
 Piximi - An Images to Discovery web 
 tool for bioimages and beyond 

 Levin M Moser  1  , Nodar Gogoberidze  1  , Andréa Papaleo  1  ,  Alice Lucas  1  , David Dao  2  , Christoph A 
 Friedrich  1  , Lassi Paavolainen  3  , Csaba Molnar  1,4  , David  R Stirling  1  , Jane Hung  5  , Rex Wang  6  , 
 Callum Tromans-Coia  1  , Bin Li  7  , Edward L Evans III  7  ,  Kevin W Eliceiri  7  , Peter Horvath  4,8  , Anne E 
 Carpenter  1  , Beth A Cimini  1  * 

 1=Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA, USA 
 2=ETH Zurich, Zurich, Switzerland 
 3=Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 
 Finland 
 4=Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre (BRC), Szeged, 
 Hungary 
 5=Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 
 Cambridge, MA, USA 
 6=Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge MA, USA 
 7=Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA 
 8=Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre (BRC), Szeged, 
 Hungary; Institute of AI for Health, Helmholtz Zentrum München, Neuherberg, Germany 

 * = to whom correspondence may be addressed - bcimini@broadinstitute.org 

 Abstract 
 Deep learning has greatly accelerated research in biological image analysis yet it often requires 
 programming skills and specialized tool installation. Here we present Piximi, a modern, 
 no-programming image analysis tool leveraging deep learning. Implemented as a web 
 application at Piximi.app, Piximi requires no installation and can be accessed by any modern 
 web browser. Its client-only architecture preserves the security of researcher data by running all 
 computation locally. Piximi offers four core modules: a deep learning classifier, an image 
 annotator, measurement modules, and pre-trained deep learning segmentation modules. Piximi 
 is interoperable with existing tools and workflows by supporting import and export of common 
 data and model formats. The intuitive researcher interface and easy access to Piximi allows 
 biological researchers to obtain insights into images within just a few minutes. Piximi aims to 
 bring deep learning-powered image analysis to a broader community by eliminating barriers to 
 entry. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/


 Introduction 
 Image analysis has played a crucial role throughout the history of biological and medical 

 research. Within the last few decades, the amount and variety of image data generated and 
 analyzed has increased dramatically, requiring powerful tools to automate tasks such as cell 
 segmentation or classification. These tools are essential in the automated analysis of image 
 data  but also allow researchers to focus on more sophisticated tasks than manually annotating 
 or classifying cells. Currently, the bioimaging community relies heavily on popular Graphical 
 User Interface (GUI)-based open-source applications relying on classical image processing and 
 machine learning, such as general-purpose tools like ImageJ  1  / Fiji  2  , CellProfiler  3  , Icy  4  , and 
 napari  5  and more specialized tools such as ilastik  6  , CellProfiler Analyst (CPA)  7  and Advanced 
 Cell Classifier (ACC)  8  . Despite the wide adoption of various tools supporting image analysis in 
 biomedical research, these programs all come with their limitations. Most of them require the 
 installation of a local program or setting up a controlled computing environment which not only 
 adds an additional hurdle for many researchers but also often limits the available platforms. 
 Additionally, many tools are complicated to use, lack sufficient researcher documentation, have 
 slightly outdated researcher interfaces, or are designed for specific use cases only. 

 The last decade of image analysis has seen a wide adoption of deep learning-based tools 
 and algorithms, further accelerating bioimage analysis  9  . Cellpose  10  is a highly popular 
 stand-alone deep learning segmentation tool for bioimage analysis and offers powerful 
 pre-trained cell segmentation models, and significant efforts have been made to deploy deep 
 learning tools through napari; Fiji (by the DeepImageJ project  11  ); CellProfiler  12  ; and in ilastik, 
 QuPath  13  and other tools via the Bioimage Model Zoo  14  . However, the fact remains that using 
 most deep learning workflows requires comfort in writing code and running it through a 
 command line interface or in complex deployment or programming environments which can 
 require additional steps to troubleshoot dependency installation  15  . The required programming 
 skills limit the researcher base and thus the potential applications of deep learning in bioimage 
 analysis  16  . These practical limitations generally limit modern applications of deep learning for 
 less-computationally-comfortable researchers in many fields. 

 Here we present Piximi, an open-source, no-code, and modern web-based deep learning 
 application. Our goal was to offer a complete deep learning bioimage analysis workflow in a 
 single, easy-to-use tool. 

