
Time-division multiplexing (TDM) sequence removes bias in T2 estimation and relaxation-

diffusion measurements 
Qiang Liu1,2, Borjan Gagoski3,4, Imam Ahmed Shaik1, Carl-Fredrik Westin1, Elisabeth A. Wilde5,6, Walter 

Schneider7, Berkin Bilgic3,8,9, William Grissom10, Jon‐Fredrik Nielsen11, Maxim Zaitsev12, Yogesh Rathi1*, 

and  Lipeng Ning1* 

* Y.R. and L.N. are joint senior authors. 

 

1.  Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States 

2.  School of Biomedical Engineering, Southern Medical University, Guangzhou, China 

3.  Department of Radiology, Harvard Medical School, Boston, MA, United States 

4.  Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, MA, 

United States 

5. Va Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, 

Salt Lake City, Utah, USA 

6. Department of Neurology, University of Utah, Salt Lake City, Utah, USA 

7. University of Pittsburgh, USA 

8.  Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United 

States 

9.  Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States 

10. Department of Biomedical Engineering, Case School of Medicine, Case Western Reserve University, 

Cleveland, OH, United States 

11. Functional MRI Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, United 

States 

12. Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical 

Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 

 

Corresponding author: 

Qiang Liu 

email: qliu30@mgh.harvard.edu 

Brigham and Women’s Hospital, Harvard Medical School, 399 Revolution Drive, Suite 1155, 

Somerville, MA 02145, United States. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.03.597138doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.597138
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract  

Purpose: To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) 

sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their 

reliability in estimating accurate rdMRI microstructure measures.  

Method: The ME, TDM, and the reference single-echo (SE) sequences with six echo times (TE) 

were implemented using Pulseq with single-band (SB-) and multi-band 2 (MB2-) acceleration 

factors. On a diffusion phantom, the image intensities of the three sequences were compared, and 

the differences were quantified using the normalized root mean squared error (NRMSE). For the 

in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods 

were used to assess sequence-related effects on microstructure estimation, including the relaxation 

diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution 

(MaxEnt-RDD). 

Results: TDM performance was similar to the gold standard SE acquisition, whereas ME showed 

greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM 

closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided 

similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% 

larger bias in the <R2> map and on average 3.5× larger bias in the covariance between relaxation-

diffusion coefficients.  

Conclusion: Our analysis demonstrates that TDM provides a more accurate estimation of 

relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3. 
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Introduction 

Diffusion MRI (dMRI)1 can probe the microstructure of biological tissues. By leveraging the 

magnetic gradient, dMRI sensitizes MRI signals to the random microscopic diffusion of water 

molecules within tissues. MRI relaxometry2, is another type of MR contrast mechanism that 

provides information about the biochemical composition in biological systems by measuring the 

relaxation processes of water protons. Traditionally, the analysis of dMRI involves data acquisition 

with a fixed echo time (TE), operating under the assumption that the diffusion process remains 

independent of T2 (transversal) relaxation. However, the advent of multidimensional dMRI 

integrates multiple independent experimental parameters into the acquisition strategy, which 

enables the exploration of correlations between diverse MR contrasts, offering complementary 

insights into the intricacies of biological tissues by using multi-compartment models.3,4 Further, it 

has been shown that tracing of white matter fiber bundles (such as the superficial white matter) 

depends on the TE at which the data is acquired.5,6 

  

Joint modeling of dMRI with a wide range of TEs, or relaxation-diffusion MRI (rdMRI), has been 

investigated in several studies7–12 to derive novel microstructural measures that enhance our 

understanding of the underlying biological tissues. These studies include estimating the joint 

relaxation diffusion distribution (RDD),7–9 pre-defining sets of compartments followed by 

estimating compartmental diffusivities and T2 values,10 measuring a compartment-specific T2 

value with dMRI data,12 estimating fiber-bundle specific T2 values in a tractography framework5,6 

and estimating the joint moments of relaxation and diffusion.11 However, a notable challenge 

hindering the use of rdMRI techniques is the prolonged scan time required for data acquisition. 

