
 Piximi - An Images to Discovery web
 tool for bioimages and beyond

 Levin M Moser 1 , Nodar Gogoberidze 1 , Andréa Papaleo 1 , Alice Lucas 1 , David Dao 2 , Christoph A
 Friedrich 1 , Lassi Paavolainen 3 , Csaba Molnar 1,4 , David R Stirling 1 , Jane Hung 5 , Rex Wang 6 ,
 Callum Tromans-Coia 1 , Bin Li 7 , Edward L Evans III 7 , Kevin W Eliceiri 7 , Peter Horvath 4,8 , Anne E
 Carpenter 1 , Beth A Cimini 1 *

 1=Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA, USA
 2=ETH Zurich, Zurich, Switzerland
 3=Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki,
 Finland
 4=Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre (BRC), Szeged,
 Hungary
 5=Department of Chemical Engineering, Massachusetts Institute of Technology (MIT),
 Cambridge, MA, USA
 6=Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge MA, USA
 7=Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
 8=Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre (BRC), Szeged,
 Hungary; Institute of AI for Health, Helmholtz Zentrum München, Neuherberg, Germany

 * = to whom correspondence may be addressed - bcimini@broadinstitute.org

 Abstract
 Deep learning has greatly accelerated research in biological image analysis yet it often requires
 programming skills and specialized tool installation. Here we present Piximi, a modern,
 no-programming image analysis tool leveraging deep learning. Implemented as a web
 application at Piximi.app, Piximi requires no installation and can be accessed by any modern
 web browser. Its client-only architecture preserves the security of researcher data by running all
 computation locally. Piximi offers four core modules: a deep learning classifier, an image
 annotator, measurement modules, and pre-trained deep learning segmentation modules. Piximi
 is interoperable with existing tools and workflows by supporting import and export of common
 data and model formats. The intuitive researcher interface and easy access to Piximi allows
 biological researchers to obtain insights into images within just a few minutes. Piximi aims to
 bring deep learning-powered image analysis to a broader community by eliminating barriers to
 entry.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Introduction
 Image analysis has played a crucial role throughout the history of biological and medical

 research. Within the last few decades, the amount and variety of image data generated and
 analyzed has increased dramatically, requiring powerful tools to automate tasks such as cell
 segmentation or classification. These tools are essential in the automated analysis of image
 data but also allow researchers to focus on more sophisticated tasks than manually annotating
 or classifying cells. Currently, the bioimaging community relies heavily on popular Graphical
 User Interface (GUI)-based open-source applications relying on classical image processing and
 machine learning, such as general-purpose tools like ImageJ 1 / Fiji 2 , CellProfiler 3 , Icy 4 , and
 napari 5 and more specialized tools such as ilastik 6 , CellProfiler Analyst (CPA) 7 and Advanced
 Cell Classifier (ACC) 8 . Despite the wide adoption of various tools supporting image analysis in
 biomedical research, these programs all come with their limitations. Most of them require the
 installation of a local program or setting up a controlled computing environment which not only
 adds an additional hurdle for many researchers but also often limits the available platforms.
 Additionally, many tools are complicated to use, lack sufficient researcher documentation, have
 slightly outdated researcher interfaces, or are designed for specific use cases only.

 The last decade of image analysis has seen a wide adoption of deep learning-based tools
 and algorithms, further accelerating bioimage analysis 9 . Cellpose 10 is a highly popular
 stand-alone deep learning segmentation tool for bioimage analysis and offers powerful
 pre-trained cell segmentation models, and significant efforts have been made to deploy deep
 learning tools through napari; Fiji (by the DeepImageJ project 11); CellProfiler 12 ; and in ilastik,
 QuPath 13 and other tools via the Bioimage Model Zoo 14 . However, the fact remains that using
 most deep learning workflows requires comfort in writing code and running it through a
 command line interface or in complex deployment or programming environments which can
 require additional steps to troubleshoot dependency installation 15 . The required programming
 skills limit the researcher base and thus the potential applications of deep learning in bioimage
 analysis 16 . These practical limitations generally limit modern applications of deep learning for
 less-computationally-comfortable researchers in many fields.

 Here we present Piximi, an open-source, no-code, and modern web-based deep learning
 application. Our goal was to offer a complete deep learning bioimage analysis workflow in a
 single, easy-to-use tool.

 In this initial version, Piximi offers four core functionalities:

 1) Classifier: allowing researchers to easily label images or objects within images, such as
 cells, and train a classifier to recognize them.