 In this initial version, Piximi offers four core functionalities: 

 1) Classifier: allowing researchers to easily label images or objects within images, such as 
 cells, and train a classifier to recognize them. 

 2) Annotator: providing multiple flexible tools for creating object bounding boxes and 
 segmentation outlines to allow researchers to annotate images directly in Piximi for use in 
 downstream tasks. 

 3) Segmenter: allowing researchers to find object within images using pre-trained instance 
 segmentation and object detection networks 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint 

https://paperpile.com/c/0PrD9N/ocRt
https://paperpile.com/c/0PrD9N/tW6y
https://paperpile.com/c/0PrD9N/RFE7
https://paperpile.com/c/0PrD9N/u9eQ
https://paperpile.com/c/0PrD9N/A2NO
https://paperpile.com/c/0PrD9N/q9sz
https://paperpile.com/c/0PrD9N/Wk8q
https://paperpile.com/c/0PrD9N/a9CV
https://paperpile.com/c/0PrD9N/0d6T
https://paperpile.com/c/0PrD9N/Cjur
https://paperpile.com/c/0PrD9N/cuOL
https://paperpile.com/c/0PrD9N/2Jw9
https://paperpile.com/c/0PrD9N/Jp3C
https://paperpile.com/c/0PrD9N/4uts
https://paperpile.com/c/0PrD9N/mr9U
https://paperpile.com/c/0PrD9N/99NF
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/


 4) Measurements: capturing various properties of images or entities identified therein, such as 
 size, shape, and intensity. Measurements can then be plotted to examine distributions or 
 between-group differences. 

 Piximi is implemented as a freely available web application (https://www.piximi.app/). Thus, 
 unlike many other tools in the field of image analysis, it is available on any operating system 
 (PC, MAC, Linux, and mobile) through any modern browser and without any installation 
 required. In addition to its ease of access, we aimed to create an easy-to-use, no-code 
 application that democratizes science by allowing everyone to leverage deep learning on their 
 projects without any programming skills. 

 Piximi offers multiple tools in a single application, which allows researchers to complete full 
 workflows within a single tool rather than switching between different programs for individual 
 sub-tasks. It relies on commonly used data formats such as the COCO object detection format, 
 to guarantee interoperability with existing tools and frameworks. Generally all computation is 
 done on the local device and no image data is sent to a server (client-only); certain models will 
 run data on a remote server but only with researcher permission. This privacy-preserving 
 implementation is a key feature allowing use on sensitive or confidential data such as medical 
 images, or in low-resource settings where internet access is occasionally available but not 
 consistently reliable. 

 Piximi can also be used across a variety of image domains and was intentionally designed to 
 support a large variety of use cases. Early adopters have explored this tool for various imaging 
 tasks including cell type classification, annotation of radiology images, and application of 
 segmentation models on histology images. By enabling deep-learning-based image analysis for 
 a range of researchers who were previously excluded due to a lack of computational skills, 
 allowing them to turn images into answers for a variety of scientific questions. 

 Results 

 Classifier 
 The classifier module offers an intuitive and easy way of classifying large numbers of images. 
 Unlike related tools such as CPA or ACC, Piximi does not require a separate feature extraction 
 step but instead works on the raw images. Researchers can import images into Piximi from a 
 local directory, and label a subset of them (that is, point out to the software which images 
 correspond to which categories of interest). These labels are used as ground truth in the training 
 process, so that the deep-learning classifier learns to predict labels for unknown images. 
 Hyperparameters of the model can be adjusted, such as loss function, learning rate, number of 
 epochs, and the train and validation split among the labeled images can be defined. 
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 Simple classification example project 
 To demonstrate the ease of use of classifying images using Piximi we created an example 
 project based on a set of HeLa cell images showing the differential localization of the healthy 
 versus disease-associated variant of the PLP1 protein  17  . 

 To classify unlabeled images as either reference (healthy) or variant (disease-associated), we 
 used Piximi to train a classifier. Using a training set of only 50 labeled cell images each, the 
 classifier correctly identifies the majority of images, reaching an F1 score of 0.81 after just 50 
 epochs of training. The training process on Piximi in the browser finishes in only a few minutes 
 on a typical laptop. 