Typically, this involves repeating a diffusion scan with varying TEs while keeping the repetition 

time (TR) and the diffusion time constant among the repetitions for T2-diffusion studies to mitigate 

the influence of T1 (longitudinal) relaxation effects. For instance, acquiring 6-TE dMRI data using 

single-band single-echo (SE) EPI (which takes 12-min considering 3 b-values, 25 diffusion 

directions each, and whole brain coverage) can take 1 hour 12 min. Consequently, the rdMRI 

acquisition process becomes inefficient due to the idle time in the sequence. 
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One efficient scheme to accelerate the rdMRI sampling is using the multi-echo (ME) spin-echo 

sequence.3,13-14 By applying multiple 180-degree refocusing radiofrequency (RF) pulses, the ME 

sequence obtains multiple echoes at different TEs that share the same diffusion preparation in one 

TR. Unlike the conventional SE sequence, the ME sequence maximizes TR utilization by 

incorporating additional echoes, minimizing idle time. Despite its potential to enhance rdMRI 

acquisition efficiency, concerns persist regarding image signal biases in the following echoes of 

ME attributable to transmit field (B1+) inhomogeneity and coarse slice profiles stemming from 

imperfect refocusing pulses,15 as documented in prior studies employing the ME-SE sequence for 

accelerating T2 mapping16. Yet, the accuracy of using ME to expedite rdMRI has not been 

investigated and evaluated. 

  

The time-division multiplexing (TDM)17,18 sequence is an alternative strategy to accelerate rdMRI 

scans by acquiring multiple slices at different TEs while each slice maintains the SE 

pattern,  avoiding multiple refocusing pulses per slice. Within a given TR, TDM sequence 

effectively interleaves and rearranges sequence event blocks—encompassing RF excitation, 

refocusing, and readout for up to three slices. Echo-time shifting gradients are employed to 

mitigate interference between slices and coupling with diffusion gradients. Notably, through 

integration with the simultaneous multi-slice (SMS)19 technique, our previous research has 

demonstrated that TDM3 (acceleration factor of 3) with an SMS multi-band (MB) factor of 2 can 

achieve a total acceleration factor of up to 6× compared to the conventional single-band (SB-) SE 

sequence, all while maintaining image quality. Building upon this foundation, our recent study18 

has employed MB2-TDM3 to acquire multi-TE dMRI data, wherein relaxation-regressed dMRI 

data were estimated. This marks a crucial step towards leveraging TDM to accelerate and benefit 

the study of rdMRI. However, a direct comparison of these sequences (TDM vs ME) on their 

ability to accurately estimate T2 and rdMRI measures has not been done. 

   

In the current study, we systematically compared the performance of employing TDM and ME 

methods to accelerate rdMRI acquisition and examined the reliability of using TDM and ME 

sequences to derive rdMRI microstructure measures. We implemented the ME, TDM, and 

reference SE sequences (incorporating various TEs) in Pulseq20-23 (an open-source and vendor-

neutral pulse sequence development platform), in both SB- and MB2- formats, to accurately match 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.03.597138doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.597138
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequence parameters. To further investigate the impact of slice profile on ME sequences, in 

addition to the standard Sinc RF pulses, we also explored alternative versions, implementing 

Shinnar–Le Roux (SLR) pulses24 with different time-bandwidth products (TBWPs) for the SB-

ME and SB-SE sequences. Our study used a phantom with various T2 values and a healthy human 

subject, with comparisons using several metrics and measures: 

Phantom Analysis: We compared the image intensities of the three sequences (in both SB- and 

MB2-formats) and reported differences using the normalized root mean squared error (NRMSE). 

Furthermore, we calculated and compared the estimated T2 values between the six sequences. 

Slice Profile Improvement: We compared the image intensities from SB-ME against SB-SE, both 

with SLR RF pulses, to investigate whether enhancing the slice profile would mitigate signal biases 

in the ME sequence. 

In-vivo Brain Scan: We examined image intensities and quantified differences between ME, 

TDM, and SE sequences. Furthermore, we applied methods developed in our previous work to 

assess sequence-related effects on microstructure estimation. Specifically, we utilized the 

relaxation diffusion imaging moment (REDIM)11 method to estimate the joint moments of T2 

relaxation and diffusion coefficients. Additionally, on the MB2 data, we employed the maximum-

entropy relaxation diffusion distribution (MaxEnt-RDD)8 method to estimate the joint distribution 

of relaxation and diffusion coefficients in each voxel in the hippocampus. 

