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Abstract

Recent developments in machine-learning (ML) and deep-learning (DL) have immense
potential for applications in proteomics, such as generating spectral libraries, improving
peptide identification, and optimizing targeted acquisition modes. Although new ML/DL
models for various applications and peptide properties are frequently published, the
rate at which these models are adopted by the community is slow, which is mostly due
to technical challenges. We believe that, for the community to make better use of
state-of-the-art models, more attention should be spent on making models easy to use
and accessible by the community. To facilitate this, we developed Koina, an
open-source containerized, decentralized and online-accessible high-performance
prediction service that enables ML/DL model usage in any pipeline. Using the widely
used FragPipe computational platform as example, we show how Koina can be easily
integrated with existing proteomics software tools and how these integrations improve
data analysis.
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Introduction

Recent developments in machine-learning (ML) and deep-learning (DL) have immense
potential for applications in proteomics, such as generating optimized spectral libraries1

and improving peptide identification in DDA2–6, DIA7, and targeted acquisition modes8.
Although new ML/DL models for various applications and peptide properties are
frequently published, the community adopts only a few of them. This is largely due to a
lack of findability, accessibility, interoperability, and reusability (FAIR)9,10 of most
published machine-learning models. With limited model exchange formats and
language-specific ML/DL frameworks mostly available in Python, access from other
programming languages commonly used in data analysis like R, Java, JavaScript, and
C# is very difficult. Furthermore, ML models, and especially DL models, commonly
require access to specialized hardware, the requirements and price of which have
steadily increased over the last years. This unintentionally divides the scientific
community into those that can invest time and other resources to set up and maintain
the necessary hardware and those that cannot. So far, solving this issue relied mostly
on ML developers going out of their way to enable accessibility by developing custom
solutions6,11,12. This comes with the common negative side effects of custom solutions,
such as the reimplementation of already existing functionality, users having to adapt to
new interfaces for every new model, and functionality that exists in one service but not
another. Since these issues are common in all fields that apply ML/DL models,
attempts have already been made to address them. Most commonly, this is done by
developing a model repository containing pre-trained machine-learning models ready
to be downloaded and applied directly13–15.

Here, we describe the initial release of Koina, a web-accessible model repository that
facilitates access to high-performance machine-learning models predicting peptide
properties used in computational proteomics analysis. We describe the design
decisions and how they benefit ML/DL developers, downstream tool developers, and
end users of said software tools. Koina goes one step beyond the classic model
repository approach by providing models not only for offline use but making them
available via web traffic. This combines the benefits of a model repository with the
usability of a web service. We believe this approach holds significant potential to
“democratize” machine-learning by enabling laboratories with limited access to
high-performance computing to benefit from ML models in their data analysis as well.
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Koina is already integrated in the popular proteomics data analysis software packages
FragPipe4, Skyline16, and Oktoberfest2. Furthermore, we show complementary Python
and R packages that further simplify accessing Koina. Finally, we benchmark many of
the Koina models in the FragPipe software suite with MSBooster4 for
peptide-spectrum-match (PSM) rescoring and, anticipating a growing list of available
models, provide a practical solution for finding optimal models for PSM rescoring.

Results & Discussion

Koina is a platform to democratize access to ML models for proteomics

Koina is a model repository enabling the remote execution of models. Predictions are
generated as a response to HTTP/S requests, the standard protocol used for nearly all
web traffic. As such, HTTP/S requests can be easily generated in any programming
language without requiring specialized hardware. This design also enables users to
share centralized hardware to utilize it more efficiently. It also allows for easy horizontal
scaling depending on the demand of the user base (Fig 1a). To minimize the barrier of
entry and “democratize” access to ML models, we provide a public network of Koina
instances at koina.wilhelmlab.org. The computational workload is automatically
distributed to processing nodes hosted at different research institutions and spin-offs
across Europe. Each processing node provides computational resources to the service
network, always aiming at just-in-time results delivery. In the spirit of open and
collaborative science, we envision that this public Koina-Network can be scaled to
meet the community's needs by various research groups or institutions dedicating
hardware. This can also vastly improve latency if servers are available geographically
nearby. Alternatively, if data security is a concern, private instances within a local
network can be easily deployed using the provided docker image (Fig 1a).

We envision Koina to be an open-source, community-driven project. We welcome ML
developers contributing to it by adding newly developed models to Koina, boosting
their accessibility. The initial release of Koina features models focusing largely on the
field of mass spectrometry-based proteomics, predicting a) gas phase fragmentation,
b) chromatographic retention, and c) collisional-cross-section of peptides; specifically,
Koina supports Prosit12,17–19, MS2PIP/DeepLC11,20, and AlphaPeptDeep6 (PeptDeep) (Fig
1a). The individual models were chosen because they are (1) among the most used
ML/DL models used by the community (2) previously established by independent
research groups, and (3) cover various modeling approaches, training data choices,
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and thereof, resulting in application limits. Together, they form a representative
cross-section of the current peptide-property prediction landscape in proteomics.
Providing an overview of state-of-the-art models available is one of the core functions
of any model repository. Koina provides clear and concise documentation at
https://koina.wilhelmlab.org/docs, covering all available ML models and significantly
simplifying the discovery of novel machine-learning models. Notably, this
documentation is semi-automatically generated based on an annotation file using
OpenAPI and DOME standards. This means that ML developers adding new models to
Koina do not need to be familiar with web development to provide easily accessible
documentation for their models.

The Koina service encapsulates technically heterogeneous collections of models and
makes them available through a single entry point that uses a common simple-to-use
query interface (Fig 1b). This solves one of the main difficulties users encounter when
using an ML model – a lack of documentation regarding the pre- and post-processing
of input and outputs. Even when code is properly documented, most ML/DL
developers use custom input output formats when developing their models; this
unnecessarily complicates the work of scientists interested in using model predictions.
Koina minimizes this hurdle for users and developers of ML/DL models by
encapsulating pre- and post-processing together with the core model in a “workflow”
or “execution graph” (Fig 2a). This simplifies the situation for users by abstracting a
level of detail that is unnecessary for them. Since the execution graph supports Python
code, ML developers can reuse the code they used during model development,
allowing for parallelizing separate steps of the execution graph, vastly improving
performance under heavy load. We have chosen the ProForma (Proteoform and
Peptidoform Notation) notation format developed by the Proteomics standards initiative
(PSI)21, meaning that tools and users that want to interface with Koina do not need to
implement complicated file standards. This improves interoperability across various
tools, allowing quick implementation of a Koina interface in various third-party
applications.