 Figure 1: Evaluation results on the PLP1 localization classification example project, provided 
 within Piximi (Open -> Project -> Example Project -> Human PLP1 localization).Two channels 
 were imaged during the experiment, channel 0 shows the targeted PLP1 protein (green), and 
 DNA (blue) is imaged in channel 1. The dataset contains 129 images labeled as either wild-type 
 or mutant. a) Shows the training history and b) shows useful evaluation metrics. c) and d) show 
 two examples of the prediction result for reference and variant respectively. 
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 Continuous training/human-in-the loop 
 Piximi supports continuous training of models. This enables training models more efficiently by 
 applying a “human-in-the-loop” approach: after annotating a small subset of images, a 
 researcher can specify the classifier and train it, then show the predictions of the network. 
 Classification errors can be corrected by reassigning the respective images to the correct label. 
 Restarting the training procedure resumes training where it previously stopped, using the 
 now-expanded training set. 

 This iterative process can be repeated until the evaluation results are satisfactory. This 
 approach typically results in better overall results while requiring considerably less manual 
 annotation of images  10,18,19  . 

 Figure 2: Example workflow for human-in-the-loop training using MNIST  20  . a) Abstraction of 
 steps in a human-in-the-loop learning procedure. b) Example MNIST digits predicted as “3” after 
 a few iterations. The misclassified digits can be corrected by assigning them to the right label 
 (“8” and “7”). c) Example of correctly predicted digits. Images with easy patterns such as “1”s 
 are mostly correctly identified after only a small number of manually labeled examples. d) 
 Researchers can inspect the confusion matrix available in Piximi to see which classes are 
 misclassified the most, to focus their efforts where most needed. 

 Annotator 
 A common step in most bioimage analysis workflows is the boundary annotation of objects in 
 images, such as cells. Recent years have seen a surge in useful annotation tools such as 
 QuPath  13  ,  ITK-SNAP  21  , and various napari plugins. 
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 Object annotations are especially important for follow-up deep-learning tasks such as 
 segmentation or cell-type classification which first require the identification of individual cells or 
 nuclei. 

 We implemented an annotator as part of Piximi which follows the designed principles outlined in 
 the introduction. Without any installation steps, Piximi offers a selection of tools to annotate 
 objects of interest. Simple annotation tools such as  rectangular, elliptical, polygonal tools allow 
 the user to manually draw simple geometric shapes around the objects of interest, while more 
 sophisticated tools automatically mark the region of interest.  The quick-selection tools use the 
 SLIC algorithm  22  to calculate so-called superpixels in the images, which typically encompass a 
 single object. Similarly, the “Color tool” uses a flood fill algorithm to directly identify objects 
 based on researcher-selected thresholds. This tool is particularly useful for objects visually 
 identified by color intensities, such as stained compartments of cells or hyper-intense areas 
 within the image. For grayscale images in particular, it might often be enough to identify objects 
 using a simple threshold. For such cases, the Piximi annotator offers a threshold tool that 
 annotates regions below the specified threshold within the bounding box. Annotation can easily 
 be corrected by manually adding or subtracting regions using any available tool. 

 The annotator module also serves as an image viewer for inspecting images more closely. 
 Piximi supports both multichannel as well as 3D images. Researchers can slide through the 
 z-dimension of the images and individually annotate each slice. Researchers can select which 
 channels to show or hide and assign colors to specific channels. 

 In keeping with the core design principle of interoperability, annotations in Piximi can easily be 
 exported and used in subsequent machine learning pipelines, for example to train deep learning 
 models using common frameworks such as TensorFlow  23  or PyTorch  24  . Available commonly 
 used data formats include  labeled instance masks,  binary instance masks, binary semantic 
 masks, and COCO-formatted  25  annotation data. 

 Figure 3: Use of the Piximi annotator on brightfield (left), fluorescence (center) and MRI (right) 
 data. 
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 Segmenter 
 Segmentation is another common task in bioimage analysis. Many downstream analysis tasks 
 including cell type prediction or feature extraction require the segmentation of individual cells 
 within the tissue or cell population. Options include well-known segmentation algorithms such as 
 distance-based watershed, complex segmentation tools such as CellProfiler  3  , and many deep 
 learning-based segmentation algorithms including Cellpose  10  or StarDist  8,26  . Deep learning 
 algorithms regularly outperform classic image analysis pipelines  27  . However, deep learning 
 pipelines are often complex to set up and require the installation of various dependent 
 packages. 

