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ABSTRACT 
Dysregulation of the bone marrow (BM) niche in multiple myeloma (MM) alters the 
composition and state of resident immune cells, potentially impeding anti-tumor immunity. One 
common mechanism of immune inhibition in solid tumors is the induction of exhaustion in 
tumor-specific T cells. However, the extent of T cell tumor recognition and exhaustion is not 
well-characterized in MM. As the specific mechanisms of immune evasion are critical for 
devising effective therapeutic strategies, we deeply profiled the CD8+ T cell compartment of 
newly-diagnosed MM (NDMM) patients for evidence of tumor reactivity and T cell exhaustion. 
We applied single-cell multi-omic sequencing and antigen-specific mass cytometry to 
longitudinal BM and peripheral blood (PB) samples taken from timepoints spanning from 
diagnosis through induction therapy, autologous stem cell transplant (ASCT), and maintenance 
therapy. We identified an exhausted-like population that lacked several canonical exhaustion 
markers, was not significantly enriched in NDMM patients, and consisted of small, nonpersistent 
clones. We also observed an activated population with increased frequency in the PB of NDMM 
patients exhibiting phenotypic and clonal features consistent with homeostatic, antigen-
nonspecific activation. However, there was no evidence of “tumor-experienced” T cells 
displaying hallmarks of terminal exhaustion and/or tumor-specific activation/expansion in 
NDMM patients at any timepoint. 

 
 

INTRODUCTION 
MM is a hematological malignancy characterized by uncontrolled clonal expansion of plasma 
cells in the bone marrow. First-line treatment for NDMM is evolving, however induction therapy 
consisting of a three-drug combination including a proteasome inhibitor, immunomodulatory 
drug, and a steroid has been a standard of care.1 Eligible patients frequently proceed to ASCT 
(combined myeloablative melphalan chemotherapy and autologous stem cell rescue), followed 
by maintenance therapy (typically an immunomodulatory drug).  
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T cell exhaustion, characterized by diminished effector function and driven by chronic antigen 
stimulation such as from recognition of a persistent tumor,2 is a validated mechanism of immune 
evasion by many tumors.3 The immune microenvironment is already altered before diagnosis of 
active MM requiring therapy,4 but the presence of T cell exhaustion in NDMM and through first-
line treatments has not previously been well-characterized. To explore tumor-specific 
recognition and exhaustion, we interrogated CD8+ T cells in NDMM patients, spanning 
diagnosis through induction, ASCT, and maintenance therapy. 
 

 
RESULTS 

Hallmarks of tumor-experienced T cells are absent in NDMM. 
We collected BM and PB samples from NDMM patients (n=9) before treatment (PRETX), 
during induction therapy (INDC), after induction therapy (EIND; median 33 days after start of 
last cycle), 90 days post-ASCT (TRN90), and 1-year post-ASCT (TRNY1; Fig. 1A, Table S1). 
We also collected HC samples (n=4 BM, n=4 PB) for comparison. To deeply profile the CD8+ T 
cell response and identify evidence of recent or ongoing tumor-antigen-specific T cell activity, 
we performed single-cell multi-omic sequencing and antigen-specific mass cytometry (Table S2-
5). We clustered BM and PB T cells from MM patients and HCs into eleven distinct clusters 
based on their transcriptional and proteomic profiles (Fig. 1B). We identified two populations 
with atypical expression profiles: an activated cluster defined by the highest “activation” gene set 
score with genes such as HLADRA (HLA-DR) and MKI67 (Ki-67, a proliferation marker), and 
an exhausted-like cluster defined by the highest “exhaustion” gene set score including inhibitory 
molecules such as HAVCR2 (TIM-3), LAG3, and CTLA4 (Fig. 1C-E). Notably, neither cluster 
expressed canonical reactivity/exhaustion genes such as PDCD1 (PD-1), ENTPD1 (CD39), TOX, 
or CXCL13 (Fig. 1C).3 As BM is predominantly the site of the tumor, we asked if any T cell 
populations were significantly enriched in BM as compared to PB. Only CD69+ tissue-resident 
memory (CD69 TRM) cells were enriched in the BM of MM patients, but this was also true in 
HCs (Fig. S1A-B). Activated and exhausted-like cells were not significantly differentially 
abundant between tissues. 
 