 2) Annotator: providing multiple flexible tools for creating object bounding boxes and
 segmentation outlines to allow researchers to annotate images directly in Piximi for use in
 downstream tasks.

 3) Segmenter: allowing researchers to find object within images using pre-trained instance
 segmentation and object detection networks

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/ocRt
https://paperpile.com/c/0PrD9N/tW6y
https://paperpile.com/c/0PrD9N/RFE7
https://paperpile.com/c/0PrD9N/u9eQ
https://paperpile.com/c/0PrD9N/A2NO
https://paperpile.com/c/0PrD9N/q9sz
https://paperpile.com/c/0PrD9N/Wk8q
https://paperpile.com/c/0PrD9N/a9CV
https://paperpile.com/c/0PrD9N/0d6T
https://paperpile.com/c/0PrD9N/Cjur
https://paperpile.com/c/0PrD9N/cuOL
https://paperpile.com/c/0PrD9N/2Jw9
https://paperpile.com/c/0PrD9N/Jp3C
https://paperpile.com/c/0PrD9N/4uts
https://paperpile.com/c/0PrD9N/mr9U
https://paperpile.com/c/0PrD9N/99NF
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 4) Measurements: capturing various properties of images or entities identified therein, such as
 size, shape, and intensity. Measurements can then be plotted to examine distributions or
 between-group differences.

 Piximi is implemented as a freely available web application (https://www.piximi.app/). Thus,
 unlike many other tools in the field of image analysis, it is available on any operating system
 (PC, MAC, Linux, and mobile) through any modern browser and without any installation
 required. In addition to its ease of access, we aimed to create an easy-to-use, no-code
 application that democratizes science by allowing everyone to leverage deep learning on their
 projects without any programming skills.

 Piximi offers multiple tools in a single application, which allows researchers to complete full
 workflows within a single tool rather than switching between different programs for individual
 sub-tasks. It relies on commonly used data formats such as the COCO object detection format,
 to guarantee interoperability with existing tools and frameworks. Generally all computation is
 done on the local device and no image data is sent to a server (client-only); certain models will
 run data on a remote server but only with researcher permission. This privacy-preserving
 implementation is a key feature allowing use on sensitive or confidential data such as medical
 images, or in low-resource settings where internet access is occasionally available but not
 consistently reliable.

 Piximi can also be used across a variety of image domains and was intentionally designed to
 support a large variety of use cases. Early adopters have explored this tool for various imaging
 tasks including cell type classification, annotation of radiology images, and application of
 segmentation models on histology images. By enabling deep-learning-based image analysis for
 a range of researchers who were previously excluded due to a lack of computational skills,
 allowing them to turn images into answers for a variety of scientific questions.

 Results

 Classifier
 The classifier module offers an intuitive and easy way of classifying large numbers of images.
 Unlike related tools such as CPA or ACC, Piximi does not require a separate feature extraction
 step but instead works on the raw images. Researchers can import images into Piximi from a
 local directory, and label a subset of them (that is, point out to the software which images
 correspond to which categories of interest). These labels are used as ground truth in the training
 process, so that the deep-learning classifier learns to predict labels for unknown images.
 Hyperparameters of the model can be adjusted, such as loss function, learning rate, number of
 epochs, and the train and validation split among the labeled images can be defined.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Simple classification example project
 To demonstrate the ease of use of classifying images using Piximi we created an example
 project based on a set of HeLa cell images showing the differential localization of the healthy
 versus disease-associated variant of the PLP1 protein 17 .

 To classify unlabeled images as either reference (healthy) or variant (disease-associated), we
 used Piximi to train a classifier. Using a training set of only 50 labeled cell images each, the
 classifier correctly identifies the majority of images, reaching an F1 score of 0.81 after just 50
 epochs of training. The training process on Piximi in the browser finishes in only a few minutes
 on a typical laptop.

 Figure 1: Evaluation results on the PLP1 localization classification example project, provided
 within Piximi (Open -> Project -> Example Project -> Human PLP1 localization).Two channels
 were imaged during the experiment, channel 0 shows the targeted PLP1 protein (green), and
 DNA (blue) is imaged in channel 1. The dataset contains 129 images labeled as either wild-type
 or mutant. a) Shows the training history and b) shows useful evaluation metrics. c) and d) show
 two examples of the prediction result for reference and variant respectively.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/Uxlo
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Continuous training/human-in-the loop
 Piximi supports continuous training of models. This enables training models more efficiently by
 applying a “human-in-the-loop” approach: after annotating a small subset of images, a
 researcher can specify the classifier and train it, then show the predictions of the network.
 Classification errors can be corrected by reassigning the respective images to the correct label.
 Restarting the training procedure resumes training where it previously stopped, using the
 now-expanded training set.