Koina’s focus on encapsulating models and making them directly executable also
ensures that all dependencies are explicitly encoded, ensuring long-term reusability.
This is supported by a continuous integration (CI) pipeline using GitHub Actions. No
changes to pre- and post-processing scripts, such as optimizing performance or
updating dependencies, can have unintended effects on prediction reproducibility.
Prediction reproducibility is supported by GitHub, where changes are transparently
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tracked, and separate docker images are released for every version. Version control is
also supported through Zenodo, which is used to store binary model files and doesn’t
allow changing files without creating a new version (Fig 1a). Different versions of the
model can also be created. This allows most users to automatically use bug fixes while
older model versions can still be accessed to ensure compatibility.

Koina abstracts most of the model related logic from the client by taking care of it on
the server, the client only needs to handle some minimal processing in relation to
sending HTTP requests, such as input formatting, batching, request preparation and
error handling. To improve the availability of Koina further, we also developed client
packages to trivialize connecting to Koina for the most common data science
languages, Python (https://github.com/wilhelm-lab/koina) and R
(https://github.com/wilhelm-lab/koinar). With these client packages, predictions can be
generated in as little as four lines of code (Fig 2b/c). They can also serve as reference
implementations for the development of client packages in other languages. For this,
as well as other commonly used languages like Java, C#, and JavaScript, example
code snippets are provided at koina.wilhelmlab.org that showcase how to fetch
predictions for any model.
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Figure 1: (a) Overview of the Koina web-accessible model repository. All code used for
Koina is publicly available on GitHub. Model weights are stored on Zenodo and fetched
dynamically on server startup. The provided docker image allows for easy scaling &
deployment of private instances. The web service design of Koina allows requests from
any source, such as KoinaPy (Python), KoinaR (Rlang), Oktoberfest (Python),
FragPipe(Java), Skyline (C#), or any other programming language, simplifying access
from these languages for all currently implemented machine-learning models. Koina
supports models from all major ML development frameworks. Currently, implemented
models include Prosit, MS2Pip, DeepLC and AlphaPeptDeep. (b) A common peptide
sequence interface was implemented for all models available via Koina to standardize
pre- and post-processing steps based on a common input format, namely the PSI
ProForma peptide notation standard, simplifying model comparisons.
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Figure 2: a) Execution graph for the Prosit_2019_intensity model. Inputs are colored
yellow, (Python) pre- and post-processing scripts are colored green and turquoise,
respectively. The TensorFlow neural network is purple. Outputs are blue. b) Code
example for calling the Prosit_2019_intensity model using the KoinaPy client library as
seen on koina.wilhelmlab.org. Simplifying interactions with Koina. c) Example output as
generated by a call using KoinaPy.
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Benchmarking prediction models for improved peptide identification with
MSBooster and FragPipe

Koina is integrated into MSBooster and FragPipe

To increase Koina’s accessibility, we have integrated it into the FragPipe
computational proteomics platform (https://fragpipe.nesvilab.org/). Specifically, the
deep-learning-based MSBooster4 can query the server to gain access to many more
models for prediction, allowing users to compare and mix-and-match models all within
the same software environment. MSBooster formats batches of peptides and metadata
into JSON files, and then sends these files to Koina via HTTP/S requests (Fig 3a). Koina
then sends its predictions back in JSON format, and the results are parsed into
MSBooster’s spectral library class to use later for PSM rescoring. Different prediction
models can be specified, allowing users to change between DIA-NN7 (default in
MSBooster in FragPipe) and the models supported on Koina. Models can be specified
both via FragPipe (Supplemental Fig 1a) and standalone MSBooster
(https://github.com/ Nesvilab/MSBooster). Each model supports different kinds of
PTMs and peptides (Table 1). Different models also run at different speeds (Fig 3b,
Supplemental Data 1, Methods). DIA-NN runs the fastest, as it can be run locally,
circumventing the time taken to transfer data to the Koina server and back. All the
Koina models have comparable prediction times, slower than DIA-NN but still on the
order of thousands of peptides per second. A plot showing the rate of Koina prediction
is automatically generated (Supplemental Fig 1b).

Predicted libraries are saved as Mascot Generic Format (MGF) files if a Koina
model was used, or as binary files if DIA-NN was used. These files can be reloaded if
rerunning MSBooster from the command line to avoid calling the prediction model
again. Either the MGF or binary file can be loaded into FragPipe-PDV22 for comparison
of experimental and predicted spectra (Fig 3c). Here it becomes easier to visualize the
differences between models’ predictions. For example, DIA-NN does not predict
intensities for fragments shorter than three amino acids long, as they are less
informative for DIA-NN’s peptide-centric approach. Fig 3c shows one example in which
the pyroglutamated peptide Q[-17]HSQGGFVV exhibits a strong y1 fragment intensity
which is matched by PeptDeep’s prediction but not by DIA-NN’s, resulting in a nearly
0.2 drop in spectral similarity, which ranges from 0 to 1.