All the sequences performed in this work and the corresponding reconstruction code are accessible 

at:  https://github.com/QiangLiu0310/Pulseq_TDM_acc_rdMRI.  

 

Methods 

Sequence implementation and scan protocol 

This study was conducted following approval from the local Institutional Review Boards (IRBs). 

All experiments were performed on a clinical 3T scanner (Prisma, software version XA30, 

Siemens Healthineers, Erlangen, Germany). A phantom with various T2 values and a healthy male 

subject were scanned.  

We implemented SE (reference), ME, and TDM sequences with no slice acceleration (SB) and 

multi-band acceleration (MB=2). A schematic illustration of these sequences is provided in Figure 

1(A). For the ME sequence,14,25 after the first refocusing RF pulse and the corresponding EPI 

readout, a second refocusing RF pulse was applied to the same slice, and the second echo was 
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acquired. The third echo was generated and collected following the same pattern. The TDM 

sequence,17,18 on the other hand, employed the echo time-shifting gradients, collecting three echoes 

at different TEs from three different slices. Since the MB2-TDM3 sequence provided a higher total 

acceleration factor of 6 (MB2×TDM3), it had the shortest minimum TR among the three 

sequences. To remove TR-dependent effects and make the total scan time feasible for a human 

scan, we implemented a special slice loop for the SE and ME sequences to match their TRs with 

the TDM sequence, as shown in Figure 1(B). Each loop of the SE and ME sequences only included 

a subset of the total slices so that they could have the same TR as the TDM sequence. The 

sequences were repeated with a shifted set of slices to obtain whole-brain scans. These sequences 

were programmed and developed using the vendor-neutral platform Pulseq,20 to ensure identical 

readout gradients.   

 

Figure 1. (A) Schematic diagrams illustrating the single-echo (SE-) EPI, multi-echo (ME-) EPI, and time-

division multiplexing (TDM) sequences. In the ME sequence, three echoes were acquired at the same slice, while 

in TDM, three echoes at different slices were acquired at different echo times (TEs). The diffusion times were 

kept consistent across all sequences to mitigate diffusion time-dependent effects. (B) For SE and ME sequences, 

a specialized acquisition scheme was implemented to synchronize the repetition time (TR) with TDM. The total 

slices were partitioned into groups (two for single-band (SB) and three for multi-band 2 (MB2), based on the 

total slice number), with each loop encompassing only a subset of the slices. 

 

The phantom and the in-vivo scans shared the same scan parameters: the SE, ME, and TDM 

sequences were performed with TR=2500 ms, TEs=[70,82,95,107,120,132] ms, echo 
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spacing=0.48 ms, FOV=220× 220 mm2, in-plane resolution=2.5× 2.5 mm2, partial Fourier 

factor=6/8, in-plane GRAPPA26 factor=3, slice thickness=2.5 mm. The duration of the excitation 

Sinc RF pulse was 3 ms, with a TBWP of 4, while the 180-degree refocusing Sinc RF pulse had a 

duration of 5 ms, TBWP=4. The ME sequence was performed in the format of three-echo, while 

the TDM sequence was with three-slice at 3 different TEs. To acquire rdMRI data with 6 TEs 

using ME and TDM sequences, two ME and two TDM sequences were performed with two TE 

groups: TEgroup1=[70,95,120] ms and TEgroup2=[82,107,132] ms. In the in-vivo scans, aside from 

the b=0 acquisition, b-values of [1000,2000,3000] s/mm2 were obtained for all three sequences for 

TEgroup1, and b-values of [500,1500,2500] s/mm2 for TEgroup2. In total, rdMRI data of 6 TEs and 6 

b-values were sampled in a complementary diffusion-relaxation 2D sampling space. For all b-

values and TEs, 25 diffusion directions were acquired. To avoid diffusion time-dependent effects 

for SE, ME, and TDM, we set 𝛿=11.9 ms and Δ=47.1 ms for all TEs. A separate b=0 volume with 

opposite phase-encoding gradients was performed for all three sequences at each TE. A field-of-

view (FOV) matched fully sampled Pulseq 3-shot EPI was acquired as the reference scan data 

before each sequence. T1-weighted structural images were acquired for the subject as the 

anatomical reference using a 3D T1-weighted image magnetization-prepared rapid gradient echo27 

(MPRAGE) sequence. 

