 4.000 IBA1+ in TuS - total

(average)
0.002681

t=4.255, df = 4.000 IBA1+ in TuS - L2 0.013110
t=4.834, df = 4.000 IBA1+ in TuS - L3 0.008437

Average pixel intensity
CNPase (Fig. 7)

Multiple unpaired t tests t=6.042, df = 4.000 CNPase pixels LOT 0.003785
t=5.229, df = 4.000 CNPase pixels AC 0.006389
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circuit horizontal cells (Neville and Haberly, 2004). In TuS, most SARS-CoV-2+ cells corresponded to projection neurons
from Layers 2 and 3 (Fig. 1E,e).
Interestingly, the cytoarchitecture and morphology of all OS regions remained intact in infected animals, as previously

reported in laboratory animals (Dedoni et al., 2022), suggesting that damage to the OS is likely concentrated at the molec-
ular level. Themice employed in this study express the hACE2 protein under the control of the K18 promoter. Expression of
K18 is found predominately in epithelial cells and not the brain (Abe and Oshima, 1990; McCray et al., 2007; Dedoni et al.,
2022). Thus, the expression of hACE2 in the brain is almost undetectable. Nevertheless, our results established that
SARS-CoV-2 did infect SC in the periphery and neurons across all areas of the central OS, suggesting the likely neuro-
tropism of this virus under certain conditions of severe infection.

Characterization of SARS-CoV-2–infected cells
Next, we sought to investigate the cellular phenotypes of those cells that showed an affinity for SARS-CoV-2 infection

throughout the different OS regions. The OE lines the posterior part of the nasal cavity and includes three primary epithelial
cells (Harkema et al., 2006; Fig. 2A): (1) the OSNs; (2) SC; and (3) basal cells which are the OE neural stem cells. In mice,
OSNs are characterized by their exclusive expression of olfactorymarker protein (OMP) (Farbman andMargolis, 1980) and
only 1 of the ∼1,200 odorant receptors (Vassar et al., 1993). The SCs are columnar epithelial cells that surround the OSNs
and provide them with support and nutrients. SCs can be identified with the expression of cytokeratin-8 (CK8; Maurya
et al., 2015). The basal cells lie next to the lamina propria and are subdivided into horizontal basal cells that express
cytokeratin-5 (Maurya et al., 2015) and globose basal cells that express Sox2 (Guo et al., 2010). Our results showed
that SARS-CoV-2+ cells in the OE belonged to two different populations: (1) cells that exhibited an elongated and polyg-
onal cell shape that extended from the apical surface to the lamina propria of the OE, expressing CK8 but not OMP
(Fig. 2B–b’’), identified as SC, and (2) macrophages lying over the lamina propria that expressed IBA1, a marker charac-
teristic of the monocyte/macrophage lineages (Fig. 2C–c’’). Basal cells expressing Sox2 were not infected with
SARS-CoV-2 (data not shown). The preferential infection of SC by SARS-CoV-2 aligns with previous reports in both lab-
oratory animals and humans (Cantuti-Castelvetri et al., 2020; Khan et al., 2021; Ye et al., 2021; Finlay et al., 2022; Verma
et al., 2022; Zazhytska et al., 2022). However, we pioneered in finding infection only from macrophages in the OE lamina
propria.
Across the OB layers (Fig. 2D), most SARS-CoV-2+ cells were found in the MCL-IPL which colocalized with the marker

Reelin (Reln; Fig. 2E–e’). Reln is characteristic of OB projection neurons, mitral and tufted cells (M/Tc), which are found in
theMCL-IPL and EPL (Martin-Lopez et al., 2011). Similar results were observedwith those cells located in the deepGL and
superficial EPL (data not shown). Reln has, however, been implicated in hyperinflammatory responses in epithelial cells in
COVID-19 patients (Calvier et al., 2023). Since there is evidence for ACE2 coexpressionwith furin in the GL andMCL (Ueha
et al., 2021), our data align with the hypothesis that under the specific conditions of severe disease, SARS-CoV-2 is able to
infect M/Tc, possibly using ACE2/furin as entry protein receptors. In the ON, where OSN axons enter the OB, some
SARS-CoV-2+ cells were found coexpressing the marker IBA1 and were identified as infected microglia (Fig. 2G–g’’).
Blood vessels were frequently labeled with SARS-CoV-2-NC in the EPL (Fig. 2F).
In PC and TuS, SARS-CoV-2 was found labeling only neurons and not microglial cells. The PC is a trilaminar cortex deep

