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ABSTRACT
Intrinsically disordered regions (IDRs) are critical for a wide variety of cellular functions, many
of which involve interactions with partner proteins. Molecular recognition is typically
considered through the lens of sequence-specific binding events. However, a growing body of
work has shown that IDRs often interact with partners in a manner that does not depend on
the precise order of the amino acid order, instead driven by complementary chemical
interactions leading to disordered bound-state complexes. Despite this emerging paradigm,
we lack tools to describe, quantify, predict, and interpret these types of structurally
heterogeneous interactions from the underlying amino acid sequences. Here, we repurpose
the chemical physics developed originally for molecular simulations to develop an approach
for predicting intermolecular interactions between IDRs and partner proteins. Our approach
enables the direct prediction of phase diagrams, the identification of chemically-specific
interaction hotspots on IDRs, and a route to develop and test mechanistic hypotheses
regarding IDR function in the context of molecular recognition. We use our approach to
examine a range of systems and questions to highlight its versatility and applicability.
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INTRODUCTION

Intrinsically disordered proteins and protein regions (IDRs) are prevalent across the kingdoms of life (1–5).
While folded domains exist in a stable 3D structure, IDRs exist in a heterogeneous ensemble of conformations.
Despite lacking a fixed tertiary structure, disordered regions can play essential roles across many distinct
cellular processes (2, 5, 6). IDRs are frequently involved in molecular recognition, mediating networks of
intermolecular interactions that facilitate signaling networks, transcriptional regulation, and translational control.
Consequently, there is particular interest in characterizing protein-protein interactions in which one (or both) of
the interacting domains are disordered.

IDRs can interact with partner proteins in a variety of ways. Some IDRs (or subregions within IDRs) may fold
upon binding, potentially leading to stable bound-state complexes amenable to structural characterization (Fig.
1A, left)(7). These interactions are typically driven by sequence-specific motifs, meaning they depend on the
precise order of the amino acids, akin to a conventional structured interface (8, 9). In many cases, however,
IDRs do not acquire a stable structure upon binding and exist as a disordered bound-state complex with a
folded partner, an interaction mode known as fuzzy binding (Fig. 1A, middle) (10–13). These more structurally
heterogeneous interactions are often driven at least in part by chemical specificity, that is, complementary
chemistry between the IDR and its partner (14, 15). Unlike sequence-specific interactions, chemically-specific
interactions can tolerate changes to the underlying sequence if chemical complementarity is retained(14).
Finally, recent work has shown that IDRs can bind other IDRs (or unstructured nucleic acids), and both remain
fully disordered in the bound state (Fig. 1A, right) (16–18). Beyond stoichiometric interactions, the role of IDRs
in biomolecular condensates (non-stoichiometric assemblies) has also been extensively investigated. Here,
chemically specific multivalent interactions have revealed a rich molecular grammar of IDR-mediated
interactions (19–33). In short, while investigations of IDR-mediated interactions have historically focussed on
sequence-specific binding, a growing body of work suggests chemically-specific interactions may be equally
important in tuning or even defining IDR-mediated interactions (2, 15, 34–38).

Despite their importance and prevalence, characterizing IDR-mediated interactions—both experimentally and
computationally—remains a major challenge. In particular, despite major progress in protein structure
prediction, we generally lack ways to predict chemical specificity from sequence alone (39–41). Given the
emerging importance of chemical specificity in IDR-mediated interactions, our inability to predict these types of
recognition hotspots is a major limitation.

Here, we address this knowledge gap through the lens of molecular biophysics. By repurposing the chemical
physics developed originally for molecular force fields and discarding requirements for spatial information, we
offer a bottom-up framework for predicting chemically-specific IDR-mediated interactions. Our approach is
interpretable, and context can be tuned by modulating the underlying physics of the force field. We recognize
this approach has many caveats (see Discussion), chiefly among them that it is only appropriate for assessing
chemical specificity in which an IDR remains largely unstructured. However, given that this is the precise
modality to which structure-based approaches are poorly suited, we see our work as complementary to
ongoing efforts in the structure prediction space. Predictions are rapid, and our approach is implemented as an
open-source Python package (https://github.com/idptools/finches), in Google colab notebooks
(https://github.com/idptools/finches-colab), and perhaps most usefully, as an online webserver
(http://finches-online.com/) (Fig. S1). In short, our work opens the door to high-throughput, straightforward, and
interpretable prediction of IDR-mediated intermolecular interactions to guide experiments, predict phase
behavior, identify distinct domains, and aid in the interpretation of experimental results.
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RESULTS

Figure 1. (A) IDR intermolecular interaction can occur through a conventional structured interface (left), a disordered
bound-state complex with a folded partner (middle), or a disordered bound-state complex where both partners are
disordered (right). (B) Coarse-grained force fields can represent amino acids as individual beads and generate IDR
conformational ensembles by sampling energetically accessible conformers in 3D space. (C) Force fields describe
bonded and non-bonded components, where non-bonded reflects short-range and long-range interactions that determine
attraction or repulsion between individual residues. (D) Non-bonded interactions are defined by distance-dependent
potentials that describe the relationship between inter-bead distance and instantaneous potential energy. Integrating
under these potentials yields a parameter proportional to the overall attraction/repulsion between those beads. (E) By
assuming two proteins can interact via all possible configurations without concern for chain connectivity, we can calculate
inter-residue preferential interaction coefficients and then use local sequence context to convert these into smoothed
predicted intermolecular interaction maps (intermaps) or a single mean-filed intermolecular interaction parameter (epsilon,
ϵ).