To compare the extent of exhaustion in MM to other cancer types, we integrated tumor-
infiltrating CD8+ T cells from public datasets, including several from BM tumors, featured in a 
pan-cancer atlas.5–8 The frequency of exhausted-like cells in the BM of MM patients was lower 
than the frequency of exhausted cells in every other patient from every other cancer type (Fig. 
1F). As an orthogonal confirmation, we manually gated exhausted-like cells as PD-1++CD39+ in 
our mass cytometry dataset and compared the frequency of these cells in the BM of MM patients 
to publicly available mass cytometry data from tumor-infiltrating CD8+ T cells in other cancer 
types.9 We found significantly fewer exhausted-like cells in MM samples compared to other 
tumors (Fig. 1G, S1C). 
 
Activated and Granzyme B+ T effector memory (GZMB TEM) cells were significantly more 
abundant in the PB, but not BM, of PRETX samples from MM patients as compared to HCs, but 
no statistical differences were observed for exhausted-like cells (Fig. 1H, S1D). The frequency 
of PRETX BM tumor cells was not significantly correlated with the frequencies of activated or 
exhausted-like cells (Fig. 1I). 
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We also quantified antigen-specific T cells using an extensive panel of peptide-MHC tetramers 
(pMHC-tet) that included many tetramers presenting tumor antigens expressed in MM (Table 
S3), but we found no enrichment of tumor-specific T cells above background, despite routine 
detection of myeloma-unrelated, virus-specific T cells (Fig. 1J, S2). In summary, we observed 
no cell population expressing canonical markers of terminal exhaustion or tumor reactivity, and 
exhausted-like CD8+ T cells were significantly less abundant in NDMM compared to other 
cancer types and not significantly differentially abundant compared to HCs. 
 
Activated and exhausted-like cells lack clonal features typical of tumor-experienced T cells. 
Tumor cell frequency substantially diminished after induction therapy and ASCT (Fig. 2A). A 
tumor-reactive T cell population might follow these trends, but exhausted-like and activated T 
cells did not decrease in frequency over time and were significantly more abundant one-year 
post-ASCT than at PRETX in BM and PB, respectively (Fig. 2B). GZMB TEM cells were also 
significantly increased in frequency one-year post-ASCT in PB, while CD103 TRM cells were 
largely absent in BM and PB post-transplant (Fig. S3A). Tumor-reactive populations often 
exhibit increased levels of antigen-driven expansion of T cell receptor (TCR) clones,3 so we 
quantified the clonal composition of each cell population. The activated population contained a 
moderate proportion of expanded clones, significantly less than the GZMB TEM population but 
significantly more than the exhausted-like population, which had the smallest proportion and 
number of expanded clones across all populations (Fig. 2C-D, S3B). Antigen-specific clonal 
expansion often manifests as decreased TCR diversity in a cell population. At all timepoints, 
exhausted-like cells had higher mean TCR diversity than activated cells, which had higher mean 
TCR diversity than GZMB TEM cells (Fig. S3C). Activated and exhausted-like cells had few 
clones that significantly expanded or contracted over time, consistent with an absence of antigen-
driven selection (Fig. S3D). To interrogate the specificities of clones in each cell population, we 
queried a database reporting experimentally-validated TCR-antigen pairs.10 We found activated 
and exhausted-like populations contained similar frequencies of bystander-specific clones to all 
other T cell populations, suggesting they are not uniquely enriched for tumor-specific clones 
(Fig. 2E). 
 
Exhausted cells arise from non-exhausted precursors, which can manifest as an abundance of 
TCR clonotypes shared between phenotypes.11 However, exhausted-like cells had minimal clonal 
overlap with any other cell population (Fig. 2F). There was substantial clonal overlap between 
activated and GZMB TEM populations, even accounting for differences in cell counts (Fig. 
S3E), but the overlap was similar between MM patients and HCs (Fig. S3F), suggesting it was 
not driven by tumor antigen.  
 