into the LOT and acts as the primary and associational olfactory cortex (Fig. 2H). Here, projection neurons are glutamatergic
and express Tbr1 and Ctip2 (Martin-Lopez et al., 2019a,b). Both markers were coexpressed with SARS-CoV-2-NC+ in neu-
rons of Layers 2 and 3 in K18hACE2mice (Fig. 2I–i’’). In Layer 1, some horizontal cells were also infected with SARS-CoV-2,
and although they are presumed to beGABAergic interneurons (Shepherd et al., 2021), they also expressed themarker Ctip2
(Fig. 2J–j’’). The expression of Ctip2 by GABAergic neurons is characteristic of projection neurons in the TuS Layers 2 and 3,
which do not express the cortical marker Tbr1 (Martin-Lopez et al., 2019b). Our data in the TuS demonstrated that
SARS-CoV-2+ cells were located in Layers 2 and 3 and in the islands of Calleja, all expressing Ctip2 (Fig. 2K,L–l’’).
Collectively, these data confirmed that under conditions of acute disease in the K18hACE2 mice, SARS-CoV-2 targets

SC andmacrophages in theOE, while it showed neurotropism for projection neurons in theOB, PC, and TuS. Somemicro-
glial cells were also labeled with SARS-CoV-2-NC in the ONL and blood vessels in the EPL inside the OB. Since OSNs
were not labeled with SARS-CoV-2-NC in the OE, which are the only cells connected to M/Tc through the olfactory nerve,
axonal transport seems unlikely, and we support the hypothesis of a different entry route into the CNS likely using a hema-
topoietic pathway (Awogbindin et al., 2021; Tsukahara et al., 2023).

Microglial activation in response to SARS-CoV-2
During inflammation of the CNS, activated microglia proliferate in a process known as microgliosis (Zabel and Kirsch,

2013; Borst et al., 2021). After SARS-CoV-2 infections, microgliosis is well documented in both humans and laboratory
animals (Poloni et al., 2021; Fernandez-Castaneda et al., 2022; Kaufer et al., 2022; Kishimoto-Urata et al., 2022;
Olivarria et al., 2022; Dey and Bishayi, 2023). We first assessed the morphological changes associated with microgliosis
by using a fractal analysis of individual cells in PC as previously described (Soltys et al., 2001; Meller et al., 2023). We
searched for resting states, identified by small round cell bodies that extend highly branched thin processes (ramified
microglia), and activated microglia, whose morphology become amoeboid and hypertrophic, characterized by large
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cell bodies with shorter thicker processes (Blackbeard et al., 2007; Lier et al., 2021). Microglia were identified with the
marker IBA1, characteristic of monocyte–macrophage lineages.
After 7 d of infection with SARS-CoV-2,mostmicroglial cells in PC showed an activated state (Fig. 3A–C) as described in

the neocortex (Villadiego et al., 2023). This effect may be unique for coronaviruses, since brain infections with other
viruses, such as influenza, do not induce changes in microglia morphology (Dusedau et al., 2021). In the OE, changes
in macrophage morphology were not analyzed since those changes have not yet been fully characterized in vivo, and it
is believed that they change gradually in a spectrum of different elongated states (McWhorter et al., 2013).

Figure 2.Molecular characterization of SARS-CoV-2–infected cells. A, Diagram illustrating themain cell types of the OE.B–b’’, IHC in the OE detecting the
SC marker CK8 (b, green), SARS-CoV-2-NC (b’, red) and OSN marker OMP (b’’, magenta). SARS-CoV-2-NC+ cells colocalize with CK8 (B) but not with
OMP (b’’, arrowheads).C–c’’, IHC in the OE staining for the macrophagemarker IBA1 (c, green), SARS-CoV-2-NC (c’, red), and OMP (c’’, magenta), show-
ing infected macrophages lying in the lamina propria (arrowheads). D, Diagram illustrating the layers and main cell types of the OB. E–e’, IHC in the OB
staining for Reln (e, green) and SARS-CoV-2-NC (e’, red). All SARS-CoV-2-NC+ cells in theMCL express Reln (E, e), confirming their phenotype as infected
mitral cells. F, SARS-CoV-2-NC+ labeling in blood vessels from the EPL. G–g’’, IHC staining for IBA1 (g, green), SARS-CoV-2-NC (g’, red), and Ctip2 (g’’,
magenta), showing infected microglial cells in the ONL (G–g’, arrowheads). H, Diagram illustrating the layers and main cell types of the PC. I–i’’, IHC in PC
staining for Tbr1 (i, green), SARS-CoV-2-NC (i’, red), and Ctip2 (i’’, magenta). All neurons from Layers 2 and 3 are found to coexpress SARS-CoV-2-NC+