Repurposing molecular force fields for high-throughout bioinformatic analysis of IDR interactions
Molecular force fields describe the chemical physics of biomolecules through a series of equations and
parameters (Fig. 1B, C). Recent work on coarse-grained models of disordered proteins has led to several
force fields that offer accurate predictions of global IDR dimensions, notably among those of the Mpipi and
CALVADOS families (42–45). These models prescribe a set of equations and parameters that quantify the
nonbonded interactions between every pair of amino acids to describe the attraction or repulsion of a pair of
residues at some arbitrary distance (Fig. 1D). We reasoned this chemical physics – while generally used for
simulation – could be stripped out and repurposed by taking the integral under the pairwise potential as a
means to calculate a mean-field interaction parameter between two residues, akin to a Mayer-f function without
a volume correction component (see Supporting Information) (Fig. 1D). Using this force field-derived
interaction parameter as a starting point and then tuning the interaction of individual amino acids based on
their local context (for charged and aliphatic hydrophobic residues, specifically), the resulting inter-residue
matrix between a pair of residues can be averaged to obtain a single mean-field inter-protein interaction
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parameter epsilon (ϵ), or averaged over a sliding window to decode local
intermolecular interactions that are attractive or repulsive (Fig. 1E, Fig. S1).
We refer to the predicted intermolecular interaction maps as “intermaps,” as
shown in the bottom left of Fig. 1E. In all cases, negative ϵ values are
attractive, and positive ϵ values are repulsive.

A central assumption in this approach is that the attraction between two IDRs
is mediated solely by complementary chemical interactions (chemical
specificity) that emerge in the limit of all possible configurations being sampled,
not via precise “structured” interaction between subregions. It also does not
allow coordination between distinct regions, bringing with it a host of caveats
and considerations (see Discussion & Supporting Information). Nevertheless,
this approach enables us to easily calculate a mean-field interaction
parameter, as well as identify subregions that are expected to drive attractive
and repulsive interactions. Importantly, the molecular bases for such
interactions are entirely interpretable and codified by the underlying functional
form of the force field and its associated parameters.

In this work, we implement this approach using the Mpipi-GG and
CALVADOS2 force fields, although additional force fields could easily be
implemented (43, 45). These models both allow us to modulate the solution
environment to whatever extent a force field is parameterized (e.g., here in
terms of salt via a Debye-Hückel term). It also allows high-throughput
prediction (>1000 sequences per second for a 100-residue IDR, Fig. S2).
While we emphasize the resulting interaction scores are not expected to offer
high-resolution, quantitative predictions, they enable rapid semi-quantitative
descriptions of likely IDR-associated interactions.

Validation against molecular interaction
As an initial test, we first asked if the mean-field interaction parameter we
calculate from sequence (ϵ) is proportional to experimentally-measurable values
for intermolecular interaction. In principle, a mean-field interaction parameter
should be approximately proportional to the osmotic or light-scattering second
virial coefficients (B2 and A2, respectively) (46). B2 and A2 are experimentally
measurable quantities that report on the deviation from so-called “ideal
behavior,” where ideality here reflects non-interacting molecules. A negative B2

or A2 implies net attractive intermolecular interactions, while a positive B2 or A2

implies a net repulsive intermolecular interaction. We considered two systems
where second virial coefficients have previously been characterized for IDRs:
variants of the low-complexity domain of the RNA binding protein FUS and the
RGG domain from the DEAD-box helicase LAF-1 (47, 48). For FUS, A2 values
were calculated for a series of mutants (Fig. 2A), with values correlating well
with predicted ϵ values (see Fig. S3). Despite distinct scales, the value of 0
should be equivalent in ϵ and A2 space, a prediction confirmed by the fact the
best-fit line travels through 0,0 (Fig. 2A). Intermaps comparing wildtype FUS
with the tyrosine-to-serine (Y2S) mutant illustrates the complete suppression of
attractive interactions (Fig. 2B). For the RGG domain, we calculated the salt-dependent ϵ values and
compared them against NaCl-dependent B2 values, yielding a 1:1 correspondence between measured values
and predictions (Fig. 2C). While there are many caveats associated with relating second virial coefficients to
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mean-field interaction parameters (see Supplementary Information), the trends here gave us confidence that
our underlying assumptions were reasonable.

Direct prediction of phase diagrams from sequence
Recent interest in biomolecular phase separation has led to a number of experimental studies characterizing
full-phase diagrams of disordered proteins in vitro. While predicting phase behavior from sequence has been a
goal for many predictors, conceptual and technical challenges have limited their generalizability and scope
(see Supplementary Information). With this in mind, we investigated whether our mean-field approximation
could recapitulate known relationships between IDR sequence and phase behavior.

We first sought to use ϵ values as input to Flory-Huggins theory, from which phase diagrams can be predicted.
Flory-Huggins theory is a simple mean-field solution mixing theory that considers the balance between entropy
and enthalpy to determine if a solution of a given temperature and composition will exist in a single phase or
multiple phases (49–51). Although Flory-Huggins theory is reductive, our goal is not to quantitatively reproduce
co-existence curves to match 1:1 with experiments but to provide qualitative predictions for how changes in
environment or sequence are expected to alter phase diagrams. To achieve this, we calculated homotypic ϵ
values for proteins where full phase diagrams have previously been measured, converted the (extensive) ϵ into
an (intensive) Flory χ parameter by dividing by the sequence length, and used the recently developed
analytical solution to the Flory-Huggins model of Qian et al. to solve full phase diagrams for a series of systems
(Fig. 2A) (52). For a detailed overview of how to read phase diagrams, see Fig. S4A. Our predicted phase
diagrams report temperature normalized by the critical temperature of a reference sequence (T/TC) and
concentration as volume fraction (Φ). Phase diagrams here were predicted with the Mpipi-GG-based ϵ
analysis, but equivalent results are obtained using CALVADOS2-based analysis.