 

A separate single-band experiment utilizing different SLR RF pulses was conducted on the 

phantom. Three sequences were implemented with the above scan parameters: SB-SE sequence 

with SLR pulses and TBWP of 4, and SE-ME sequence with SLR pulses with TBWP values of 4 

and 6, respectively.  RF power calculations for the refocusing RF pulses in these sequences were 

performed using the Pulseq function calcRfPower, and three parameters were subsequently 

reported: total energy, peak power, and RMS (root-mean-square) B1 amplitude. 

  

For the single-band experiment, 18 slices were acquired in an interleaved pattern. We used a partial 

field of view, keeping in mind the long scan time (2 hours) required to obtain all scans (SE, TDM, 

ME) during the same session. To align the TR with the TDM sequence, these 18 slices were 

divided into two subsets for SE and ME sequences (as depicted in Figure 1(B)). The experiments 

were repeated with MB sequences (MB=2) to examine if the MB RF pulses and the blipped-caipi19 

readout lead to additional differences between the sequences. In the MB2 experiments, 60 slices 
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were collected in an interleaved manner, similar to the schematic representation in Figure 1(B), 

where three subgroups were created for SE and ME sequences. 

  

Image reconstruction and post-processing 

The k-space raw data were initially converted to ISMRM-RD format28 for all sequences, and 

custom MATLAB scripts were used to reconstruct the images. GRAPPA26 was utilized to 

reconstruct the SB data, whereas split slice-GRAPPA29 was employed for MB2 data, and 

GRAPPA for the in-plane GRAPPA factor=3 image reconstruction. Subsequently, FSL30 

TOPUP31 and eddy32 were used to correct the susceptibility-induced distortion and eddy current 

effects at each TE separately. To bring all the acquired images from multiple sessions into a 

common space, rigid registration was performed using Advanced Normalization Tools33 (ANTs) 

for all the dMRI images at each TE to the images from SB/MB2-SE TE=70 ms, for both phantom 

and in-vivo scans. FreeSurfer34 was used to parcellate the brain using the Deskian-Killiany atlas 

on the T1-MPRAGE images, and the outputs of FreeSurfer were registered to the diffusion space 

by ANTs. 

  

Data analysis on the phantom data 

For the phantom data (both SB and MB sequences), the NRMSE in signal intensity of b=0 images 

between TDM, ME, and standard SE sequences (considered as gold standard) was computed and 

compared to examine the relative changes in image intensity. Furthermore, the T2 value was 

estimated from the 6 TE images using a mono-exponential fitting model employing the fminsearch 

function in the MATLAB optimization toolbox. Six regions of interest (ROIs) of different T2 

values, each with an area of 21 pixels, were manually drawn34 within one slice on the phantom 

using 3D Slicer35. 

 

Data analysis on the in-vivo data 

For the in-vivo data, first, the NRMSE was calculated in the rdMRI data between TDM, ME, and 

the SE sequences (with Sinc RF pulses of TBWP=4) for both SB and MB variants. Next, we 

examined sequence-dependent effects on image intensity and rdMRI microstructural measures. By 

comparing results with different combinations of SB, MB, TDM, and ME techniques, we can 

identify the most reliable method for rdMRI studies. First, the NRMSE of TDM and ME sequences 
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compared to SE was calculated for both MB and SB data. Different from the phantom experiments, 

the NRMSE was computed using direction-averaged signals at all b-values. The direction average 

method can reduce the impact of measurement noise for a more accurate analysis.   

 

Moreover, we applied the methods developed in our previous works8,11 to compute rdMRI 

measures to examine sequence-related effects on microstructure estimation. First, we used the 

relaxation diffusion imaging moment11 (REDIM) method to estimate the joint moments of T2 

relaxation and diffusion coefficients. The coefficients were estimated by solving the least-square 

fitting problem with linear constraints using the lsqlin function in Matlab using direction-averaged 

signals. The method provides the mean relaxation rate <R2>, mean diffusion coefficients <D>, and 

the covariance between the relaxation and diffusion coefficients CRD. Moreover, we applied the 

maximum-entropy relaxation diffusion distribution methods8 (MaxEnt-RDD) to estimate the joint 

distribution of relaxation and diffusion coefficients in each voxel. The MaxEnt-RDD method 

provides an approach to identifying the microstructural properties without assuming a specific 

number of tissue components. Our previous work35 has shown that MaxEnt-RDD is sensitive to 