One important piece of metadata required by some models is the normalized
collision energy (NCE), which affects fragmentation patterns. NCE is an important
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parameter to tune based on the type of peptides being fragmented23,24. Indeed, other
computational workflows have also noted the importance of calibrating NCE to
maximize the similarity between experimental spectra and model predictions1,12. To
account for differences between the learned NCE patterns of the predictors and NCE
settings on individual instruments, MSBooster performs an NCE calibration step when
using Koina models (Fig 3a). The top 1000 PSMs ranked by expectation value (evalue)
across all pin files are extracted and predicted at all integer values in a certain range.
Predicted and experimental spectra are compared with the unweighted spectral
entropy similarity metric4,25, and the NCE value that produces the highest median
similarity is selected when calling the model to predict all other peptide candidates
from the pin files. A quality control plot showing the distributions of the similarity scores
for the PSMs at each NCE value provides greater insight into this calibration step
(Supplemental Fig 1c)

Figure 3. Koina integration in MSBooster in FragPipe. a) All peptide candidates are
extracted from .pin files and predicted by either DIA-NN (available as part of FragPipe)
or models available on Koina. These models can be specified manually, and NCE
calibration is performed automatically if the model accepts NCE as a parameter.
MSBooster can also use a heuristic algorithm to attempt to automatically choose the
best performing MS2/RT model combination. The 1000 top PSMs are selected by
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default for the best model search and NCE calibration steps. b) Timing per 1000
peptides predicted was determined for models used in at least 2 experimental
analyses. Each dataset was predicted ten times. c) Spectra
20200317_QE_HFX2_LC3_DDA_CM647_R01.42711.42711.226 was visualized using
either PeptDeep or DIA-NN predicted spectra, with the experimental spectra on the top
and predicted spectra on the bottom. Unweighted spectral entropy was used as the
MS2 similarity metric.

Table 1. Different models have different requirements for prediction. We consider if
peptides longer than 30 amino acids (AA length > 30), phosphopeptides (Phospho),
and peptides without N-terminal TMT labeling (n-term TMT optional) are allowed. A
model was considered to support phosphopeptides not only if it could predict them
with no error, but also if RT/fragment intensities changed when the PTM was specified.

Phosphoproteomics data analysis

Having Koina connected to MSBooster enables users to compare model
performance systematically and mix-and-match models. Because of differences in
model architectures and training data, we hypothesize that the optimal model for
rescoring will depend on the specifics of the dataset. To investigate this, we considered
various types of data to pinpoint patterns between specific proteomics data types and
optimal models. We first considered phosphoproteomics data. Along with DIA-NN, the
only currently available Koina models that support phosphopeptide prediction are
PeptDeep and DeepLC. We benchmarked model performance for two datasets. First,
we processed phosphoproteome data from 30 different Arabidopsis thaliana tissues27

and counted how many phosphopeptides were identified. We found that PeptDeep
outperformed DIA-NN both in terms of MSBooster’s spectral similarity and RT
difference scores (Fig 4a). DIA-NN’s MS2 feature achieved an average improvement of
3.9% over baseline performance without MSBooster, while PeptDeep’s MS2 feature
had a 4.1% improvement. PeptDeep’s superior MS/MS predictions are evident in Fig
4b, where its predictions for high-scoring “confident target” PSMs are concentrated
closer to the maximum similarity of 1. Confident target PSMs are defined as those with
evalues lower than the lowest evalue for a decoy PSM from the same pin file. The RT
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feature tells a similar story (DIA-NN 1.8% improvement over baseline, DeepLC 2.3%,
PeptDeep 3.7%) (Fig 4a). It is less apparent from the distributions of the RT difference
feature which RT model performs best (Fig 4e, Supplemental Fig 2). DIA-NN’s RT
predictions improved identifications the least in the Arabidopsis dataset, yet its
high-scoring target PSMs have the smallest RT differences. However, DIA-NN also
assigned decoy PSMs smaller RT differences compared to the other models, which
decreased target-decoy separation and ultimately led Percolator to find the RT feature
less informative. Because PeptDeep’s MS2 and RT predictions surpassed DIA-NN’s for
phosphopeptides, we hypothesized that the two features in combination, when
calculated using PeptDeep’s predictions, would also perform better than when using
DIA-NN’s predictions. We confirmed this, finding a 4.6% increase over baseline using
DIA-NN and 6.0% increase using PeptDeep (Fig 4a). This is in line with the magnitude
of improvement expected for a closed MSFragger search on tryptic DDA data4.

Comparison of the three models on 8 mouse pancreatic ductal adenocarcinoma
(mPDAC) cell lines28 showed similar results (Fig 4c-d). Interestingly, DeepLC performed
similarly to PeptDeep here, identifying 20958 and 20945 phosphopeptides on average,
respectively. Based on these findings, we believe that PeptDeep should be used
instead of DIA-NN for phosphoproteomics analysis.
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Figure 4. Phosphoproteomics rescoring with various models. (a) Numbers of peptides
identified using different models on the Arabidopsis thaliana data across 30 tissues27.
Each model was repeated ten times, each with a different Percolator random seed.
“Baseline” is the peptides identified when excluding MSBooster before Percolator
rescoring. MSBooster calculated and added the unweighted spectral entropy feature
(MS2), delta RT loess feature (RT), or both (MS2+RT). (b) The distribution of spectral
similarity scores for confident target PSMs (those PSMs with lower expectation values
or “evalues” than the lowest evalue assigned to a decoy PSM in the same pin file). The
features were calculated using predictions either from PeptDeep or DIA-NN. (c-d) The
same as (a-b) but for the 8 mouse pancreatic ductal adenocarcinoma cell lines28. (e)
The distribution of delta RT loess scores for confident target and decoy
phosphorylated PSMs from the Arabidopsis thaliana dataset. The log10 of each value
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plus a small pseudocount was added for clearer visualization of the distribution
differences. Features were calculated using predictions from DIA-NN, PeptDeep, or
DeepLC.