We began with previously characterized aromatic variants of the low-complexity domain of the RNA binding
protein hnRNPA1, a 135-residue low-complexity prion-like domain (Fig. 3B) (20). These variants increase
(Aro+) or decrease (Aro-, Aro--) the number of aromatic residues in the sequence. Our approach yielded
full-phase diagrams that show good agreement with respect to the relative impact of aromatic mutations (Fig.
3C). Prior work to elucidate these phase diagrams combined simulations and experiments to arrive at
conclusions regarding the impact of aromatic residues on phase behavior. In contrast, the major benefit of our
approach is these phase diagrams can now be predicted directly from the sequence in seconds.

We next asked how well our approach could capture the solution environment and sequence patterning.
Sequence patterning refers to the relative positions of amino acids along the sequence, where the patterning of
charged residues, in particular, has been shown to modulate phase behavior in various systems (53–58). The
N-terminal intrinsically disordered domain of the RNA helicase DDX4 (DDX4-NTD) has been extensively
studied in this context (Fig. 3D) (21, 59–61). Intermaps identify both charge clusters and aromatic residues as
key drivers of intermolecular interaction (Fig. 3D, bottom). Prior work measured full phase diagrams as a
function of NaCl (Fig. 3E), which are correctly reproduced with our approach (Fig. 3F). Moreover, Charge
Shuffle (CS) variants that maintain the same composition but reposition a small number of charged residues
lead to changes in the phase diagram that are correctly recapitulated by our approach, as are
arginine-to-lysine and phenylalanine to alanine mutants that entirely suppress phase behavior (Fig. 3G, 3H,
Fig. S4). Taken together, these results illustrate that our approach is capable of capturing effects driven by
sequence patterning, changes in the identity of cationic residues, and the solution environment.

We also assessed how chain length tunes the phase behavior of a resilin-like polypeptide (RLP) construct. As
expected, longer chains shift the critical temperature up and the saturation concentration down, recapitulating
experimental results (62) (Figure 3I). Beyond these examples, we predicted full-phase diagrams for a range of
systems examined previously, including variants of hnRNPA1-LCD, FUS, and RLP (Fig. S5). We also
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performed an extensive investigation into the low-complexity domain of TDP-43, highlighting that our approach
correctly integrates the density of aliphatic residues in the TDP-43 conserved region, recovering experimentally
reported consequences of changing a variety of different chemistries (Fig. S6) (63, 64). In all cases tested, our
predictions (at least qualitatively) capture the effects of sequence chemistry on phase behavior and offer clear
explanatory power for how sequence changes are expected to alter intermolecular interactions in the context of
IDR-mediated phase separation.
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Figure 3. (A) Using ϵ as a means to parameterize a Flory-Huggins description of phase behavior, our ϵ-based approach
enables the prediction of sequence- and solution-dependent full phase diagrams in seconds. (B) Experimentally
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measured phase diagrams for four variants of the low-complexity domain (LCD) from the RNA binding protein hnRNPA1.
These measurements were originally reported by Martin et al. and are reproduced here for easy comparison with
predictions (20). (C) Direct predictions of full phase diagrams using only sequence as input. (D) The N-terminal IDR from
the DEAD-box helicase protein DDX4 (DDX4-NTD) is a polyampholytic disordered protein that undergoes phase
separation in vitro. Intermaps predict both clusters of charged residues and aromatic residues contribute orthogonal
chemical interactions to drive phase separation. (E) Experimentally measured phase diagrams for wildtype DDX4-NTD
under four different salt concentrations. These measurements were originally reported by Brady et al. and are reproduced
here for easy comparison with predictions (59). (F) Direct predictions of salt-dependent full-phase diagrams using only
sequence and salt concentration as input. (G) Experimentally measured phase diagrams for wildtype and charge shuffle
(CS) DDX4-NTD variants under two different salt concentrations. These measurements were originally reported by Brady
et al. and are reproduced here for easy comparison with predictions (59). (H) Direct predictions of sequence and
salt-dependent full-phase diagrams using only sequence and salt concentration as input. Note that in all cases, the
composition of the sequence is identical here, salt and the order of amino acids are varying. (I) Direct predictions of
length-dependent phase diagrams for resilin-like polypeptide (RPL) [GRGDSPYS]n. These phase diagrams are in good
agreement with dilute-phase binodal measured by Dzuricky et al. (62). (J) Proteome-wide analysis of homotypic ϵ values
for all IDRs in the human proteome above 100 amino acids. (K) Example analysis comparing overall ϵ and intermaps for
the disordered protein HAX1, illustrating how intermaps enable rational mutagenesis to re-wire predicted intermolecular
interaction properties.

Given the performance of our model, we next calculated homotypic ϵ values for all long IDRs in the human
proteome (“long” here is defined here as having over 100 residues) using two different force field-based
approaches (Mpipi-GG and CALAVDOS2) (Supplementary Table S1, S2). We saw differences in the fraction
of IDRs with attractive homotypic ϵ values (i.e., ϵ <0), with ~10% of IDRs using Mpipi-GG and ~15% using
CALVADOS2 (Fig. 3J). These differences reproduce previously reported differences in IDR global dimensions
between the two models, whereby Mpipi ensembles were slightly more expanded than CALVADOS-derived
ensembles (45, 65). An attractive homotypic ϵ value does not necessarily mean the IDR is predicted to
undergo homotypic phase separation in a biochemically relevant context (see Fig. S7A,B). However, it does
imply the IDR has the potential to self-interact. GO analysis of proteins with IDRs that have attractive
homotypic ϵ values (vs. all proteins with long IDRs) identifies RNA-associated processes, morphogenesis, and
development as key biological processes associated with these proteins (Fig. S7C,D). The enrichment for
RNA binding proteins again qualitatively agrees with recent proteome-wide analyses on IDR compaction,
highlighting the symmetry between intramolecular interactions and homotypic intermolecular interactions (Fig.
S7) (20, 45, 65, 66). As a final note, we emphasize explicitly and unconditionally that we make no claims
whatsoever as to the physiological relevance of these predicted attractive homotypic interactions.