with Tbr1 (I, i, dotted lines) and Ctip2 (I, i’’, dotted lines) confirming they are projection neurons. J–j’’, IHC staining to detect Ctip2 (g, green) and
SARS-CoV-2-NC (g’, red) showing that Hc from the superficial Layer 1 are infected with SARS-CoV-2 (arrowheads). K, Diagram illustrating the layers
and of the TuS. L–l’’, IHC in TuS staining for Tbr1 (l, green), SARS-CoV-2-NC (l’, red), and Ctip2 (l’’, magenta) showing the absence of Tbr1 expression
in the entire TuS and coexpression of SARS-CoV-2-NC with Ctip2 highlighting the virus targeting projection neurons in the TuS. Nuclei counterstained
with DAPI (blue). CK8, cytokeratine-8; Ctip2, COUP-TF–interacting protein 2; gl, glomeruli; Hc, horizontal cell; ic, island of Calleja; IHC, immunohistochem-
istry; LOT, lateral olfactory tract; MØ,microglia; Mc, mitral cells; OB, olfactory bulb; OE, olfactory epithelium; OMP, olfactory marker protein; OSN, olfactory
sensory neurons; PC, piriform cortex; RMS, rostral migratory stream; SC, supporting/sustentacular cells; Tbr1, T-Box brain transcription Factor 1; TuS,
tubular striatum. Scale bar, 50 µm.
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Microgliosis and macrophage activation in the OS induced by SARS-CoV-2
Next, we studied macrophages (in the periphery) and microglia (within the CNS) proliferation by quantifying their num-

bers along the different OS regions, as well as their phagocytic activity. Phagocytic macrophages/microglia were
assessed by labeling with the marker C-type lectin domain family 7 member A or Dectin-1 (Clec7A; Krasemann et al.,
2017). Infectious diseases targeting neural regions lead to activation of the monocyte/macrophage lineages resulting in
strong inflammation (Hoogland et al., 2015; Merad et al., 2022). Macrophages/microglial cells were identified with
IBA1, while those actively phagocyting were identified with the coexpression of IBA1+/Clec7A+. We colabeled with
SARS-CoV-2-NC to determine if inflammatory cells clustered around infected cells.
In theOE, there was an overall increase in the total number of macrophages that was significantly higher in the septum of

infected mice (Fig. 4C). The increase in the turbinates was evident but not statistically significant (Fig. 4C). The number of
phagocytic macrophages (IBA1+/Clec7A+) showed no statistically significant differences between controls and infected
mice (Fig. 4A,B, arrowheads; C ). The significant increase in the number of IBA1+ macrophages in the septum suggested
this regionmay bemore vulnerable to inflammation than the turbinates, even though both regions were equally infected by
the virus (Fig. 1b). These data contrast with that of others who suggested a higher sensitiveness of the turbinates (Kaufer
et al., 2022; Ueha et al., 2022). No clustering of macrophages was evident around SARS-CoV-2+ cells.
In the OB, the total number of microglia (IBA1+) and phagocytic microglia (IBA1+/Clec7A+) was significantly higher in

infected animals, suggesting an enhanced inflammatory response to the presence of the virus (Fig. 5A–C).
Quantifications were made by OB layers to detect whether the inflammation in the OB occurred predominantly in those
layers where we detected the virus (Fig. 1C,c). Unexpectedly, our data showed microglial numbers were significantly
higher across all layers of the OB with the exception of the MCL-IPL (Fig. 5C). The number of phagocytic microglia
was significantly higher in infected animals only in the GL (Fig. 5C). Infected microglia were also evident in the adjacent
ONL (Fig. 5B, dotted lines), where OSN axons reach the OB. These data suggested that microgliosis was independent
of the location of the infected cells.
Finally, in PC and TuS, microgliosis was widely distributed. In PC we found a significant increase in the total number of

microglial cells across all layers of PC, showing an evident change to an activated cell morphology (Fig. 6A(PC), B(PC), C ).
Unexpectedly, the number of phagocytic microglia was almost undetectable, showing a slight, but not significant,
increase across the layers. Similarly, in TuS we observed microgliosis predominantly in the densely packed cell Layers
2 and 3 (Fig. 6A(TuS),B(TuS),D). Although we did not quantify cells in other areas of the brain, it was evident that microgliosis
was widespread within the CNS of infected animals (Fig. 6B) as previously reported (Golden et al., 2022; Olivarria et al.,
2022; Seehusen et al., 2022).