Prosit performs the best across multiple HLA experiments

We and others have shown that human leukocyte antigen (HLA)
immunopeptidomics data benefits greatly from PSM rescoring with predicted
libraries3,6,17,18,29–31, largely in part because the increased nonspecific peptide search
space leads to many more spurious matches to decoy sequences. HLA peptides fall
into one of two classes based on which class of major histocompatibility complex
(MHC) molecule they bind, similarly designated class I or II. They have been widely
studied because of increased interest in HLA peptides for use as biomarkers and in
immunotherapeutics 32,33. Recent developments in data-independent acquisition (DIA)
and instrumentation (such as the development of the Bruker timsTOF machine) have
provided deeper and more reproducible views of the HLA peptidome 34,35. We
benchmarked all models on a variety of HLA datasets 26,36–38 (Fig 5a-g, Supplemental
Data 2). Overall, the DIA-NN and Prosit RT models performed the best over baseline,
while the Prosit models dominated in the MS/MS category. In addition, we found that
combining the best RT and MS/MS models outperformed the current FragPipe default
of using DIA-NN’s predictions to compute both the MS2 and RT features for all
datasets except for one of the DIA datasets (Fig 5e). This improved ability to identify
peptides provides a compelling reason for incorporating the many models on Koina
into FragPipe, as models trained on large nontryptic datasets can give better results
than DIA-NN when creating predicted spectral libraries.

The findings here highlight how specialized models outperform generic ones.
First, we note the differences in performance when rescoring spectra from different
fragmentation methods. Distinct higher-energy collision dissociation (HCD) and
collision induced dissociation (CID) models exist for Prosit and MS2PIP. However, only
the HCD MS2PIP model is currently available on Koina, while the CID model is on the
MS2PIP server at https://iomics.ugent.be/ms2pip/11. Therefore, our comparison is
limited to using the Prosit models. Marcu et al.36 used CID to fragment precursors in
their class I sample (Fig 5a). We found that the Prosit CID model performed best here,
achieving 15% more peptide identifications over baseline and also outperforming its
Prosit HCD counterpart. Likewise, the Prosit HCD model performed better on datasets
using HCD fragmentation26,36 (Fig 5b-c). Whichever model is superior is also evident in
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the distribution of target PSMs’ spectral similarity score distribution, which is shifted to
lower similarity when the wrong fragmentation model is used (Supplemental Fig 3).

Specialized models improve rescoring MS/MS spectra generated not only from
different fragmentation methods, but also from different mass spectrometers.
Strangely, though Prosit timsTOF improves over the Prosit HCD model trained on
Orbitrap data for both class I and II data from Phulphagar et al.38, this does not extend
to the PeptDeep models, where “Lumos” PeptDeep predictions helped identify more
peptides than “timsTOF” PeptDeep predictions did (Fig 5f-g). We believe the reason for
this discrepancy is in how PeptDeep and Prosit were trained on spectra of different
NCEs. While Prosit timsTOF was trained on energies ranging from 20-70 eV, PeptDeep
timsTOF was only trained on 32-52 eV, according to the training data listed in their
supplemental data6. Furthermore, all timsTOF spectra were annotated as 30 eV during
the PeptDeep training phase. Though spectra do differ across Orbitrap and timsTOF
instruments, there are certain hotspots across energy levels where they are highly
correlated18,39. Specifically, precursors fragmented with lower energies (around 20%
and 20 eV on Orbitrap and timsTOF instruments, respectively) produce nearly identical
spectra across instruments. Phulphagar et al. employed a scheme where precursor ion
mobility and fragmentation energy were inversely correlated, with energy ranging from
55-10 eV. Though MSBooster performs an NCE calibration step to find the best NCE
value for spectral prediction, the lower bound of this experimental NCE range is far
below that of what PeptDeep timsTOF was trained on, potentially resulting in
suboptimal predictions. However, because low energy fragmented spectra are similar
between Orbitrap and timsTOF, the PeptDeep model predicting for a Lumos instrument
performs better, since it was trained on spectra with HCD energy as low as 20%.
Indeed, when we rescored another dataset acquired on a timsTOF with similar ion
mobility settings as the data PeptDeep was trained on40, both PeptDeep and Prosit
timsTOF models outperformed their Orbitrap counterparts (Supplemental Fig 4).

To confirm our hypothesis that annotating spectra in the training set with the
correct NCE would improve PeptDeep timsTOF performance, we transfer-learned new
PeptDeep models using the same datasets Prosit timsTOF was trained on and tested
their performance across a range of low collision energy values on the class I timsTOF
data from Phulphagar et al.38 (Fig 5h, Methods). Models were trained in one of two
ways. The first, named “nce30”, was trained by annotating all PSMs as 30eV, as was
implemented in PeptDeep’s timsTOF training. By excluding informative NCE metadata
in the training, this transfer-learned model was still unable to achieve the number of
peptides identified by the PeptDeep Lumos model, despite having observed the
fragmentation of many new non-tryptic peptides. The second model was dubbed the
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“variable” model and used the NCE information provided for each peptide. Here, we
were able to identify similar peptide numbers to the Lumos model as early as 15eV, yet
the variable model was still unable to surpass the Lumos model’s performance. We
conclude that encoding all training spectra as 30eV resulted in PeptDeep timsTOF
learning an average representation of spectra across collision energies that did not
extrapolate well to lower energies; when it is properly encoded, NCE influences peptide
spectral predictions strongly enough to result in noticeable changes in the final
numbers of peptides identified, though we were unable to train a PeptDeep timsTOF
model that outperformed what was learned by the Lumos model.

Interestingly, we also note that class I datasets benefited more from predictions
than class II datasets did, in line with previous literature17 (Fig 5a-c, f-g, Supplemental
Data 2). This is evident across all RT and MS/MS models. A potential reason for this
decreased improvement is that longer peptides are more difficult to predict, likely
because of the increased number of peptide bond fragmentations possible.
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Figure 5. HLA rescoring with various models. The datasets used are (a-b) Marcu et al.,
2021 class I and II36, (c-d) Pak et al., 2021 class I DDA and DIA26, (e) Ritz et al., 2017
class I DIA37, and (f-g) Phulphagar et al., 2023 class I and II on a timsTOF single-cell
proteomics system38. “PeptDeep timsTOF” is the PeptDeep model with “timsTOF” set
as its instrument metadata, while “PeptDeep” used either “Lumos” or “QE” as its
instrument metadata, depending on what was listed in the mzML files or manuscript
text of the respective datasets. Hatch marks in the x-axis indicate sections of the plot
removed due to empty space, unoccupied by any peptide counts. (h) The number of
peptides identified by the nce30 and variable PeptDeep transfer learned models at
various eV values in the class I data represented in (f). Each eV value was tested three
times using three different Percolator random seeds. The dashed lines for “lumos” and
“timsTOF” indicate the average peptides identified by the PeptDeep and PeptDeep
timsTOF models respectively in (f).