Given that IDR-mediated chemical specificity depends on the amino acid-encoded chemistry, post-translational
modifications offer one route to recode that chemistry. To this end, we calculated all homotypic ϵ values for all
human IDRs that possess one or more phosphosite (19,703 IDRs) before and after making phosphomimetic
mutations. Only experimentally-reported phosphosites (S/T/Y) were used, and in all cases, were converted to
E (glutamic acid) (67, 68). Interestingly, ~57% of IDRs that undergo phosphorylation showed a reduction in
homotypic attractive interaction upon phosphorylation (Fig. S8), while ~30% showed an increase in homotypic
attractive interaction (Supplementary Table S3). Overall, our work reveals many IDRs poised for homotypic
(and likely heterotypic) interaction and suggests that their underlying chemical specificity can be rewired
through post-translational modifications.

While the overall ϵ value provides a simple mean-field description of the average interprotein interaction, we
anticipate the most useful application of these analyses will be in building IDR-centric intermaps. As an
example, we highlight the largely disordered protein HAX1, a hub protein involved in cortical actin organization
and endocytosis (69–71). Intermaps predict phenylalanine and tryptophan residues will drive attractive
intermolecular interactions at several specific locations (Fig. 3J). Based on this analysis, an F/W to G mutant
suppresses those interactions and is predicted to abrogate homotypic intermolecular interaction. We have no
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reason a priori to think HAX1 interacts homotypically, and suggest these aromatic residues would likely drive
interaction with other partners, too. However, in the limit of designing targeted and specific mutations to
enhance or suppress homotypic (or heterotypic) interaction, our approach offers a clear route to developing
testable hypotheses.

Organizing IDRs in intermolecular chemical space
Given IDRs are often highly variable across different species, there has been substantial interest in
understanding if and how one can identify homologous IDRs without using multiple sequence alignments. Our
approach opens the door to high-throughput bioinformatics, whereby similarity is considered in terms of
chemical space. With this in mind, we wondered how homotypic vs. heterotypic interactions between IDRs
varied across the human proteome. We identified all IDRs in the human proteome between 100 and 150
residues in length (3,414 IDRs), focussing on this specific size to ensure intermolecular pairs were
approximately equal in length. Next, we computed all possible pairwise interactions (around 12 million
calculations), allowing us to map the heterotypic interaction landscape at the proteomic scale (Fig. 4A).

Hierarchical clustering into 24 clusters revealed subsets of IDRs that showed similar chemical specificity
interaction fingerprints, despite being highly diverse in terms of their absolute sequence. Of note, only 15% of
heterotypic IDR:IDR interactions are attractive, with the majority being repulsive. While overall repulsive ϵ does
not mean two IDRs cannot interact, our work here illustrates two key points: first, when classified in terms of
mean-field intermolecular interaction, naturally occurring IDRs fall into distinct chemical niches. Second,
sequence chemistry determines whether an IDR is poised for homotypic or heterotypic attractive interactions,
and some chemistries appear much more promiscuous than others (26).

We next sought to explore the idea of chemical promiscuity further. We define chemical promiscuity as the
tendency for an IDR to possess attractive ϵ values for a large number of different potential partners. To quantify
this, we ranked each IDR by the number of attractive heterotypic ϵ values (Fig. 4C). This analysis reveals
many IDRs have the potential to be highly promiscuous. Excising the top 100 most promiscuous IDRs, we
identified a range of molecular functions, notably RNA binding, but also proteins involved in cellular
homeostasis (e.g., TRIM41, DCAF1, ANAPC15), apoptosis (ANP32B, ANP32A, SET, CLK2, GRINA),
transcriptional regulation (ANP32A, SET), and histone chaperoning (ANP32E, SET) (Supplementary Table
S6). Moreover, taking protein copy number information into account, high-abundance and promiscuous
IDR-containing proteins are almost universally RNA-binding proteins (72) (Fig. S9). In short, while most
possible IDR:IDR interactions are repulsive (i.e., most rows in Fig. 4B are largely green), all IDRs do interact
favorably with at least one other IDR (i.e., each row in Fig. 4B has at least one purple pixel), and many IDRs
are in principle highly promiscuous (i.e., some rows in Fig. 4B are largely purple, e.g., clusters 23, 24).
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Figure 4. (A) Overview of workflow for construction of heterotypic chemical interaction map. (B) 3414 IDRs clustered via
hierarchical clustering into groups that show similar global intermolecular interaction fingerprints (Supplementary Table
S4). The average chemical properties of sequences in each cluster are shown in Supplementary Table S5 (C) All IDRs
ranked by the number of attractive interactions where an ‘attractive interaction’ is defined as ϵ below some threshold value
indicated by the purple hue (Supplementary Table S6). Inset shows zoom-in on the top 100 proteins. (D) Comparison of
median heterotypic ϵ vs. homotypic interaction ϵ for the top 100 proteins reveals some highly promiscuous proteins that
are also predicted to interact strongly homotypically (homotypic ϵ < 0), while others are predicted to be obligatory
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heterotypic interactors (homotypic ϵ > 0). Gene names for a subset of the proteins are shown when graphically
convenient. (E) Domain decomposition of disordered regions in the yeast prion protein Sup35 based on homotypic
intermaps. (F) Domain decomposition of a BRCA1 subregion using a subset of pre-defined chemically distinct chemical
fingerprints.