detecting brain abnormalities related to temporal lobe epilepsy that cannot be detected using 

structural MRI and relaxation MRI. Differences in MaxEnt-RDD functions between the right and 

left hippocampus provide information to lateralize epileptic lesions. To this end, we computed the 

average MaxEnt-RDD from the three sequences in the left and right hippocampus regions. We 

note that other multi-compartment models10,36 are available for microstructure analysis using 

rdMRI. Different from these methods, the chosen REDIM and MaxEnt-RDD methods can be 

solved by using convex optimization algorithms that can avoid issues related to local minima to 

ensure reliable comparison of microstructure measures between different sequences.  

  

Results 

Phantom Results: Figure 2 depicts the signal intensity differences between b=0 images obtained 

from SE, ME, and TDM sequences (with Sinc RF pulses of TBWP=4). Figure 2(A) shows the 

images from the SB sequences, while Figure 2(B) displays the MB images. SB-ME and MB-ME 

resulted in different signal intensities of TE=95 ms and TE=120 ms from the SE sequences, 

whereas SB-TDM and MB-TDM show similar signal levels compared to SE sequences at each TE. 

The signal biases from the ME sequences are further depicted in the NRMSE maps: the SB-TDM 
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had 3.6× and 4.6× lower NRMSEs for 2nd and 3rd echoes than the SB-ME variant (as shown in 

the mean NRMSE values in Figure 2(A)); besides TE=70 ms, slightly higher biases could be found 

for MB-ME sequence at TE=95 ms and TE=120 ms compared to SB variant, where 2.9× and 3.2× 

lower NRMSEs were achieved by MB-TDM for the 2nd and 3rd echoes, respectively. 

 
Figure 2. Phantom experiment: Signal intensity differences of the b=0 images on the phantom at three different 

echo times (TEs) from SE, ME, and TDM sequences (with Sinc RF pulses with time-bandwidth product 

(TBWP)=4). Figure 2(A) presents images from single-band (SB) sequences, while Figure 2(B) displays multi-

band (MB) images. The normalized root mean squared error (NRMSE) was computed between the ME, TDM, 

and SE images, with the mean NRMSEs within the phantom depicted. 

 

Figure 3(A) displays signal intensity and NRMSE maps acquired from b=0 images using SB-SE 

sequence employing SLR pulses with TBWP=4, and SB-ME sequences employing SLR pulses 

with TBWP values of 4 and 6, respectively. When compared to SB-ME with Sinc pulses, 

reductions in signal intensity biases were observed with the SLR pulses, as illustrated by the 

NRMSE maps. Specifically, for SB-ME SLR with TBWP=4, the mean NRMSEs of TE [70, 95, 

120] ms were [0.034, 0.063, 0.127] respectively, while for the TBWP=6 pulses, NRMSEs were 

further diminished and comparable to our SE-TDM, yielding [0.090, 0.056, 0.062]. Figure 3(B) 
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illustrates the RF power of these three refocusing RF pulses and their ratios against the Sinc 

refocusing pulse with TBWP=4. The total energy and peak power of the SLR pulse were 2.34× 

and 3.5× compared to those of the Sinc pulse, respectively. As anticipated, increasing the TBWP 

resulted in a further increase in  RF power, causing a 3.63× and 8.46× increase in total energy and 

peak power required, respectively. 

 
 
Figure 3. Phantom experiment: (A) The signal intensity of the b=0 images acquired with SB-SE sequence using 

SLR pulses with a time-bandwidth product (TBWP)=4, SB-ME employing SLR pulses with TBWP=4 and 6. 

The NRMSEs between ME and SE sequences are shown in the second row, and the mean NRMSEs within the 

phantom are displayed below. (B) The RF power of the 180-degree refocusing pulses. Three RF pulses are 

evaluated, which are Sinc pulse with a TBWP=4, SLR pulse with TBWP=4, and 6. The RF power calculation 

considers total energy, peak power, and B1 root-mean-square (RMS). The RF power values and their ratios 

compared to the Sinc pulse with TBWP=4 are presented. 

 

Figure 4 shows the T2 estimation of the phantom. Figure 4(A) shows the T2 map estimated from 

the 6 echoes using the SB-SE sequence, with six ROIs drawn using 3D Slicer displayed. Figure 

4(B) shows the T2 values estimated from SB and MB variants of SE, ME, and TDM sequences. 