Chronic activation of tumor-specific T cells can result in accumulation of cells with an exhausted 
phenotype over time.11 However, activated clones never adopted an exhausted-like phenotype in 
subsequent timepoints, while exhausted-like clones infrequently appeared in subsequent 
timepoints; when they did, they rarely retained an exhausted-like phenotype (Fig. 2G). We 
observed many activated cells that were clonally related to GZMB TEM cells at subsequent 
timepoints and vice versa, consistent with antigen-nonspecific homeostatic proliferative bursting 
(Fig. 2H). In summary, exhausted-like cells were comprised of non-expanded clones that rarely 
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appeared at multiple timepoints, while activated cells displayed substantial clonal overlap with 
GZMB TEM cells, consistent with homeostatic activation and a lack of antigen-driven selection.  
 
 

DISCUSSION 
Other groups have reported a paucity of myeloma-responsive T cells12 and myeloma-specific 
TCRs13 in NDMM. Here, we report the absence of transcriptional, proteomic, and clonal 
hallmarks of tumor-experienced CD8+ T cells from NDMM patients, from diagnosis through 
maintenance therapy. Our findings suggest myeloma cell escape from T cell killing in NDMM is 
primarily mediated through evasion of recognition by antigen-specific T cells, rather than 
through induction of exhaustion in an established, clonally-expanded, tumor-specific T cell 
population. Activated cells were significantly enriched in the PB of MM patients compared to 
HCs but displayed evidence of homeostatic activation rather than tumor antigen-specific 
activation. Other groups have noted increased abundances of T-helper 17 cells,14 regulatory T 
cells,15 and TIGIT+CD8+ T cells16 in NDMM patients, concordant with the idea that MM induces 
global immunomodulatory effects on the T cell compartment that may limit antigen recognition. 
It is possible that T cell exhaustion plays a role in a minority of NDMM cases not revealed by 
the sampling here. One international staging system stage III NDMM patient from a pan-cancer 
atlas was reported to have detectable levels of exhausted T cells,8,17 so the frequency of this 
occurrence and the associated disease features could be investigated. Anti-SOX2 immunity was 
observed in patients with monoclonal gammopathy18 and in MM patients after allotransplant19 
and CAR-T therapy,20 so the phenotypes of SOX2-specific T cells could be investigated for 
evidence of exhaustion in these contexts. 
 
Checkpoint blockade monotherapy has performed poorly in refractory and/or relapsed MM 
(RRMM).21 In solid tumors, evidence of pre-existing, tumor-reactive T cells predicts response to 
checkpoint blockade,22,23 while patients with cold tumors lacking tumor-reactive T cells tend to 
respond poorly.24 While our study did not include samples from RRMM patients, our data 
suggest that combination immunotherapies that draw inspiration from strategies targeting cold 
solid tumors25 may enhance T cell participation in the anti-myeloma response and increase 
therapeutic efficacy. 
 
 

METHODS 
Clinical cohort and samples 
NDMM patients diagnosed and treated at the Fred Hutchinson Cancer Center and HCs provided 
written informed consent, and analysis was performed as approved by FHIRB10265. NDMM 
patients received induction therapy, stem cell mobilization, melphalan, ASCT, and maintenance 
therapy (Fig. 1A, Table S1). Longitudinal BM and PB samples were collected from diagnosis 
through maintenance therapy. Mononuclear cells were isolated by density gradient separation, 
cryopreserved, and stored in liquid nitrogen. 
 
Mass cytometry antibody conjugation and pMHC tetramer generation 
Purified antibodies lacking carrier proteins were purchased (Table S2), and antibody conjugation 
was performed according to the manufacturer’s protocol (Standard Biotools), as previously 
described.26 Peptides for detection of antigen-specific responses were selected to encompass a 
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wide range of myeloma, cancer, and bystander targets (Table S3). Common HLA alleles were 
chosen for antigen-specific reagents, as patients were not HLA-typed. Tetramer generation and 
conjugation was performed as previously described.27 Briefly, a unique code was generated by 
conjugating streptavidin to three metal isotopes as above and each pMHC was associated with a 
specific three metal combination.28 For each pMHC, 5 mL peptide (1 mM) was added to 100 mL 
HLA monomer (100 mg/mL, diluted in PBS) and exposed to UV (365 nm) for 10 min for 
peptide exchange and left overnight at 4C. For tetramerization, 5 mL of labeled streptavidin (50 
mg/mL) was mixed with pMHC and incubated for 10 min at 25C. This was repeated three 
additional times for a total addition of 20 mL. Then, tetramers were incubated with free biotin 
(10 mM) for 10 min. Tetramers were combined and concentrated using a 50-kDa Amicon filter 
(Milipore). Antibody and tetramer cocktails were cryopreserved in cell-staining media (CSM; 
PBS, 0.5% BSA, 0.02% sodium azide) at -80C. 
 