The ability to segment IDRs based on intermolecular chemical specificity is not limited to proteome-scale
analyses. While identifying IDRs in proteins is now relatively straightforward, sub-classification of internally
distinct subdomains has been a historically challenging exercise. A major confounding factor here is that IDR
function is context-specific; as such, a “functional domain” only makes sense to define in the context of some
function. If we restrict ourselves to chemically specific molecular interactions as our function of interest, it
becomes possible to define distinct subdomains within an IDR in the context of some interaction partner. For a
given pair of IDRs, we can segment subregions into chemically distinct domains, offering clear guidelines for
subdomain deletion studies beyond arbitrary cut-off points (Fig. 3E). This is illustrated here in proteins with
IDRs with clear compositional biases (e.g., the N-terminal half of the yeast prion protein Sup35) but is perhaps
most useful for segmenting large IDRs where interaction partners are not yet known using a limited set of
chemical fingerprints (Fig. S10, S11) (e.g., the highly disordered protein BRCA1).

Decoding chemical-specificity for IDR-mediated interactions
Finally, to determine how well our approach can help us explain and uncover intermolecular interactions
between IDRs in the context of protein-protein interactions, we examined a set of previously studied systems.
Our goal is to determine whether intermaps enable the development of testable and well-motivated hypotheses
regarding intermolecular interactions between an IDR and an associated partner. By examining previously
studied systems, we assess whether observed behavior could have been predicted a priori.

Prothymosin alpha (ProTα) and Histone H1 (H1) co-assemble into a fully disordered complex with picomolar
affinity (Fig. 5A) (16). ProTα is entirely disordered, while H1 contains a small globular domain flanked by N and
C-terminal disordered regions (Fig. S12). While the two proteins assemble via complex coacervation, we
wondered if our ϵ-based analysis would allow us to discern specific subregions that contribute more or less to
binding. Extant binding data obtained from single-molecule FRET (smFRET) showed that the C-terminal half of
H1 binds ProTα with a KD of 0.04 nM, while the N-terminal region binds much less tightly with a KD of 173 nM
(Fig. 5B). Gratifyingly, by calculating the per-residue sum of ProTα:H1 intermaps (Fig. S12), we find a stark
difference in the predicted interaction strength between the two halves (Fig. 5C). This effect is captured for
both Mpipi- and CALAVDOS-based models, with both predicting that the C-terminal half will bind much more
strongly than the N-terminal half (Fig. 5D). In addition, a strong salt-dependence on this interaction is
predicted, in line with published work (Fig. S12). Taken together, this illustrates that even for relatively
low-complexity, high-affinity interactions, local chemical specificity is, in principle, predictable.

Another example of a dynamic interaction is that of the homotypic interaction between a fragment from the
C-terminal IDR of the stress granule-associated protein CAPRIN-1 (Fig. 5E, Fig. S13) (73). Recent NMR work
characterized three interaction hotspots (residues 624–626, 638–640, and 660–666, highlighted as green,
yellow, and blue, respectively) that contribute key interactions to CAPRIN-1 intermolecular behavior (Fig. 5F).
In line with this, two of the three hotspots are clearly predicted from the sequence, with a smaller peak shown
for the first. Moreover, unlike DDX4 (for which salt suppresses phase separation), CAPRIN-1 homotypic phase
separation is enhanced at higher salt concentrations, an effect also recapitulated by our approach (Fig. S13).
This result highlights how the complex interplay of charged and aromatic residues can be appropriately
captured.
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Figure 5. (A) Overview of the ProTα and H1 system. (B) Previously measured binding data for the N- and C-terminal
halves of ProTα. These measurements were originally reported by Borgia et al. and are reproduced here for easy
comparison with predictions (16). (C) Per-residue intermap sum for H1 with ProTα, where values come from summing
over allow rows in each H1 residue column from the intermap (Fig. S12). More negative values mean more attractive. (D)
Sum of N and C-terminal intermap sums to capture gross relative affinities of the two halves in both Mpipi and
CALVADOS. (E) Overview of the CAPRIN-1607-709 homotypic interaction. (F) A comparison of per-residue intermap sum for
CAPRIN-1607-709 homotypic interaction with NMR hotspots is highlighted. NMR hotspots were originally reported by Kim et
al. and are reproduced here for easy comparison with predictions (73). (G) Domain schematic of transcription factors
Sox2 and Nanog with DNA binding domains highlighted. The remainder of the proteins are disordered (Fig. S14). (H) The
intermap between Sox2 and Nanog CTDs, with the previously identified binding region highlighted, is Note that Sox2156-205

has not been tested as mediating Nanog interaction but is strongly predicted to be critical for this binding. In both cases,
the specific residues that are predicted mediate this interaction (Trp in Nanog and Tyr in Sox2, Fig. S14) also underlie this
interaction experimentally(74). (I) Overview of our working model for transcription-factor coactivator interaction. (J) Scatter
plot comparing attractive and repulsive ϵ values for activation domain (AD):(Gal11158-238) interaction for all tiles measured
by Sanborn et al., where marker size and color reports on activation domain score. The empirical threshold line separates
regions where pairs are predicted to have strongly attractive AD:Gal11 interaction, yet no strong activation domain tiles
are reported. Inset shows a strong correlation between tiles with a strong AD score and tiles that interact favorably with
Gal11158-238. (K) Same points and sizes as in panel J, with markers colored by homotypic ϵ value. Markers below the
empirical threshold show strong homotypic interaction. (L) Map of average activation domain activity given some
combination of homotypic ϵ (y-axis) and AD:Gal11 ϵ (x-axis). AD:AD (y-axis) sets a threshold where tiles in each pixel
have a homotypic ϵ below (more favorable than) the y-axis value. AD:Gal11 (x-axis) sets a threshold where tiles have an
attractive ϵ below (more favorable than) the x-axis value. Attractive AD:AD interactions are antagonistic to the average AD
score, whereas attractive AD:Gal11 drives the average AD score.
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Finally, the master transcription factors Sox2 and Nanog have previously been shown to interact via their
C-terminal IDRs (Fig. 5G) (74). The subregions that drive this interaction are correctly predicted from a
heterotypic intermap, highlighting the potential for intermaps to help prioritize the exploration of subregions
within disordered domain proteins that may drive intermolecular interactions (Fig. 5H). This approach also
predicts that the C-terminal IDR of Nanog will undergo robust homotypic phase separation, in agreement with
recently published work (Fig. S14). This result highlights how - given two proteins of interest - likely
chemically-specific sites of intermolecular interaction can be readily predicted.