Astral DIA data analysis

Recently, the Orbitrap Astral mass spectrometer (Thermo Scientific) has piqued
the interest of the proteomics community for its wide dynamic range, sensitivity of
detecting low abundance precursors, and accurate and precise quantification41,42. The
higher acquisition rates compared to Orbitrap analyzers allow for narrower isolation
windows, producing spectra of reduced complexity in data independent acquisition
(DIA) without sacrificing throughput. With the rising interest in narrow window DIA
(nDIA), we analyzed two short LC-gradient datasets using 2 Th isolation windows using
an MSFragger-DIA based workflow in FragPipe (see Methods). The first dataset
included three technical replicate injections of Hap1 human cell lysate43. As there are
currently no Astral-specific models on Koina, we investigated whether Orbitrap or
timsTOF models showed better performance. We found that for both Prosit and
PeptDeep, the Orbitrap mode performed better on this dataset, though only by a small
margin (Prosit: 60280 vs 60118; PeptDeep: 60586 vs 59716) (Supplemental Fig 5a).
Regardless, DIA-NN, which is instrument-agnostic, performed the best both for MS2
and RT features. DeepLC identified fewer peptides than average compared to
DIA-NN’s RT module, though the difference was insignificant (57645 vs 57673
peptides; two-sided t-test, p>0.05). DIA-NN’s MS2 and RT features also performed the
best when combined. They achieved a 27.3% increase in peptide identifications over
baseline. Meanwhile, combining the next best features of DeepLC for RT and PeptDeep
for MS/MS only achieved a 25.5% increase over baseline. Similar findings were
obtained from the second dataset of 46 fractionations in technical triplicates of
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HEK293 cells44 (Supplemental Fig 5b). Here, using DIA-NN for both features increased
peptides identified by 18.5% and outperformed PeptDeep MS2 and DeepLC RT
(17.9%). This lower percent increase in identifications may be attributed to the
fractionated dataset’s already deeper proteome coverage at baseline, identifying more
than 3 times the number of peptides as the first dataset. From these analyses, we find
that Astral nDIA experiments may benefit most simply from DIA-NN predictions, though
this leaves room for improvement if an Astral-specific model is trained.

DIA-NN and Prosit TMT models perform comparably

Currently, the only two models available in FragPipe for TMT-based prediction
are DIA-NN and Prosit, both of which were trained on hundreds of thousands of
sequences19. We examined two datasets to see whether these models differed in not
only the number of peptides identified, but also in their quantification quality. We first
analyzed 36 fractions of one plex of TMT11-labeled peptides from a study of lung
adenocarcinoma (LUAD) tumors45. On this dataset, Prosit outperformed DIA-NN’s
MS/MS predictions, but not by a significant amount (93306 vs 93269 TMT-labeled
peptides, t-test: p>0.05) (Fig 6a). Meanwhile, DIA-NN greatly outperformed Prosit’s RT
predictions (93877 vs 92787, t-test: p<0.05). Using both DIA-NN features improves
over baseline by 3.7%, in contrast to the 2.8% improvement with Prosit. Using DIA-NN
for RT and Prosit for MS2 prediction, we identified 94991 peptides on average, a 3.8%
improvement over baseline and statistically significantly more than using DIA-NN to
predict both peptide properties (t-test: p<0.01). Combining the DIA-NN and Prosit
models is enabled by MSBooster’s access to DIA-NN and Koina.

DIA-NN is more flexible than Prosit in that it does not assume peptides are
TMT-labeled at the N-terminus (Table 1). To adapt Prosit predictions to accommodate
peptides lacking N-terminal TMT, we simply assign them the RTs of the same peptide
sequences but with N-terminal TMT and shift the m/z of their b-ions by the TMT label’s
mass while retaining the same intensities. Neither model considers over-labeling of
TMT on serine, so MSBooster uses the strategy above to create predictions for
peptides with labeled serine for both models. To explore how well this strategy
produces predictions for peptides lacking N-terminal TMT, we compared MSBooster
feature scores between peptides without and without the N-terminal label in a subset
of high-ranking confident target PSMs, 2.3% of which were unlabeled at the
N-terminus. We found that while both DIA-NN and Prosit exhibit higher accuracy for
N-terminally labeled peptides, Prosit exhibited more noticeable differences between the
two groups both in terms of the RT difference and MS2 similarity features (Fig 6c-f,
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Supplemental Fig 6a-b). In addition, Prosit does not support prediction for peptides
longer than length 30. MSBooster assigns spectral similarity values of 0 and predicted
indexed RTs (iRTs) of 0 to PSMs without peptide predictions, further penalizing Prosit’s
performance; this is most clearly seen in Fig 6e with a large amount of confident target
PSMs having spectral similarities of 0, and in Supplemental Fig 6a with the cloud of
PSMs straying far from the RT calibration curve. In contrast to this “regular” search, we
ran a “restricted” database search, setting N-terminal TMT as a fixed modification and
limiting the peptide digest length to 30, to determine if the two models performed more
similarly without these biases. Without MSBooster’s features, the baseline number of
TMT-labeled peptides decreased by more than 2000 (Supplemental Fig 6c). Again, we
found that DIA-NN performed best for the RT feature and Prosit for the MS2 feature,
though the gap in RT feature performance decreased (Prosit regular vs restricted: 1.4%
vs 2.0% increase over baseline; DIA-NN: 2.6% vs 2.7%) and the gap in MS2 feature
performance increased (Prosit regular vs restricted: 2.0% vs 2.0%; DIA-NN: 1.9% vs
1.7%). This suggests that when N-terminal TMT labeling is incomplete or when many
longer peptides are expected, the flexibility of DIA-NN is beneficial.