Disruptions in myelin integrity caused by SARS-CoV-2
In the CNS, the regulation of axon–oligodendroglia interactions is essential to maintain the integrity of the myelin

sheaths. In mature myelinated tracts, the enzyme CNPase plays a critical role in maintaining a healthy myelin–axon

Figure 3. Morphology of activated microglia. Immunostaining for the microglial marker IBA1 (green) with nuclei counterstained with DAPI (blue). A, a,
Morphology of microglia in control animals. B, b, Morphology of microglia in infected animals. C, Microglia changes in morphology in response to
SARS-CoV-2 infection to show a statistically significant increase in the fractal dimension in infected mice. Statistics: unpaired t test with **=p<0.01
(Table 2). Scale bar, 25 µm.
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interface (Lappe-Siefke et al., 2003). Some evidence suggests that SARS-CoV-2 has an impact on the brain myelin that
could explain some of the neurological symptoms displayed by COVID-19 patients (Domingues et al., 2020; Poloni et al.,
2021; Fernandez-Castaneda et al., 2022). In this work, we measured the CNPase levels in the two main OS myelinated
tracts, the LOT and the AC, to examine myelin damages in the K18hACE2 mouse model of COVID-19. Our analyses
revealed that there was a statistically significant reduction of CNPase in both the LOT and the AC (Fig. 7A–E) after 7 d
of infection, suggesting a loss of myelin and altered axonal conduction.

Figure 4. Microgliosis in the OE. Staining of the OE with the macrophage marker IBA1 (green), SARS-CoV-2 nucleocapsid (red), and active phagocytic
macrophages Dectin-1 (Clec7A; magenta). Nuclei counterstained with DAPI (blue). A with insets, Representative images of the OE from control mice.
Bwith insets, Representative images of the OE from SARS-CoV-2–infectedmice.C, Quantification of total macrophage cells (IBA1+) and phagocytic mac-
rophages (IBA1+/Clec7A+) in the medial wall (septum) and turbinates. The number of combined IBA1+ cells between the septum and turbinates shows an
increase that was statistically significant only in the septum (C), suggesting a higher vulnerability of this region to the infection. Statistics: multiple unpaired t
test with *=p<0.05 (Table 2). Scale bars: A and B, 1 mm; septum and turbinate insets, 100 µm.
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Figure 5. Microgliosis in the OB. Staining of microglia with IBA1 (green), SARS-CoV-2 nucleocapsid protein (red), and active phagocytic microglia with
Dectin-1 (Clec7A; magenta). Nuclei counterstained with DAPI (blue). A, Representative images of the OE from control mice. B, Representative images
of the OE from SARS-CoV-2–infected mice. Microglial cell bodies show a clear hypertrophy related to an activated response. Infected microglia are
observed in the ONL (dotted lines). C, Quantification of the microglia (IBA1+) and phagocytic microglia (IBA1+/Clec7A+) in the OB. Total numbers of micro-
glia (IBA+) are statistically significant higher numbers in infected animals, suggesting a strong inflammation. This effect is replicated on each individual layer
excepting in the MCL-IPL, which is the layer less affected by the microgliosis. Numbers of phagocytic microglia (IBA1+/Clec7A+) are significantly higher
only in theGL, indicating that this layer is themost affected by inflammation. EPL, external plexiform layer; GCL, granule cell layer; GL, glomerular layer; IPL,
internal plexiform layer; MCL, mitral cell layer; OB, olfactory bulb; ONL, olfactory nerve layer; RMS, rostral migratory stream (bulbar part). Statistics: multiple
unpaired t test with *=p<0.05; **=p<0.01 (Table 2). Scale bars: A and B, 1 mm; high magnification insets, 200 µm.
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Discussion
The awareness of sense of smell during our daily life changed dramatically in 2019 with the emergence of a new strain of

coronavirus that caused the COVID-19 disease. At the beginning of the pandemic, the number of people infected with