Having examined several specific examples of IDR-IDR interaction, we asked if IDR:folded domain interactions
could also be assessed. Transcription factors are DNA-binding proteins that typically consist of a folded DNA
binding domain and an intrinsically disordered region (Fig. 5I) (75, 76). Among various functions, transcription
factor IDRs can recruit co-activators (e.g., Med15, Gal11 in yeast) which in turn drive transcription(77–79).
Recent work from several groups has reported detailed high-throughput studies to identify sequence features
associated with so-called activation domains (ADs) - sub-regions within transcription factor IDRs that drive
gene expression through the recruitment of co-activators (79–86).

In yeast-based high-throughput assays, the presumed core co-activator is Gal11. Here, activation domain
recognition is performed at least in part by the activation domain binding domain (ABD1) on Gal11 (87). We
wondered if we could calculate mean-field attractive and repulsive interactions between the surface of the
ABD1 and short disordered sequences assayed previously to explain reported activation domain scores (i.e., a
measure of how robustly a specific sequence drives gene expression). Using the solvent-accessible residues
on the Gal11 ABD1 (PDB 2LPB:A, Fig. S15), we calculated IDR:folded domain surface attractive and repulsive
values for each of the 7577 40-residue tiles measured previously by Sanborn et al. in a high-throughput screen
(79). Plotting attractive AD:Gal11 interaction vs. repulsive AD:Gal11 for each tile, there was a clear bias for
attractive sequences in those that had a higher AD score (Fig. 5J). By classing each tile as either a “strong” or
“weak” AD, where strong is defined by a variable AD score threshold, we calculated the average AD:Gal11
interaction for strong ADs and found a robust correlation (r = 0.94) between average AD score and average
attractive interaction (Fig. 5J, inset). This conclusion mirrors mRNA display experiments done by Sanborn et
al., with the key difference being here we can predict the interaction biases directly from sequence. In
summary, these results show that tiles that drive robust gene expression are also generally predicted to
interact strongly with Gal11, illustrating the power of this approach for uncovering chemical specificity from
high-throughput experiments.

While Gal11 interaction appears to be strongly correlated with AD score, we were surprised to see many tiles
with stronger predicted Gal11 interaction yet low AD scores (Fig. 5J). A distinct line in the data appeared to
dissect the distribution, where almost no tiles under the line had high AD scores (Fig. 5J, empirical line). On
manual inspection of the tiles under this line, we noticed an abundance of aromatic residues, as well as the
occasional arginine or lysine. Calculating the AD:AD ϵ scores, we realized all these sequences were predicted
to engage in strong, attractive homotypic interactions (Fig. 5K). In effect, our analysis suggested that strong
homotypic interaction is detrimental to activation domain function.

To investigate this further, we calculated the average AD scores for sequences with an attractive AD:AD
interaction below (more favorable than) some threshold and with an attractive AD:Gal11 interaction below
(more favorable than) a second threshold (Fig. 5L). Our analysis clearly reveals that the combination of
AD:Gal11 and AD:AD interaction determines the AD score of a given sequence. For a given AD:Gal11
strength, AD score can be tuned up or down by suppressing or enhancing AD:AD interaction.
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Our work suggests two mechanistic tenets of activation domain function: (i) they must interact strongly with
co-activators, and (ii) they must avoid interacting strongly with other partners, here quantified in terms of
homotypic interaction. These results are largely consistent with data interpreted by the Acidic Exposure model
originally proposed by Staller & Cohen, as well as experimental data from the original study (79, 80). Of note,
some activation domains have their activity enhanced upon the addition of hydrophobic aromatic residues,
whereas, for others, the addition of aromatic residues has no effect or may even be detrimental (79, 81, 84,
85). We suggest our conclusion here offers an explanation for why this may be the case.

While we focus on homotypic interaction out of necessity, we are agnostic as to whether the underlying
molecular determinant here is (1) intramolecular interaction (i.e., as proposed by the Acidic Exposure mode),
(2) homotypic intermolecular interaction or (3) heterotypic interaction with another cellular component (nucleic
acids, proteostatic machinery, the nuclear pore complex, etc.). In summary, the analysis highlights how our
approach can aid in the analysis and interpretation of large-scale studies using molecular biophysics as a lens
for interpretation.

DISCUSSION & CONCLUSION
By excising the chemical physics developed for molecular simulations, we have repurposed the analytical
forms and molecular parameters used to describe inter-amino acid interaction as a means to estimate
IDR-associated attractive and repulsive interactions directly from sequence. While many caveats remain, our
approach is fast, simple, and offers the ability to perform proteome-scale intermolecular interaction predictions.

Where tested, we have found predictions made by our approach offer qualitative-to-semi-quantitative insight
into a wide variety of different systems. This includes phase diagram prediction (Fig. 3, Fig. S4, S5, S6, S8,
S13, S14), classification and domain definition of IDRs based on sequence chemistry (Fig. 4) or elucidating
sequence-dependent intermolecular interactions between IDRs and their partners (Fig. 5). We see this
approach as being complementary to existing IDR-associated analyses, offering a means to prototype and
develop conceptual hypotheses regarding the likely role(s) of IDRs or subregions in the context of
intermolecular interaction.