Mass cytometry staining and acquisition 
Samples were processed in batches with common healthy PBMC samples control samples 
included for assessment of batch effect. Cells were washed in CSM and stained for cisplatin (5 
mM) in PBS for 5 min at 25C. Cells were washed and stained with tetramer cocktails in CSM for 
1 hr at 25C. Cells were washed, stained with primary antibody cocktails for 25 min at 4C, 
washed, stained with secondary surface antibody cocktails for 25 min at 4C, and fixed overnight 
in 2% paraformaldehyde. Cells were washed, permeabilized using permeabilization buffer 
according to manufacturer’s instructions (eBioscience), washed, and stained with intracellular 
antibodies for 30 min at 25C. Cells were washed and incubated with DNA intercalator (Standard 
Biotools) for 10 min at 25C. Cells were washed three times with Cell Acquisition Solution 
(Standard Biotools) and run on the Helios mass cytometer (Standard Biotools). 
 
Mass cytometry data processing and analysis 
Fcs files were bead normalized29 and compensated.30 Zero values were randomized with a 
uniform distribution between zero and -1. Files were hand-gated in FlowJo to viable CD8+ T cell 
singlets (Fig. S4A) and uploaded to cellengine.com. pMHC tetramers and antibodies were hand-
gated to account for batch effect. Cancer pMHC tetramers were background subtracted using the 
healthy normalization control samples for each batch. Public data9 were already gated to viable 
CD8+ T cell singlets by the original authors, so those fcs files were uploaded to cellengine.com 
and hand-gated alongside the original data generated in this study. 
 
Single-cell sequencing data acquisition 
pMHC monomers (BioLegend) were generated and peptide-exchanged as above. Monomers 
were tetramerized with TotalSeq-C PE streptavidin following manufacturer’s instructions. 
Samples were thawed and stained with Human TruStain FcX (BioLegend) for 10 min at 25C, 
washed, then stained with tetramer cocktail for 1 hour at 25C. After washing, cells were stained 
with fluorescent antibodies (Table S4) and TotalSeq-C antibodies (Table S5), which had been 
combined and filtered using a 0.1mm filter (Millipore). Cells were washed two more times in 
CSM, then CD8+ T cells were isolated by fluorescence-activated cell sorting (Fig. S4B). Some 
enrichment for pMHC-tet+ cells and CD69+ cells (BM only) was performed but this had 
negligible effects on total sorted cell counts. Sorted cells were subjected to 10x library 
preparation following manufacturer’s instructions (User Guide: CG000424) and loaded onto the 
10x Chromium controller using Chromium Next GEM Single Cell 5’ Reagent Kits v2 (Dual 
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Index) with Feature Barcoding technology for Cell-Surface Protein and Immune Receptor 
Mapping (10x Genomics). 
 
Single-cell sequencing data preprocessing  
Raw RNA data and antibody-derived tag sequences were demultiplexed and aligned to the 
GRCh38 reference genome using Cell Ranger v6.0.1 (10x Genomics). T cell receptor (TCR) 
sequences were also identified using Cell Ranger v6.0.1. The filtered expression matrices (Cell 
Ranger outputs) were pre-processed using Scanpy31 v1.7.2 in Python. Low quality cells with 
fewer than 200 or more than 4000 expressed genes were removed, and cells with fewer than 200 
counts or more than 25% mitochondrial gene expression were removed. Doublets were removed 
with Scrublet32 v0.2.1 using its automatic doublet detection threshold. TCR sequences were read 
in and processed using Scirpy33 v0.10.1. Cells lacking an immune receptor as measured by TCR 
sequencing were removed as well. CD8+ T cells were extracted by identifying CD3+,  CD8+, and 
CD4- cells based on ADT expression.  
 
Integration of samples (patients, healthy donors, and tissue type/timepoint) was performed using 
totalVI34 v0.17.0, which integrates datasets using both gene and ADT expression. To run totalVI, 
the top 3000 highly variable genes were used (identified using the “seurat_v3” method in 
Scanpy). Mitochondrial and ribosomal genes were then removed. The variational autoencoder 
model was trained with 250 max epochs, with all other parameters set to defaults. The resulting 
latent representation was used to generate a nearest-neighbors map and UMAP representation. 
ADT expression was transformed using CLR normalization, and gene expression was log-
normalized.  
 