 The segmentation module within Piximi offers a selection of pre-trained segmentation models 
 that allow researchers to quickly identify nuclei or cells. A pre-trained model is selected from the 
 available model zoo and inference is applied to the images opened in Piximi. The web-based 
 implementation and easy-to-use interface allow the obtaining of segmentation results of cells 
 within just a few minutes. The ease of use of these models in Piximi is especially notable for 
 small datasets where setting up a custom pipeline would be infeasible or overly onerous. 

 Currently, the annotator offers five pre-trained segmentation models. There are two segmenters 
 which work on hematoxylin and eosin (H&E) stained images: StarDistVHE to identify nuclei in 
 hematoxylin and eosin (H&E) stained images, as well as a compact UNet  28  which segments 
 intestinal glands trained on the Gland Segmentation in Colon Histology Images Challenge 
 Contest (GlaS)  29  . To showcase non-biological applications as well as the ability to use 
 multi-class object detectors, we also include COCO-ssd, which identifies objects in "natural 
 images" (or photographs) of 80 different classes (such as humans and kites) using the COCO 
 format. We also support two segmenters for fluorescence microscopy; StarDist, and Cellpose. 
 Cellpose is currently unique in that it runs on the AI4Life project’s BioEngine  30  server while 
 StarDist, like other Piximi models, runs client-only in the user's own browser without data 
 leaving their machine. An alert is shown when selecting Cellpose which warns users that 
 images will leave their machine. While Piximi will remain a primarily client-only program, 
 supporting an optional remote server for certain specific models allows Piximi to run highly 
 memory-intensive models or models that contain elements which are cumbersome to port to 
 Tensorflow.Js  31  ,such as models containing custom postprocessing Python libraries. 

 Segmentation results are accessible as Piximi object annotations, allowing researchers to edit 
 and/or export segmentation masks as can be done with manually created annotations. While 
 Piximi does support multiclass object finding (in which a researcher could simultaneously 
 separately identify different object classes such as mitotic cells and non-mitotic cells), the object 
 annotations are also available in the classifier tool as well, allowing a researcher to run an initial 
 segmentation model that grabs all objects (such as cells) and then separate them into classes 
 (mitotic and non-mitotic). 
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 Figure 4: Segmentation results on a test set image from the Gland Segmentation in Colon 
 Histology Images Challenge Contest. Top: results of the Gland segmentation model. Bottom: 
 results of the StarDistVHE nuclear detection model. Left: unedited segmentation results. Right: 
 missing segmentations can be easily added using Piximi's quick-selection tool. 

 Measurements 

 To offer researchers a comprehensive end-to-end experience in understanding the experimental 
 results within a single application, Piximi features a measurement module that provides insight 
 into project images and annotation objects by quantifying key information and attributes. Users 
 perform measurements by first selecting a group of images or objects to be measured, referred 
 to as a “split”. Currently users can specify splits by first selecting the object kind they’re 
 measuring (such as "image", "cells" or "glands"), then they further narrow the selection by 
 specifying the category the object or images belong to, and/or the training partition. For 
 instance, a split may be all of the “cell membrane” objects categorized as “LargeDiffuse”, or all 
 of the imported images used for validation in a model. The measurements available are split into 
 two groups, image level measurements and object level measurements. The image level 
 measurements include measurements of the intensity of the image (total, median, standard 
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 deviation, etc.) and the object level measurements include measurements of object geometry 
 (area, perimeter, sphericity, etc.). See the Methods for the full list of measurements and their 
 implementations. 

 Figure 5: In-app web measurement functionality in Piximi. Image and object measurements can 
 be made and exported; objects or images which have been assigned to categories will show the 
 average, standard deviation, and median value within each category. 

 Selecting the splits and measurements will populate the table with the total, median, and 
 standard deviation statistics for the measurements for each split. Users can sort and filter the 
 rows of the table using the functions provided in the column headers. Users can create multiple 
 tables at a time and easily switch between them and collapse the ones they aren’t working in. 

 Following the design principle of interoperability, measurements can be exported to a CSV file to 
 use for further downstream analysis. Exported measurements can easily be used in other data 
 exploration tools like Morpheus  32  or CellProfiler Analyst  7  . The CSV file contains the per 
 image/object measurements. 