When analyzing a separate TMT11-labeled human-yeast protein mixture19, our
initial findings that DIA-NN was best for RT and Prosit for MS/MS did not hold. This
dataset had four settings combining either HCD or CID fragmentation with Orbitrap
(OT) or ion trap (IT) analyzers. Here we found that DIA-NN and Prosit performed
comparably in the number of TMT peptides identified (Fig 6b). Interestingly, though
Prosit TMT takes the fragmentation mode (HCD or CID) into account during prediction
and DIA-NN does not (nor was it trained on any CID data), the models performed
comparably on CID data. N-terminal labeling rates for confident target PSMs were
0.05%, 0.04%, 0.04%, and 0.05% for CID IT, CID OT, HCD IT, and HCD OT,
respectively.

We next assessed whether the unique PSMs identified by the two models
differed by their reporter ion intensities. In the LUAD dataset, DIA-NN found 2744
unique TMT PSMs to Prosit’s 1392 (Fig 6g). We compared the pooled channel’s
MS2-based reporter ion intensities between the unique sets and found a statistically
significant difference between their median intensities (DIA-NN: 1.58e4, Prosit: 1.22e4;
p<0.01, Mann-Whitney U test). Given the wide dynamic range of reporter ion intensities
from all the PSMs in this dataset, this difference does not seem particularly meaningful.
Indeed, none of the four MS3-based acquisition methods in the yeast dataset showed
a statistically significant difference between DIA-NN and Prosit’s quantification (Fig 6h,
Supplemental Fig 7) (p>0.01, Mann-Whitney U test).
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Finally, we wished to check the validity of the unique peptides from each model.
The yeast dataset provides a good benchmark because each channel has a known
amount of yeast protein spiked into a constant amount of human protein, resulting in
the expected ratios of 1:1:1:2:2:2:8:8:8:0 for yeast proteins in channels 127N to 131C
compared to the 126 channel. Therefore, we focused on peptides originating from the
yeast proteome to assess quantification accuracy. In the data acquired by CID IT, the
two models had 475 quantified yeast peptides in common (Fig 6i). DIA-NN and Prosit
had 6 and 10 unique quantified peptides, respectively. The shared, DIA-NN-specific,
and Prosit-specific peptide sets all showed increasing median ratios across the
triplicate channels, with the shared set most closely following that expected 1:2:8 ratio.
The average median ratio for DIA-NN was 0.13, 0.29, and 0.61; for Prosit it was 0.45,
0.78, and 1.71; for the shared set it was 0.93, 1.91, and 6.40. Similar trends exist in the
three other acquisition methods (Supplemental Fig 8-9). Though peptides solely
identified by Prosit seemed to exhibit higher median ratios than those from DIA-NN,
these differences were not statistically significant (p>0.01, Mann-Whitney U test). The
unique peptides displayed much lower median ratios than what was expected. While
some of these peptides may be false positives, most have high spectral similarities,
suggesting that these are real identifications (Supplemental Fig 10). Potential
explanations for these reduced ratios include TMT reporter intensity suppression and
insufficient unique peptides in each group making it difficult to achieve an accurate
median ratio. Overall, most yeast peptides found by DIA-NN and Prosit were
overlapping, and many of the peptides that are unique to each model are likely valid.
We do not find sufficient evidence that these unique sets are different in any
meaningful way. Therefore, we suggest that these models can be used
interchangeably, but DIA-NN should be favored when there are many PSMs matched
to peptides that are longer than 30 amino acids or with unlabeled N-termini.
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Figure 6. Comparison of TMT models. (a) Number of TMT11-labeled peptides identified
with 10 iterations of PSM rescoring. Samples were 36 fractions of the LUAD dataset45.
(b) TMT11 peptides identified in a yeast/human proteome mixture19. 4 combinations of
settings were produced by matching CID/HCD fraction with orbitrap (OT) or ion trap (IT)
analyzers. Runs using DIA-NN’s predictions are in blue and runs using Prosit’s are in
orange, with separate hatch marks designating whether RT, MS2, or both feature types
were used. (c-f) Histograms depicting feature scores for confident target PSMs
separated by N-terminally labeled (blue) or not (red). c-d depicts the RT difference
score, while e-f depicts the spectral similarity score. (g) 2744 and 1392 unique TMT
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PSMs were identified by DIA-NN and Prosit. The 126 channel was a pooled sample
and non-zero reporter ion intensities from this channel are visualized here. (h) Unique
PSMs from each model in the CID IT run were selected and the reporter ion intensities
in the 126 channel were visualized in a swamplot. Both human and yeast PSMs were
included here. (i) Quantified yeast peptides from DIA-NN and Prosit were compared via
Venn diagram. For each subset of this Venn diagram, the median ratio of the peptides
in each channel to the reference 126 TMT channel (not shown here) is visualized, with a
horizontal black line indicating what the expected ratio is.

Automated heuristic model search accurately determines the best model combination

In the above sections, we presented empirically which models work best for
phosphorylation, HLA, Astral DIA, and TMT data. However, it is outside the scope of
this manuscript to exhaustively consider all types of proteomics data, and even within
the same type of data there is variability in the best-performing models, as can be seen
in the HLA datasets considered here (Fig 5a-g, Supplemental Data 2). Furthermore, as
Koina continues to grow and support more models, it may become overwhelming for
users to determine which combinations of models best improves their PSM rescoring.
To maximize numbers of identified peptides, we have incorporated an optional module
in MSBooster that attempts to quickly determine the best MS/MS and RT model for a
dataset. Importantly, the selected models may be from different frameworks (e.g.
DeepLC for RT and Prosit for MS/MS), a benefit conferred by Koina’s one-stop shop
for all these models.