Notably, T2 values obtained from TDM closely matched those from SE variants for both SB and 

MB cases. However, the ME methods yielded underestimated and biased T2 estimations. 
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Figure 4. Phantom experiment: (A) The T2 map estimated from 6-TE images acquired using SB-SE sequence 

with Sinc pulse with TBWP=4. Six region-of-interests (ROIs) were manually drawn using 3D Slicer and shown. 

(B) The T2 values were estimated from 6 different TEs using SE, ME, and TDM sequences in both SB and MB 

formats. Six ROIs with variable T2 values were included.  

Results on in vivo data: Figure 5 displays a representative slice of the mean DWI of the in-vivo 

scan. Consistent with the phantom experiment, the mean DWIs of the 2nd and 3rd echoes acquired 

from ME sequences exhibited lower signal levels compared to standard SE variants. Furthermore, 

the biased estimates are reflected in the calculated NRMSE maps. Employing TDM reduced the 

NRMSE by half compared to ME variants, with SE variants serving as references, as shown in the 

last line in Figure 5 (A) and (B).  
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Figure 5. In-vivo experiment: Signal intensity differences of the direction-averaged (mean DWI) images with 

b-value=500 s/mm2 at three different echo times (TEs) from SE, ME, and TDM sequences (with Sinc RF pulses 

of a time-bandwidth product (TBWP)=4). Figure 5(A) presents images from SB sequences, while Figure 5(B) 

displays MB images. The NRMSE was computed between the ME, TDM, and SE images using the direction-

averaged images at all the b-values, with the mean NRMSEs within the brain ROI depicted below. 

Figure 6 presents <D> (Figure 6(A)), <R2> (Figure 6(B)), and CRD maps (Figure 6(C)) derived 

from the REDIM method using the SB rdMRI data, along with the differences observed between 

each sequence and the SB-SE sequence. The quantitative metrics for all the measures provided by 

SB-TDM closely align with those of the reference SB-SE sequence, as can be seen in the difference 

maps. Although the average diffusivity map calculated from the SB-ME sequence deviated slightly 

from the gold standard SB-SE method, the <R2> map derived from SB-ME exhibited a 60% larger 

bias compared to the reference SB-SE scan. Additionally, the CRD map from SB-ME exhibited a 

bias yielding higher positive values in the white matter region and in cerebrospinal fluid (CSF) 

compared to the reference. 
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Figure 6. The joint moments of T2-relaxation and diffusion coefficients estimated using the relaxation diffusion 

imaging moment (REDIM) method with the rdMRI data acquired by SB-SE, SB-ME, and SB-TDM sequences. 

(A) The mean diffusion coefficients <D>, (B) mean relaxation rate <R2>, and (C) the covariance between the 

relaxation and diffusion coefficients CRD. The top row displays the measurements derived from the REDIM 

method, and the bottom row shows the differences between the measurements from SB-ME, SB-TDM,  and SB-

SE data.  

Figure 7(A) shows the averaged <R2> values in three brain regions (subcortical gray, cortical gray, 

and white matter)  using MB-SE, MB-ME, and MB-TDM sequences. MB-TDM retained similar 

mean relaxation rates as the reference MB-SE measurements, whereas MB-ME showed higher 

<R2> in all three regions. Figure 7(B) provides the averaged CRD values in some regions of the 

deep brain areas for three sequences.  For MB-TDM, the average CRD values in these regions 

were similar to MB-SE, while MB-ME demonstrated biases and presented higher values. The 

mean absolute difference between CRD values for MB-TDM vs MB-SE across 12 brain regions 

was 3.5× lower than that of MB-ME vs MB-SE (0.54 and 1.90, respectively). Moreover, the 

Pearson correlation coefficient between MB-TDM and MB-SE was 0.9629 (p<0.01), while the 

correlation between MB-ME and MB-SE was 0.159 (p=0.6216). 
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Figure 7. Diffusion-relaxometry parameters were computed using REDIM on the MB rdMRI data. (A) The 

average <R2> values in subcortical gray (sub-ctx), cortical gray (ctx), and white matter (wm) regions using the 

rdMRI data acquired by MB-SE, MB-ME, and MB-TDM sequences. (B) FreeSurfer labels in some deep brain 

areas are depicted on the b=0 image (left column), with the brain regions listed in the middle column, the average 

CRD values calculated from the three MB sequences displayed on the right. 