 In addition to the numerical table, users also have the options to visualize their measurements 
 using a selection of plots – histogram, swarm, and scatter – and apply color and size mapping. 
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 Users can specify the parameters for the plots in the left section of the plot tab. Each plot has a 
 associated group of parameters, some which vary depending on the plot: the parameters for 
 histogram (Figure 6A) are the x-axis measurement and the number of bins, the scatterplot 
 (Figure 6B) takes x- and y-axis measurements, as well as an option to map the mark size to a 
 measurement and color to a split, and the swarm plot (Figure 6C) takes a y-axis measurement, 
 swarm group which is associated with a split (category or partition), mark size, and an option to 
 toggle a measurement statistics overlay which displays the median, std, and upper and lower 
 quartiles of a group (Figure 6D). 

 Figure 6: Snapshot of the histogram (A), scatterplot(B), swarm plot(C), and the swarm plot with 
 a statistics overlay(D) as well as the associated parameters for each of the plots. 

 Users can select from a large number of color themes to apply to the plots, and each plot will 
 have its own associated theme. It is also possible to create multiple plots at the same time. 
 Each new plot opens in a new tab within the table, and each tab can be renamed to allow for 
 greater clarity when working with multiple plots. Plots which are no longer needed can be easily 
 deleted using the delete button in the tab. Users will also have the ability to save the plots then 
 generate using Piximi. 
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 Data and model interoperability 
 Piximi was developed with interoperability with other tools in mind. Image labels, predictions, 
 and measurements can easily be exported and used for further downstream analysis using 
 various tools. 

 The architecture graph and weights of any models trained in Piximi can also be downloaded and 
 imported into other tools and workflows. This enables training an initial classifier on Piximi using 
 the human-in-the-loop approach to limit manual annotation of images, then exporting the model 
 to run inference on large datasets on a cluster or in the cloud (which are not currently suitable 
 for processing by Piximi). Conversely, models developed and trained in a Jupyter Notebook or 
 other Python environment can also be imported into Piximi. For instance, we trained a UNet for 
 intestinal gland segmentation in H&E stained images of colorectal tissues. This trained model 
 was then imported into Piximi, enabling the segmentation workflow to be run directly in the 
 Piximi browser application, circumventing the need for a complex Python environment or a 
 computing server. This enhances model accessibility for non-computational researchers as well 
 as substantially increases reproducibility. 

 Discussion 

 Here we described Piximi, a modern web application that offers an easy-to-use, intuitive 
 non-code interface to perform common image analysis tasks. In this first version, Piximi offers 
 four core modules: a deep learning classifier, an image annotator, pre-trained segmentation 
 models, and measurements. These modules are not implemented as standalone tools but are 
 interoperable within Piximi. All analysis results and data, including classification prediction, 
 labels, measurements, and annotation or segmentation masks can easily be exported to 
 common data formats, yielding a reproducible record of analysis and allowing results to be used 
 with other tools and workflows. This interoperability with the broader image analysis community 
 is a key feature of Piximi. 

 Piximi is implemented as a client-only web application without any server component. Unless 
 the user chooses a pretrained model only supported remotely, no images or data are uploaded 
 to a server and all computation is done locally. In addition, Piximi can be served via a Docker 
 container which enables institutional researchers to deploy Piximi within their local network 
 easily. 

 The implementation of Piximi as a web application also eliminates the need for an installation 
 process. Additionally, Piximi can be accessed from any modern web browser and, beyond 
 accessing example data sets or remote server tools like Cellpose, continuous internet 
 connection is not needed following initial loading. 

 However, implementing Piximi as a web application creates certain limitations. Most notably the 
 performance of training deep learning models in the browser is limited compared to non-web 
 GPU workflows. Large datasets or large images might be slower to handle compared to 
 comparable traditional applications. In general, web applications like Piximi also currently lack 
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 access to the local file system and direct interaction with image analysis libraries written in Java 
 or Python. Instead, most image analysis features in Piximi are re-implementations in JavaScript. 
 Nevertheless, major developments in web applications such as File System Access API or 
 WebAssembly (WASM) will benefit applications like Piximi. 

 Future work on Piximi will focus on both expanding the feature set and improving the 
 performance and researcher experience of Piximi. Performance improvements will include 
 support for large images and larger overall datasets. In addition to pre-trained segmentation 
 models, future versions of Piximi will also support trainable segmentation models. We also aim 
 to include more efficient human-in-the-loop training by providing a researcher interface that 
 guides through this process—by identifying hard-to-classify images and guiding the researchers 
 through the process, the training process will converge faster and likely produce better results. 