Single-cell sequencing data analysis 
Unsupervised Leiden clustering was performed in Scanpy using the totalVI-generated neighbors 
graph. Clusters were labeled according to canonical gene and protein markers (Fig. 1C). Within 
broad cell types (TEM, TEMRA, and TRM) where multiple clusters were identified, clusters 
were labeled descriptively based on what we identified as the most prominent gene/protein 
expression difference among the clusters (i.e. GZMB+ vs. GZMK+ TEM/TEMRA, and CD69+ 
vs. CD103+ TRM).  
 
Common exhaustion genes (CTLA4, HAVCR2, LAG3, PDCD1, TIGIT, and ENTPD1) and 
activation/proliferation genes (NME1, IL2RA, CD38, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-
DRB4, HLA-DRB5, MKI67, and PCNA) were used to calculate the exhaustion and activation 
gene scores, respectively. Gene scores were calculated using the Scanpy ‘score_genes’ function.  
 
External data for solid tumor comparisons were downloaded from the link (http://cancer-
pku.cn:3838/PanC_T/) provided by Zheng et al.8 Raw expression data for CD8+ T cells were 
downloaded per dataset. Following the same steps as our in-house data, the data was log-
normalized and gene scores were calculated using the Scanpy ‘score_genes’ function. 
 
Clonal analysis (e.g. calculation of Jaccard similarity and clonal diversity) was performed using 
the Scirpy package. Scipy35 v1.10.1 (Virtanen et al 2020) was used to perform statistical 
correlations, and the statannot v0.2.3 package was used to add statistical annotations to plots.  
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Figure 1: Hallmarks of tumor-experienced T cells are absent in NDMM. 
1A: Experimental diagram and clinical time course. ADT=antibody-derived tag; GEX=gene 
expression; TCR=T cell receptor. 
1B: TotalVI-UMAP of CD8+ T cells colored by cluster. 
1C: Mean expression of proteins (top) or genes (bottom) by cluster. 
1D: TotalVI-UMAP of CD8+ T cells colored by gene set score. 
1E: Mean gene set score by cluster.  
1F: PRETX frequency of exhausted-like/exhausted T cells quantified by single-cell sequencing, 
including public data,5–8 and separated by tumor type; p calculated by Wilcoxon rank sum test. 
AML=acute myeloid leukemia; CRC=colorectal cancer; LC=lung cancer; EC=esophageal 
cancer; BCL=B cell lymphoma. 
1G: PRETX frequency of PD-1++CD39+ T cells quantified by mass cytometry, including public 
data,9 and separated by tumor type; p calculated by Wilcoxon rank sum test. 
1H: Frequency of exhausted-like (left) or activated (right) cells in NDMM patients at PRETX 
and healthy controls, by tissue; p calculated by Wilcoxon rank sum test. 
1I: Frequency of BM (left panel) or PB (right panel) exhausted-like or activated cells (x-axis) 
and BM tumor cells quantified by clinical immunohistochemistry (y-axis) at PRETX; r and p 
calculated by Spearman method. 
1J: PRETX frequency of pMHC-tet+CD8+ T cells by peptide family and tissue; lines grouped by 
patient.   
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Figure 2: Activated and exhausted-like cells lack clonal features typical of tumor-
experienced T cells. 
2A: Frequency of BM tumor cells quantified by clinical immunohistochemistry, separated by 
timepoint; lines grouped by patient. 
2B: Frequency of exhausted-like or activated cells by timepoint and tissue; lines grouped by 
patient; p calculated by Wilcoxon rank sum test. 
2C: TotalVI-UMAP colored by clone size (left) or population (right). 
2D: Frequency of expanded clones in NDMM patients by population; lines grouped by patient; p 
calculated by Wilcoxon rank sum test. 
2E: Percent of bystander-specific clones in NDMM patients by population. 
2F: Jaccard similarity of clonal composition in NDMM patients by population. 
2G: Number of clones by population and timepoint, colored by clonal persistence at later 
timepoints. 
2H: Circos plot by population and timepoint. Bar size indicates number of cells and lines indicate 
number of clonal connections. 
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