Figure 8(A) illustrates the parcellation of the hippocampus by FreeSurfer. Figure 8(B) shows the 

RDD function in one voxel from the rdMRI data of the MB-SE sequence, where three components 

were detected. Figure 8 (C-E) shows the averaged RDD function from all the voxels in the 

hippocampus using the rdMRI data acquired from MB-SE, MB-ME, and MB-TDM, respectively. 

The RDD of MB-ME data exhibited a large bias, especially in the area containing low diffusivity 
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and R2 values, as shown in the zoom-in figures. MB-TDM, however, retained a distribution similar 

to MB-SE. 

 

Figure 8. The voxel-wise joint distribution of relaxation and diffusion coefficients estimated by maximum-

entropy relaxation diffusion distribution method (MaxEnt-RDD) in the hippocampus. (A) The parcellation of 

the hippocampus by FreeSurfer on the T1-MPRAGE image. (B) The RDD function in one voxel was derived 

from the rdMRI data using the MB-SE sequence, where three components were detected. (C-E) shows the 

average RDD function from all the voxels in the hippocampus using the rdMRI data acquired with MB-SE, MB-

ME, and MB-TDM sequences, respectively.  

 

Discussion 

In this study, leveraging the flexibility afforded by the Pulseq sequence development platform, we 

implemented two advanced dMRI sequences, TDM and ME, and systematically assessed their 

feasibility to accelerate rdMRI acquisitions. Despite both TDM and ME offering the potential to 

reduce scan time by up to 2 to 3× compared to the standard SE acquisition, our findings indicate 

that images acquired with the ME sequence exhibit significantly larger intensity biases than those 

acquired with TDM. Specifically, the intensity biases in the ME sequence were approximately four 

times higher on the phantom and twice as high in vivo, as indicated by the NRMSEs. Consequently, 

the ME sequence dramatically underestimated the T2 decay rates across the brain. We further 

examined the sequence-related effects on microstructure estimation in in-vivo data, and results 

using the REDIM and MaxEnt-RDD methods proved that TDM provided more reliable estimates 

for all rdMRI measures. 
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The image intensity biases observed in the 2nd and 3rd echoes from the ME sequence can be 

attributed to poor slice profiles. Ideally, after the first TE, the transverse magnetization within a 

certain slice begins to dephase, and subsequently applied refocusing pulses rephase the bulk 

magnetization and generate subsequent echoes. However, in practice, due to the non-ideal slice-

selection performance of the refocusing pulses, the slice boundaries are not fully refocused, 

resulting in a drop in signal level. This effect accumulates over subsequent TEs, as evidenced by 

the increasing NRMSEs. Our study demonstrates that improving the slice profile can alleviate this 

signal bias. Specifically, on the phantom, we achieved similar NRMSEs with the SB-ME sequence 

using SLR RF pulses with TBWP=6, comparable to those of SB-TDM with Sinc pulses. However, 

due to the high RF power induced by the SLR pulse (approximately 8.5×	the peak power of the 

Sinc pulse), direct application in in-vivo rdMRI scans, particularly with SMS combined, may not 

be practical and create discomfort to patients during long scans. One way to reduce the requirement 

for increased power could be to use advanced techniques such as root-flipped37 or Variable-Rate 

Selective Excitation38,39 (VERSE) to reduce the peak power of the SLR pulses. However, using 

VERSE would still not create the ideal refocusing slice profile as in the SB case, especially when 

B1+ and B0 inhomogeneity is aggravated.40 Another potential solution is exciting a thicker slice 

when applying the refocusing RF pulse than the excitation RF pulse41,42, but this could introduce 

spin-history effects and thus prolong the TR. In contrast, TDM acquires multiple slices at different 

TEs to avoid multiple refocusing pulses per slice, achieving intensity levels close to SE 

acquisitions. We also note that in Figure 5(A), a region with high NRMSE values can be observed 

in the frontal area in all three TEs of SE-TDM, which might be related to the misregistration due 

to the motion during the long scan. 