 In conclusion, we presented a new, modern web application for image analysis. We showed 
 particular use cases of Piximi for quickly and efficiently running cell type classification, nuclear 
 segmentation, and tissue segmentation using the included deep learning tools. 

 Although initially created to bring bioimage analysis tools to a broader audience, Piximi can be 
 used for any other research field as well. Its web-based implementation and intuitive no-code 
 researcher interface enable us to bring deep learning-based image analysis tools to researchers 
 who were previously excluded or faced major barriers in accessing such networks. We believe 
 Piximi's powerful features, ease of access, and ease of use help it fill a unique niche in the 
 image analysis ecosystem. 

 Online Methods 

 Implementation details 
 Piximi’s source code is publicly available on GitHub and is provided under a BSD-style 
 open-source license. 

 Piximi is implemented using state-of-the-art web development tools. The application is written in 
 TypeScript using the React library for the UI. Libraries such as React allow us to develop 
 custom components which streamlines development as well as providing performance benefits 
 which stem from the ability to monitor and cut down on re-renders. In order to accomplish the 
 goal of providing an intuitive user experience with a low barrier to entry, styling is implemented 
 via the MaterialUI library, which adheres to the widely used open-source Material Design system 
 developed by Google. 

 Application state and data are managed using the Redux Library, which allows for the creation 
 of a “store” which holds the data and provides a simple api for Create, Read, Update, and 
 Delete (CRUD) functionality. Since this store is accessed by many different components used in 
 the application, Redux provides methods and guidelines for ensuring only deliberate mutation of 
 the store. The otherwise immutability of the store guarantees that data and state stay consistent 
 and in-sync between app re-renders and the various components.  Application data (images, 
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 annotations, categories, and images/objects (collectively referred to as "kinds")) are kept in the 
 store within modified “entity adapters”. The entity adapter is provided by Redux as a way to 
 quickly access data by storing it in id-based lookup tables along with providing a list of the ids 
 within each adapter. We modified the entity adapters to allow for updating the data in a 
 non-permanent way, storing only the changes made until the user decides to save those 
 changes or revert them. 

 Using TensorFlow.js  31  , we are able to store arbitrary numerical arrays as tensors. Therefore, in 
 addition to the training and inference of models, we are able to store all image data in much 
 more compute-efficient data structures. This provides a distinct advantage over using 
 JavaScript's primitive arrays as it allows us to carry out image processing algorithms with 
 gpu-bound, vectorized operations at the whole-array level, rather than needing to sequentially 
 iterate over each individual element in a multidimensional array and perform cpu-bound 
 arithmetic and logical operations on them. 

 The use of TensorFlow.js also allows for the selection of multiple compute backends. Currently, 
 for the browser, this includes cpu-bound operations via the "cpu" (vanilla javascript) and "wasm" 
 (XNNPACK library compiled to WASM) backends and a "gpu" backend with gpu-bound 
 operations which are implemented in OpenGL Shading Language (GLSL) and routed through 
 WebGL. There is an in-progress "webgpu" backend for gpu-bound operations which utilizes the 
 more modern and performant WebGPU API available in most modern browsers. 

 Since javascript is single-threaded, computationally intensive tasks run the risk of freezing up 
 the UI, preventing users from further interaction with the application until the task is complete. 
 We therefore employ Web Workers in various points in the code, which allows Piximi to run 
 scripts in background threads without affecting the main UI. Data is sent back and forth between 
 the main thread and the worker using a system of messages, allowing Piximi to provide useful 
 information about the running process during calculation. An added benefit of using Web 
 Workers is the ability to spawn a process in Piximi and switch to another tab in the browser 
 while the computation takes place, increasing the efficiency of a user’s workflow. 

 Measurement implementation 

 Measurements are calculated using a mix of tensorflow and custom functions, and are 
 computed within web workers to keep the main thread unburdened. As mentioned previously, 
 measurements are separated into two groups, image level measurements and object level. 