Figure 6.Microgliosis in piriform cortex and TuS. Staining of microglia with IBA1 (green), SARS-CoV-2 nucleocapsid (red), and active phagocytic macro-
phages with Dectin-1 (Clec7A; magenta). Nuclei counterstained with DAPI (blue). A, Representative images of the PC and TuS from control mice.
B, Representative images of the PC and TuS from SARS-CoV-2–infected mice, where clear hypertrophy is observed in all cell bodies extending not
only into the PC and TuS but also across the entire brain. C, Quantification of microglia (IBA1+) and phagocytic microglia (IBA1+/Clec7A+) in PC. The num-
bers of microglia are statistically significantly higher in all layers of PC from infected animals proving the presence of strong inflammation.D, Quantification
of microglia (IBA1+) and phagocytic microglia (IBA1+/Clec7A+) in TuS. The numbers of microglia (IBA1+) were significantly higher in Layers 2 and 3 high-
lighting that inflammation affected the projection neuron layers. Numbers of phagocytic microglia (IBA1+/Clec7A+) are similar in both controls and infected
mice. LOT, lateral olfactory tract; PC, piriform cortex; TuS, tubular striatum. Statistics: multiple unpaired t test with *=p<0.05; **=p<0.01; ***=p<0.001
(Table 2). Scale bars: A and B, 1 mm; high magnification insets, 200 µm.
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SARS-CoV-2 that reported some level of olfactory dysfunction exceeded 80% (Cooper et al., 2020; Lechien et al., 2020).
These numbers pointed to the OS as one of the main targets of the virus. Most evidence suggests that compromise of the
SC is the main reason for direct or indirect damages to the OSNs that produce olfactory dysfunction (Khan et al., 2021,
2022; Finlay et al., 2022; Zazhytska et al., 2022; Ziuzia-Januszewska and Januszewski, 2022; Tsukahara et al., 2023).
However, although the findings remain controversial, there are some data suggesting that SARS-CoV-2 can infect neu-
rons in the OS and therefore contribute to the perturbation of olfactory function. To shed new light on this paradigm,
we used the K18hACE2 mice to study the viral infection and inflammation in the OS, especially in the central regions
OB, PC, and TuS (Yinda et al., 2021; Zheng et al., 2021; Dong et al., 2022; S. Choi et al., 2024).
Our analysis in the OE confirmed that SC are the only cell type susceptible to infection in the OE of K18hACE2 mice,

consistent with reports of human pathology (Bryche et al., 2020; Cantuti-Castelvetri et al., 2020; Khan et al., 2021; Ye
et al., 2021; Finlay et al., 2022; Verma et al., 2022; Zazhytska et al., 2022). These findings were expected since SCs are
the only cells expressing the tandem proteins ACE2/TMPRSS2 used by SARS-CoV-2 as entry cell molecules (Bilinska
et al., 2020; Brann et al., 2020; Fodoulian et al., 2020). Our data support the hypothesis that direct damage to OSNs is
unlikely to explain loss of smell, as some have proposed (Sia et al., 2020; Meinhardt et al., 2021; Ziuzia-Januszewska
and Januszewski, 2022; Shimizu et al., 2024). In addition to SARS-CoV-2 infection in the OE, we found that inflammation
was more prominent in the septum compared with that in the turbinates unlike prior reports (Golden et al., 2020, 2022;
Kumari et al., 2021; Ueha et al., 2022). We speculate that SC in the septum may exhibit different topographically defined
molecular phenotypes as occurs with the OSNs (Zapiec and Mombaerts, 2020) that could make them to be more suscep-
tible of infection. We also found that macrophages in the lamina propria of the OE were infected by SARS-CoV-2, but not
those that were distributed throughout the thickness of the OE or internal to the lamina propria (Fig. 2C–c’). The ability of
SARS-CoV-2 to infect cells from the monocyte/macrophage lineages is known (Jeong et al., 2022; Eberhardt et al., 2023),
but here we demonstrate for the first time that only those macrophages aligned to the lamina propria were infected. IBA1+