  

The T2 estimation in the phantom in our study highlights that compared to ME sequences, TDM 

demonstrates superior reliability in T2 estimation, as shown in the T2-value plot. Furthermore, we 

observed differences in T2 values measured using the SB-SE and the MB-SE variants, potentially 

attributable to differing signal-to-noise ratio (SNR) levels influenced by the g-factor. This finding 

suggests that employing SB-TDM as a slice-acceleration method for rdMRI data acquisition may 

lead to more reliable T2 estimation. 
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The joint relaxation and diffusion distribution (RDD) estimation by our MaxEnt-RDD method for 

the MB-ME data was biased and missed some components in the region of lower R2 and lower 

diffusivity values, while the distribution from MB-TDM was consistent with that of MB-SE. This 

finding suggests that the ME sequence might not be accurate in separating multiple compartments. 

In contrast, TDM maintains the sensitivity of detecting heterogeneous tissue microstructure, which 

could potentially benefit the detection of some diseases. For example, our recent work showed the 

feasibility of lesion detection for a patient with sMRI-negative epilepsy leveraging the MaxEnt-

RDD method with the rdMRI data from MB-TDM.36  

  

It is pertinent to mention that beyond the ME and TDM sequences explored in our study, several 

advanced sequences hold promise for accelerating rdMRI or similar multi-dimensional MRI 

acquisitions. One such method involves combining multidimensional MR fingerprinting (mdMRF) 

with b-tensor encoding43, enabling the simultaneous quantification of relaxation and diffusion 

from a single scan. In contrast to diffusion-weighted acquisition as employed in our study, mdMRF 

utilizes diffusion-prepared SSFP. However,  the diffusion-preparation module is more sensitive to 

phase errors induced by eddy currents or motion compared to standard diffusion-weighted 

acquisition, leading to signal voids and shading artifacts.44, 45 Additionally, an efficient T1, T2, 

and ADC mapping technique has been developed using MR Multitasking.45  Nonetheless, the 

reconstruction time of this method is prolonged due to the imaging model containing three spatial 

dimensions and four dimensions indexing the T1/T2/b-value/diffusion-direction variables. Other 

notable acquisition techniques include ACE-EPTI46, which offers distortion-free, blurring-free, 

and time-resolved ME images, and ZEBRA47, enabling simultaneous sampling of the three-

dimensional (T1-T2*-diffusion) acquisition parameter space. These diverse approaches showcase 

the ongoing efforts to enhance multi-dimensional MRI acquisition, each presenting unique 

advantages and limitations. 

  

This study also has some limitations worth noting. The spatial resolution of the rdMRI is 2.5 mm 

(isotropic voxel size), which might impact the performance of the ME-RDD method as it is 

sensitive to noise and is limited by the minimum TEs we can achieve on a clinical scanner. Our 

previous study has shown that on MAGNUS, equipped with a high-performance gradient system, 

isotropic 1.5 mm rdMRI with a minimum TE of 45 ms can be obtained with our TDM sequence.48 
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It is noteworthy that the minimum TE of TDM is longer than that of the SE and ME sequences due 

to the multiple refocusing pulses applied between the diffusion gradients. The increased in 

minimum TE (around 17 ms compared to the standard SE or the 1st echo of the ME sequence) will 

result in approximately a 20% loss of SNR (T2=75 ms). Future work will concentrate on 

consolidating the three refocusing RFs into one MB3 RF, potentially reducing the TE by 

approximately 10 ms. Additionally, techniques such as Power Independent of Number of 

Slices49(PINS) can be further explored to mitigate peak power concerns. Despite the 

implementation of a dedicated slice loop for SE and ME to decrease the TR in the scan protocol, 

the total scan time remained approximately 2 hours for acquiring the 6-TE data, each comprising 

25 diffusion directions, using three sequences. Future work can explore the utilization of spherical 

b-tensor50 encoding to measure and model the distribution of diffusion tensors, potentially yielding 

further reductions in the overall scan time. 

 

Conclusion 

To conclude, we implemented and systematically compared the multi-echo EPI and TDM 

sequences for accelerating relaxation-diffusion MRI acquisition. The microstructure analysis of 

the rdMRI data indicates that TDM can provide a more accurate estimation of T2-relaxation time 

and microstructure estimation as single-TE EPI, whereas the results from ME are highly biased.  
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at:  https://github.com/QiangLiu0310/Pulseq_TDM_acc_rdMRI. The data that support the 

findings of this study are available from the corresponding author upon reasonable request. 
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