By computing thousands of heterotypic intermolecular ϵ values, we were able to cluster around 3000 IDRs
from the human proteome into chemically similar groups (Fig. 4). Some clusters showed strong biases for
particular sequence chemistries (Supplementary Table S5). However, several large clusters (e.g., clusters 5,
12, 16, and 17, consisting of 38% of all sequences) lacked strong average chemical biases, with a net neutral
charge and an intermediate fraction of charged residues but a higher fraction of aliphatic and polar residues.
We suggest these more chemically neutral sequences may either be enriched for short linear motifs or may
have multiple chemically distinct subdomains, averaging out to a more neutral mean behavior. Further work to
explore the substructure of these clusters is ongoing, as well as delineating individual IDRs into chemically
distinct subdomains (see below).

One possible application of our approach is in the prediction of homotypic phase diagrams directly from
sequence (Fig. 3). While one could envisage applying our approach to interrogate the underlying molecular
grammar associated with phase separation across disordered regions, prior and ongoing work from other
groups has exhaustively explored the underlying chemical principles encoded by coarse-grained forcefields
(24, 42, 44, 88–95). We build on this prior work, moving away from the need to extrapolate general principles
to specific systems and instead enable direct predictions for how mutations are predicted to impact phase
diagrams – at least qualitatively – on a case-by-case basis.

Recent work by von Bulow et al. has taken an innovative approach combining active learning with
coarse-grained simulations to generate the requisite data to train a machine learning model to predict
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homotypic phase diagram properties (i.e. concentrations in the dense and dilute phase) from sequence (95).
We suggest if quantitative insight into in vitro saturation concentrations is desired, this approach is likely much
more robust than ours.

While much of the comparison done here in this manuscript is in the context of phase separation, looking
forward, we anticipate that our approach will be most useful in three distinct areas unrelated to biomolecular
phase separation.

First, we see the most immediate impact of our approach in the guidance and interpretation of experiments
examining IDR-mediated intermolecular interactions. We and others subscribe to an emerging model whereby
IDR-mediated interactions are driven by a combination of sequence-specific and chemical-specific interactions
(2, 14, 15, 34). Our approach provides a means for anyone to easily and quickly quantify chemical specificity
between an IDR and a partner. Importantly, because intermaps offer chemically specific insight into how an
IDR may interact, they are effectively instantaneous hypothesis generators with respect to understanding the
mapping between IDR sequence and molecular interaction. Beyond binary interactions, we anticipate our
approach will offer a route to aid in the interpretation of techniques that generate small interactomes (e.g.,
affinity purification mass spectrometry and proximity labeling), perhaps even better separating true positives,
false positives, true negatives, and false negatives.

Second, we are actively investigating the application of our approach to better understand IDR conservation
and functional annotation. We and others have historically leaned heavily on sequence features (e.g., amino
acid composition and patterning) to understand conservation in IDRs where primary structure is poorly
conserved (14, 19, 20, 96–102). In some cases, we anticipate that the conservation of sequence features
reflects the preservation of intrinsic biophysical properties of an IDR (45, 65, 103). In other cases, we anticipate
that the conservation of sequence features reflects the conservation of chemical specificity (14, 100). Indeed,
the classification of IDRs into distinct chemically similar clusters revealed many IDRs with very different
sequences that share similar global interaction fingerprints (Fig. 5B). With the methods described here, we
now have tools to predict both biophysical properties and chemical specificity directly from sequence, opening
the door to new routes for the systematic assessment of conservation in IDRs through the lens of chemical
physics (45).

In addition to conservation, we see the ability to define context-dependent domains as a potentially important
step towards generalized functional annotation in IDRs. In general, we consider protein “domains” to be
defined by a function. In practice, the tight link between structure and function for folded proteins has enabled
structure to act as a surrogate for function, such that there many examples of conserved domains where –
while function remains elusive – we are comfortable referring to them as domains because it is anticipated they
will have a stand-alone molecular function in some context. A given IDR may interact with different partners via
different regions, such that the definition of a domain is unavoidably context-dependent. Our approach here
enables domains to be defined based on intermolecular interaction profiles, enabling subdomains to be defined
either with respect to a specific partner or by using a set of precomputed “master chemistries” associated with
IDRs (Fig. 5F). Indeed, to develop an unbiased route to identify these chemically-distinct subdomains, we
clustered all possible dipeptide sequences into 36 chemically related clusters, where clustering was
determined by the matrix of dipeptide:dipeptide heterotypic interaction ϵ values (Fig. S11). This analysis
unveiled a set of chemically orthogonal dipeptide repeats that can be applied to fingerprint an IDR of interest.
Using these dipeptides as fiducial markers in chemical space, we can measure the distance between two IDRs
based on their difference from these chemical fingerprints.

Third, the throughput and generalizability of our approach lend themselves to the rational design of IDRs with
desired intermolecular interaction properties. For example, identifying variants predicted to enhance or
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suppress phase separation and/or partitioning into an existing condensate with known components becomes
trivial. Moreover, rationally designing IDRs that flank binding motifs to assess the role these flanking IDRs have
in tuning affinity and specificity is straightforward, as is designing sets of IDRs that modulate intermolecular
repulsion in the context of entropic force generation. In short, we see a wide range of design applications here.

Caveats and limitations
We feel it essential to be explicit and direct about the many caveats and limitations associated with this
approach. The Supporting Information provides a more extended discussion of these points, but it serves no
one to overstate the efficacy, accuracy, and generalizability of a method nor to obfuscate its limitations.