 The image level encapsulates several measurements for the image intensity and are calculated 
 for each channel of the images. These measurements include: total, mean, median, standard 
 deviation, mean absolute deviation (MAD),  lower quartile, and upper quartile of the pixel 
 intensities. The MAD is computed as 

 ,  𝑀𝐴𝐷    =     𝑚𝑒𝑑𝑖𝑎𝑛 (    |     𝑥 
 𝑖 
   −     𝑚𝑒𝑑𝑖𝑎𝑛 ( 𝑥 )    |    )

 and the lower(upper) quartile is defined as the intensity value of the pixel for which 25%(75%) of 
 the pixels in the object have lower values. 
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 Unlike image level measurements, which can be performed on both images and objects, object 
 level measurements require that the object have a mask generated by Piximi, and thus cannot 
 be performed on pure images uploaded to Piximi. The object measurements currently 
 implemented are used to measure geometrical features of the objects: 

 -  Area:  sum of the number of pixels in the object 
 -  Perimeter: total number of pixels around the boundary of the object 
 -  Bounding Box Area: total number of pixels in the bounding box 
 -  Extent: the proportion of the pixels in the bounding box that are also in the region, 

 computed as 

 𝐸𝑥𝑡𝑒𝑛𝑡    =     𝐴 
 𝑜𝑏𝑗𝑒𝑐𝑡 

 /  𝐴 
 𝐵𝐵𝑂𝑋 

 -  Equivalent Diameter: the diameter of a perfect circle with an area equal to the area of 
 the object 

 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟    =     2  𝐴 
 𝑜𝑏𝑗𝑒𝑐𝑡 

 / π

 -  Diameter of equal perimeter (PED): the diameter of a circle whose perimeter equal to 
 that of the object 

 𝑃𝐸𝐷    =     𝑃 
 𝑜𝑏𝑗𝑒𝑐𝑡 

 / π

 -  Sphericity: measures the ratio of the perimeter of the equivalent circle,  , to the real  𝑃 
 𝐸𝐶𝑃𝐶 

   

 perimeter of the object,  . The result ranges  from 0 (irregularly shaped) to 1  𝑃 
 𝑟𝑒𝑎𝑙 

 (spherical). 

 𝑆    =     𝑃 
 𝐸𝑄𝑃𝐶 

 /  𝑃 
 𝑟𝑒𝑎𝑙 

   =     2 π 𝐴 
 𝑟𝑒𝑎𝑙 

 /  𝑃 
 𝑟𝑒𝑎𝑙 

 -  Compactness: the degree to which the object is compact, with circular shapes being 
 most compact and irregular objects will have a value greater than 1, increasing in 
 irregularity. Measured as the inverse of sphericity. 

 𝐶    =     1/  𝑆 

 All the measurements are stored per image/object within Piximi, and only need to be 
 recomputed if the underlying data changes. 

 Model Zoo 
 Piximi’s classifier offers two different classification model types: “SimpleCNN” is a simple 
 implementation of a fully convolutional network. Additionally, researchers can use a Mobilenet,  33 

 a small and efficient deep-learning model for object classification. These networks were 
 specifically developed to achieve high classification accuracy while having significantly fewer 
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 parameters and lower inference latency than comparable models. Mobilenets are often used in 
 mobile applications and web services. Piximi uses a frozen pre-trained mobilenet and trains an 
 additional layer mapping from the last hidden layer to the specified output shape. 

 The first version uses the four pre-trained segmentation models mentioned above: COCO-SSD, 
 StarDistVHE, and a UNet model for identifying glands in tissue images. 

 Data Formats 
 Piximi supports common image files such as png, jpeg and Tiff. Tiff files can have an arbitrary 
 number of z-dimensions or channels. On importing the images, the researcher specifies the 
 number of channels for hyperstack images. Additionally, Piximi supports uncompressed DICOM 
 files as well. 

 Projects on Piximi, including labels and images, can be downloaded into a Zarr file to save 
 projects on local disk. Annotations and segmentation masks can be exported using common 
 formats including COCO formatted JSON or binary schematic masks. 

 Models are stored in one of two TensorFlow.js formats, Layers Models or Graph Models, in the 
 form of a json file containing the model description (layers, ops, inputs, outputs) and sharded 
 binary files containing model weights. Layers Models are fully trainable, whereas Graph Models 
 are optimized for inference only. Both formats can be converted to using the tfjs-converter CLI 
 tool utilizing one of several input formats, such as TensorFlow SavedModel, Keras HDF5 or 
 Keras SavedModel. Likewise the Layers Model format can be converted back into Keras HDF5 
 or Keras SavedModel formats. The tf2onnx tool also allows us to convert TensorFlow.js models 
 to an ONNX capable format. Likewise, although more complicated, ONNX may be utilized to 
 convert Torch (.pt/pth) formats to a suitable Keras format, and then ultimately to a TensorFlow.js 
 Graph model. 
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