cells arranged along the lamina propria were reported to be proximal to infected SC, but they were never infected with
SARS-CoV-2 (Bourgon et al., 2022). In our tissues, none of these macrophages were found proximal to SC-infected cells
that could explain a cell-to-cell transference of viral particles. This possibility would benefit from further research address-
ing the vulnerability of IBA+ cells in the OE to SARS-CoV-2 infections.
However, despite the damage to the epithelium, the question regarding the possibility of the virus infecting neurons

within the CNS that could contribute to olfactory deficits, particularly those causing long-term loss of olfaction, remains
unanswered. While Meinhardt et al. (2024) speculate on indirect effects on neurons (Meinhardt et al., 2024), there is also
evidence that support direct neuronal damage caused by the virus. For example, Esposito et al. (2022, 2023) reported
anomalies in cortical connectivity and function following SARS-CoV-2 infections. In support of a CNS pathology,
SARS-CoV-2 RNA has been reported in brain biopsies from COVID-19 patients (Matschke et al., 2020; Meinhardt

Figure 7. Myelination defects in the LOT and AC. A–D, Staining of microglia with IBA1 (green), SARS-CoV-2 nucleocapsid (red), and CNPase (magenta).
Nuclei counterstained with DAPI (blue). A, Representative images of IHC staining in the LOT of control and infected mice.B, Representative images of IHC
staining in the AC of control and infected mice. E, Quantification of the CNPase pixel intensity shows a statistically significant decrease in the intensity for
both, the LOT and AC in SARS-CoV-2–infected mice compared with those in controls. AC, anterior commissure; LOT, lateral olfactory tract. Statistics:
multiple unpaired t test with **=p<0.01 (Table 2). Scale bar, 100 µm.
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et al., 2021). Finally, damage in the myelin sheath of CNS axons is well documented both here and previously and could
contribute to neurological symptoms including impaired olfactory function (Garg et al., 2021; Fernandez-Castaneda et al.,
2022). These data represent examples of damages in the CNS that, at least in some patients, involve some degree of neu-
ronal infection by SARS-CoV-2 that may host replicating viral particles inside the cells.
Interestingly, within the OB, the virus infected the projection neurons M/Tc, which was most likely the result of their

coexpression of furin with murine ACE2, which have been suggested to be alternative SARS-CoV-2 entry receptors
(Ueha et al., 2021). It seems reasonable to speculate and open for discussion the possibility that the infection of other pro-
jection neurons throughout the brain was associated with the expression of other proteins used by the virus as entry
receptors that are independent of ACE2 or TMPRSS2 (Iadecola et al., 2020; Zhao and Gao, 2024).
In accordance with previous work, we found significantly higher numbers of microglia in all OS regions (OB, PC, and

TuS) suggesting widespread neuroinflammation (Awogbindin et al., 2021; Savelieff et al., 2022; Vidal et al., 2022).
However, others have reported an increase in the OB but not in PC (Kaufer et al., 2022); an increase only in PC
(Carossino et al., 2022); no changes at all (Fernandez-Castaneda et al., 2022); or reductions in the numbers of microglia
(Jeong et al., 2022). While the question remains to be resolved, it seems that the most parsimonious explanation would
include microgliosis accompanying the SARS-CoV-2 infections and accounting, at least in part, for the associated neu-
rological symptoms. Limitations of this study include the use of transgenic mice as amodel for human disease, whichmay
not recapitulate precisely the pathology seen in infected humans, and the use of only the ancestral isolate of SARS-CoV-2,
which may not represent the pathology of more recent variants of concern.
In summary, we found that SARS-CoV-2 infections in the K18hACE2 mouse infected SC and lamina propria macro-

phages in the OE, but not OSNs. In the CNS, SARS-CoV-2 infected microglial cells in the ONL of the OB and projection
neurons in all OS regions (OB, PC, and TuS). Themost obvious alteration that we observed was a widespreadmicrogliosis
throughout the brain and damage to integrity of the myelin in the LOT and the AC. However, there were no evident distur-
bances to the cytoarchitecture in these regions suggesting that damages may reside at the molecular level. Our data sup-
port the hypothesis that the neuronal infection likely occurred through infected microglial cells used as a “Trojan horse” to
infect neurons as has been previously proposed (Awogbindin et al., 2021). Collectively, these findings contribute to our
understanding of the olfactory deficits in both humans and animal models with SARS-CoV-2 infections. Therefore, ther-
apies designed to target the virus entry points, such as the use of vaccines that induce a humoral response producing
blocking antibodies of the spike protein, seems to be the safest approach to ensure protection against brain infection.
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