A central assumption in this approach is that the attraction between two IDRs is mediated solely by
complementary chemical interactions (chemical specificity), not via precise “structured” interaction between
subregions. As such, where sequence-specific interactions will occur, we anticipate false negatives with
respect to IDR-mediated interaction. Moreover, for interactions with folded domains, we do not expect to
necessarily identify motif binding sites on folded domain surfaces or short linear motifs in IDRs. If anything, we
expect sequence-specific binding regions to contribute minimally to chemically-specific attractive interactions,
which could reflect competition between a structured bound state and a fuzzy partially bound state. We do not
encode mutual information between distal regions, such that the apparent valency between two IDRs is always
maximal, regardless of if, in principle, there should be a smaller number of mutually exclusive modes of
interaction. Finally, the approach does not consider the intrinsic competition between intramolecular
interactions and intermolecular interactions, although this effect can be accounted for explicitly (e.g., see Fig.
5).

The predictions made here rely on parameters obtained from coarse-grained molecular mechanics force fields
— in this case, CALVADOS (CALVADOS2) and Mpipi (Mpipi-GG) (42–45). The two force fields have been
well-vetted but also — unavoidably — have limitations. Notably, as discussed previously, Mpipi-GG appears to
underestimate aliphatic hydrophobic interactions, whereas CALVADOS2 may underestimate interactions
between valine and other hydrophobic amino acids. Similarly, the treatment of electrostatics via a Coulomb
potential combined with a Debye-Hückel screening term will clearly fail to recapitulate experimental
dependency on salts in higher salt concentrations, where ion activity and Hoffmeister effects dominate
(104–106). That said, it is worth noting that CALVADOS2 parameterization has shown good agreement in
terms of the salt-dependent saturation concentration (43). Similarly, the temperature-dependence of the
hydrophobic effect is entirely absent from the functional forms of the force fields used here, and while
hydrophobic and charged residues would drive lower-critical solution temperature (LCST)-type attractive
interactions at higher temperatures, this kind of behavior is not currently captured (107–110). Finally, recent
work has shown local charge effects can drastically influence the ionization state of charged residues, a
phenomenon known as charge regulation, which is not explicitly captured in our model (111–117). That said, all
of these limitations could, in principle, be parameterized and addressed by altering the underlying model. As
such, while at present, these represent limitations, we suggest our approach could be a useful way to improve
coarse-grained force fields (e.g., using temperature-dependent peptide solubility to infer
temperature-dependent descriptions of intermolecular interactions). Moreover, because of the underlying
architecture of FINCHES, if/when new parameters become available (e.g., improved models, new residues,
etc.), they can be immediately introduced and used.

The calculation of heterotypic ϵ values should not be in isolation inferred as predicting likely interactomes
between IDRs. In Fig. 4 we calculate many IDRs that have thousands of partners with favorable heterotypic ϵ
values. This is not meant to imply that these proteins interact with thousands of partners; each prediction is
done in isolation. In reality, the specificity associated with a protein’s interaction profile is a combination of the
affinities for partners and the availability (i.e., concentration) of those partners(15). If partners are bound by
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other biomolecules, then their effective concentration is low, even if their absolute concentration is high. As
such, individual heterotypic predictions should be treated akin to an in vitro experiment - just because two
proteins interact in vitro does not necessarily mean they interact together in vivo, especially if such an
interaction is one of many equally favorable interactions observed to seemingly unrelated partners.
Nevertheless, if you know two proteins do interact in vivo, using in vitro experiments to identify regions or
residues that may underlie that interaction can be extremely fruitful. This is where we see our approach being
particularly useful.

In summary, we want to re-emphasize that our approach here should be seen as an effective route to obtain
qualitative (and sometimes semi-quantitative) insight into how an IDR may be interacting with a partner. The
impact and consequences of the various caveats considered here should always be considered when
assessing whether or not such a prediction is valid or reasonable.

METHODS
Functional forms of non-bonded terms for Mpipi and CALVADOS force fields were reproduced and
implemented in the FINCHES Python package. For Mpipi, the two components here are a Wang-Frenkel
potential and a Debye-Hückel potential (42, 118, 119). For CALVADOS, this is a shifted and truncated
Ashbaugh-Hatch potential with a Debye-Hückel potential using an empirical correction for the
temperature-dependence of electrostatic interactions (43, 120, 121). force field parameters for CALVADOS2
and Mpipi-GG were taken from their respective publications (43, 45).

Local charge effects were accounted for by considering the local i+1 and i-1 charge around a charged residue
and down-weighting like-charged regions based on local charge density, effectively reducing the repulsion
associated with clusters of like-charged residues. Local hydrophobic effects were accounted for my considering
contiguous runs of two or three or more aliphatic residues, scaling up aliphatic-aliphatic attractive interactions
by 1.5x and 3x for residues embedded within runs of two or three or more aliphatic residues, respectively.

Phase diagrams were calculated using the analytical solution to the Flory-Huggins theory developed and
implemented originally by Qian et al. (52). Solvent-accessible surface areas are calculated using MDTraj (122).
IDR global dimensions were predicted using ALBATROSS (45). Disorder prediction is calculated using
metapredict V2-FF (45, 123). Rational sequence designs used for examining homopolymer vs. IDR properties
were generated using GOOSE (124). Proteome-wide analysis was performed using SHEPHARD, with data
obtained from UniProt (67, 125). We make extensive use of previously published experimental data and are
indebted to the authors for their previously published careful biophysical and biochemical studies. All
sequences reported in this manuscript are defined in Supplementary Table S7.

Implementation and distribution
The ability to predict ϵ-based intermolecular interactions is implemented in our software package FINCHES
(First-principle INteractions via CHEmical Specificity). FINCHES not only continues our march toward obscurity
with respect to acronyms, but implements both Mpipi-GG and CALVADOS2 modules via a set of common
interfaces that enable identical analysis and predictions. Moreover, the underlying architecture makes it
straightforward to implement additional force fields in an object-oriented manner. FINCHES is fully open source
and available at https://github.com/idptools/finches.

To facilitate adoption and use, we also provide several Colab notebooks that enable standard types of analysis
(intermaps, phase diagram prediction, etc). These are linked from https://github.com/idptools/finches-colab.
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