Rather than having to rescore the entire dataset using each available model, we
implemented a heuristic approach that only gets predictions for the top 1000 PSMs
(with no consideration of their status as targets or decoys) and selects models based
on the agreement between their predicted and experimental values. When developing
this algorithm, we initially chose the MS2 model with the highest median similarity and
RT model with the lowest median RT difference, but we found that the algorithm would
sometimes report models we did not find empirically performed the best in our tests.
Figure 7 depicts one such case for an HLA DDA class I dataset 36. Our algorithm chose
Prosit rather than DIA-NN as the best RT model (Fig 7b). Though Prosit had the lowest
median delta RT of 1.38 minutes and DIA-NN the largest of 2.03 minutes out of the
models tested, it was actually DIA-NN’s RT predictions that identified the most
peptides on average, with 6.1% increase over baseline. Compare this to Prosit RT
which performed the worst with its 3.8% improvement over baseline and 312 fewer
peptides than DIA-NN. This is a similar finding to Fig 4e, where DIA-NN assigned
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confident PSMs the lowest delta RT scores out of the RT prediction models, yet still
identified the fewest peptides. Supplemental Fig 11 shows this same analysis for the
other datasets.

It was clear that the algorithm could be improved, so we tested several other
metrics and summarized their performance across all datasets used here (Fig 7c-d,
Methods). We found our “top consensus” metric performed well for finding the optimal
RT model. The top consensus metric sorts the 1000 PSMs in increasing feature value
(higher MS2 similarity or greater RT difference) and takes the N highest feature values
reported by each model. At each index in these sorted sublists of length N, the
algorithm casts a vote for which model is preferable (highest MS2 similarity and
smallest RT difference at that specific index). Whichever model has the highest number
of votes is chosen. We found that taking the 10 largest delta RT values was better able
to determine the best-performing RT model compared to the median method.
Specifically, the top 10 consensus method achieved an overall score of 0.899, meaning
the heuristic search suggested models across our testing datasets that on average
identified 89.9% of the peptide numbers compared to a method that is able to find the
empirically best RT model all the time; compare this to the median method, which
achieved a score of 0.793. While the best MS2 method was taking the bottom 100
lowest spectral similarity scores (score of 0.981, Methods), the median similarity
method performed very similarly (score of 0.978), and the methods chose different
models in only two out of the thirteen dataset. Therefore, there was insufficient
justification to move away from the median method, so we continue to use it for
determining the best MS2 model.

We have now implemented this improved model determination metric in the
algorithm, but users can adjust it to their needs by making use of command-line
MSBooster’s ability to exclude models from the best model search which they deem
unnecessary (e.g. timsTOF models should not be used for Orbitrap data and vice
versa, and only models supporting phosphorylation prediction should be used in
phosphoproteomics analyses).
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Figure 7. Heuristic best model search. Predicted MS/MS spectra (a) and RT values (b)
for the top 1000 PSMs of an HLA DDA class I dataset36 were compared to their
observed values. The calculated spectral similarity and RT difference scores were
ordered in increasing order and plotted for each model. The black line indicates the
position of the median value. Gray regions indicate positions at which the model that
empirically performed the best (Fig 5a) would be selected by the heuristic. Red regions
indicate positions at which the model selected by the heuristic does especially worse
than the empirically best model (i.e. one standard deviation above the mean
performance of the heuristic-selected model is less than one standard deviation below
the mean performance of the empirically best model). The performance of multiple
heuristic methods was summarized across all datasets for MS2 models (c) and RT
models (d). For the top and bottom consensus methods, the values of N PSMs tested
were 10, 50, and 100 PSMs. Greater detail explaining how the summary score was
calculated is provided in the Methods section.
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Conclusion & Outlook

This study demonstrates how Koina simplifies access to machine learning models in
the proteomics domain by providing a unified platform. Multiple popular ML models,
covering different frameworks and approaches, have been implemented to predict a)
gas phase fragmentation, b) chromatographic retention, and c) collisional-cross-section
of peptides. We encourage ML developers to submit their models to Koina, which will
not only enhance the platform's diversity but also broaden the impact and accessibility
of their models.
The common model interface implemented for Koina enables third-party tool
developers to integrate access to any model available through Koina. This can serve as
a starting point for developing a new standard to define common input and output
formats of ML models in the proteomics domain, further improving interoperability. An
important issue for discussion is the handling of modifications absent in the training
data. Currently, this varies between models. Prosit's strategy limits predictions to
evaluated modifications, enhancing accuracy but reducing applicability. Conversely,
MS2PIP disregards modifications not in the training data and provides the best
estimate of the fragment ion intensity as if the amino acid were unmodified, adjusting
only fragment peak m/z.
The currently available public Koina instances (koina.wilhelmlab.org) make it easily
accessible to new users. The distributed design of Koina allows scaling to community
needs by enabling heavy users to dedicate hardware to support it. Alternatively, the
provided docker image facilitates the easy deployment and scaling of private
instances, which is helpful for cases involving confidential data or performance-critical
tasks.
We illustrate how Koina’s integration in FragPipe and MSBooster enables
benchmarking of a variety of state-of-the-art models without having to run each model
in a separate analysis pipeline. We gained insights into which models perform well on
specific data types and touched on important considerations for training and evaluating
these models. Notably, we found that PeptDeep sometimes performed suboptimally
on timsTOF data, while Prosit did not encounter this issue. This aligns with findings of a
recent study that evaluated strategies for training peptide-property models with scarce
data46, suggesting that multi-task learning performs worse than single task learning.
PeptDeep provides a single model covering fragment intensity prediction of multiple
instrument types. Prosit, on the other hand, crafts separate models for different
instruments. This allows for their models to learn different weights that can better
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accommodate different instruments, unlike the PeptDeep approach in which the
majority of parameters are shared between instruments.
Additionally, we developed a heuristic best model search module in MSBooster,
anticipating the future availability of many additional models. Interestingly, we observed
that calculating the median feature score for the top 1000 PSMs from a dataset does
not always result in identifying the empirically best-performing model. Even if finding
the optimal model can not be guaranteed, the newly developed improved scoring
method demonstrated high accuracy, picking RT and MS/MS models that are on
average 90% and 98% as good as the best performing models, respectively.
High-accuracy predictions remain crucial, but our findings indicate that they do not
always translate to the most significant gains in peptide identifications. Optimizing
predicted spectral libraries for PSM rescoring is a complicated question that may
benefit from examining deep-learning-based feature scores for high-scoring targets
and decoys, as well as those PSMs on the border of the false discovery rate cutoff.
Future investigation into this can further improve our heuristic search algorithm,
contributing to the continuous improvement of ML predictors in the proteomics
domain.
In summary, Koina offers a robust platform for simplifying access to diverse ML models
in proteomics, promoting interoperability and ease of integration. Our study highlights
the strengths and limitations of existing models, providing a foundation for future
enhancements. By inviting developers to contribute to Koina, we aim to foster a
collaborative environment that propels advancements in machine learning for
proteomics, ultimately benefiting the entire scientific community.
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Methods

Koina Infrastructure
Koina models are hosted using Nvidia Triton, an inference server supporting ML
models developed in all major prediction ML development frameworks. To unify the
interface of Koina and to make ML models usable without knowledge of pre- and
post-processing, Python models are used to transform inputs/outputs. Models are tied
together with the ensemble model functionality, which is referred to as an execution
graph within the context of this manuscript. Models are made available by the Kserve
API implemented by Nvidia Triton Inference Server, providing access using both REST
and gRPC interfaces. Nginx is used for load balancing of the public Koina network. A
docker image is provided to simplify the deployment of new Koina instances. To
minimize its size, models are not stored in the image itself but rather dynamically
fetched from Zenodo once the server is deployed. Both the image as well as the
OpenAPI documentation provided at koina.wilhelmlab.org are automatically created,
tested and deployed using a custom GitHub Actions workflow.

FragPipe analysis and database searches

All analyses were done using FragPipe 21.0 with MSFragger 4.047 for database
searching, Percolator 3.6.448 for PSM rescoring, ProteinProphet49 for protein
assignment, Philosopher 5.1.050 for FDR filtering and reporting, and IonQuant 1.15.051

and TMT-Integrator 5.0.752 for TMT quantification and summarization. MSBooster
1.2.24 was used to turn deep-learning predictions into features before PSM rescoring,
while MSBooster 1.2.30 was used for timing and to demonstrate heuristic model
searching. Databases for searches were downloaded from UniProt, and all included
common contaminants and reversed sequence decoys. The human database was
downloaded March 18, 2022; mouse December 19, 2023; Arabidopsis June 2016 (the
fasta available from Mergner et al., 2020; and yeast April 15, 2024. A yeast-human
database was created by combining the two individual databases and used to search
data from Gabriel et al., 2022. All workflows were adapted from those available in
FragPipe, with specific workflows and parameters for each tool provided in
https://github.com/Nesvilab/MSBooster/tree/master/Koina%20manuscript%20resourc
e.
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Model timing within MSBooster

To make timing of models robust, we calculated the slope of a linear regression
correlating the number of peptides submitted for prediction to the total prediction time.
We only timed models that were used in at least two datasets. Each dataset was
predicted ten times. 256G of RAM and 55 threads were used for DIA-NN prediction
and Koina asynchronous prediction.

Heuristic best model search scoring
Multiple methods were developed to approximate the best model for a dataset

without having to rescore all PSMs and process them through downstream tools. First,
the 1000/P PSMs with the lowest expectation values are selected from each pin file
processed by MSBooster in the run, where P is the number of pin files. Next, all PSMs
are sorted in ascending order of their unweighted spectral entropy (MS/MS) or delta RT
loess (RT) score. Then, each heuristic method was applied.

● Median: The median score calculated using the predictions of each model is
determined. The MS2 model with highest median similarity and RT model with
lowest RT difference are chosen as the best models.

● Top consensus: N PSMs with the largest values are selected. Largest values for
the PSM features when testing MS/MS models mean those with the highest
spectral similarity; when testing RT models, large values mean the greatest
deviations from the RT calibration curve. The values of N tested are 10, 50, and
100. At every position from 1 to N, the model with the best PSM feature value
(greatest MS2 similarity or smallest RT deviation) cast a vote. The model with the
most votes was selected.

● Bottom consensus: This method is similar to the top consensus method, but it
focuses on the PSMs with lowest MS/MS similarity and smallest RT deviation.

● RMSE: The root mean squared error of RT deviations.
Once each heuristic method had produced its pick for best model, the average

number of peptides identified empirically across 10 runs with different Percolator
random seeds was divided by the average peptides identified by the model with the
highest average. This was applied separately to RT and MS2 models. This ratio of
peptides identified by the heuristically chosen model to peptides identified by the
empirically best model was averaged across multiple datasets to produce the final
score shown in the figures. For phosphoproteomics datasets, all peptides were
considered, not only phosphopeptides. For TMT datasets, all peptides were
considered, not just those quantified.
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Transfer learning PeptDeep and assessing model performance across an
NCE range

Transfer learning a timsTOF model was accomplished with peptdeep 0.2.0.
Nontryptic data from Adams et al. was downloaded from PXD043844 and their
reanalysis of tryptic data was downloaded from MSV000092462. Each PSM (peptide
sequence, fragment masses, and fragment intensities) was extracted from the hdf5 files
from PXD043844. PeptDeep requires certain formatting of the input data for training,
including MaxQuant msms.txt files. Only charge 1 fragments were listed in these
msms.txt files. Fragments and intensities from the hdf5 files, which include charge 2
fragments, were used to replace those listed in the msms.txt files for each PSM, as
designated by a distinct raw file/scan number pair.

Two models were trained. The “nce30” model was trained as described in the
PeptDeep supplementary data6, where all PSMs were labeled as 30eV for timsTOF
training. The “variable” model was trained using the average collision energies
extracted from accumulatedMsmsScans.txt files. Both models were trained for 20
epochs with batch size of 1024, learning rate of 1e-4, 5 warm-up epochs and dropout
of 0.1.

We predicted spectral libraries using the NCE30 and variable models from
10-30eV. Input files containing the peptides to predict were generated by MSBooster.
The resulting libraries were saved in mgf files and provided to MSBooster to add the
spectral similarity score to the pin files for HLA class I timsTOF data38. Downstream
analysis by Percolator, ProteinProphet, and Philosopher filtering was repeated thrice for
each NCE.
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