 This iterative process can be repeated until the evaluation results are satisfactory. This
 approach typically results in better overall results while requiring considerably less manual
 annotation of images 10,18,19 .

 Figure 2: Example workflow for human-in-the-loop training using MNIST 20 . a) Abstraction of
 steps in a human-in-the-loop learning procedure. b) Example MNIST digits predicted as “3” after
 a few iterations. The misclassified digits can be corrected by assigning them to the right label
 (“8” and “7”). c) Example of correctly predicted digits. Images with easy patterns such as “1”s
 are mostly correctly identified after only a small number of manually labeled examples. d)
 Researchers can inspect the confusion matrix available in Piximi to see which classes are
 misclassified the most, to focus their efforts where most needed.

 Annotator
 A common step in most bioimage analysis workflows is the boundary annotation of objects in
 images, such as cells. Recent years have seen a surge in useful annotation tools such as
 QuPath 13 , ITK-SNAP 21 , and various napari plugins.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/4aCe+SEdD+Cjur
https://paperpile.com/c/0PrD9N/Gbo7
https://paperpile.com/c/0PrD9N/Jp3C
https://paperpile.com/c/0PrD9N/wek0
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Object annotations are especially important for follow-up deep-learning tasks such as
 segmentation or cell-type classification which first require the identification of individual cells or
 nuclei.

 We implemented an annotator as part of Piximi which follows the designed principles outlined in
 the introduction. Without any installation steps, Piximi offers a selection of tools to annotate
 objects of interest. Simple annotation tools such as rectangular, elliptical, polygonal tools allow
 the user to manually draw simple geometric shapes around the objects of interest, while more
 sophisticated tools automatically mark the region of interest. The quick-selection tools use the
 SLIC algorithm 22 to calculate so-called superpixels in the images, which typically encompass a
 single object. Similarly, the “Color tool” uses a flood fill algorithm to directly identify objects
 based on researcher-selected thresholds. This tool is particularly useful for objects visually
 identified by color intensities, such as stained compartments of cells or hyper-intense areas
 within the image. For grayscale images in particular, it might often be enough to identify objects
 using a simple threshold. For such cases, the Piximi annotator offers a threshold tool that
 annotates regions below the specified threshold within the bounding box. Annotation can easily
 be corrected by manually adding or subtracting regions using any available tool.

 The annotator module also serves as an image viewer for inspecting images more closely.
 Piximi supports both multichannel as well as 3D images. Researchers can slide through the
 z-dimension of the images and individually annotate each slice. Researchers can select which
 channels to show or hide and assign colors to specific channels.

 In keeping with the core design principle of interoperability, annotations in Piximi can easily be
 exported and used in subsequent machine learning pipelines, for example to train deep learning
 models using common frameworks such as TensorFlow 23 or PyTorch 24 . Available commonly
 used data formats include labeled instance masks, binary instance masks, binary semantic
 masks, and COCO-formatted 25 annotation data.

 Figure 3: Use of the Piximi annotator on brightfield (left), fluorescence (center) and MRI (right)
 data.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/vuFd
https://paperpile.com/c/0PrD9N/KjW2
https://paperpile.com/c/0PrD9N/Lg1Y
https://paperpile.com/c/0PrD9N/rILu
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Segmenter
 Segmentation is another common task in bioimage analysis. Many downstream analysis tasks
 including cell type prediction or feature extraction require the segmentation of individual cells
 within the tissue or cell population. Options include well-known segmentation algorithms such as
 distance-based watershed, complex segmentation tools such as CellProfiler 3 , and many deep
 learning-based segmentation algorithms including Cellpose 10 or StarDist 8,26 . Deep learning
 algorithms regularly outperform classic image analysis pipelines 27 . However, deep learning
 pipelines are often complex to set up and require the installation of various dependent
 packages.

 The segmentation module within Piximi offers a selection of pre-trained segmentation models
 that allow researchers to quickly identify nuclei or cells. A pre-trained model is selected from the
 available model zoo and inference is applied to the images opened in Piximi. The web-based
 implementation and easy-to-use interface allow the obtaining of segmentation results of cells
 within just a few minutes. The ease of use of these models in Piximi is especially notable for
 small datasets where setting up a custom pipeline would be infeasible or overly onerous.

 Currently, the annotator offers five pre-trained segmentation models. There are two segmenters
 which work on hematoxylin and eosin (H&E) stained images: StarDistVHE to identify nuclei in
 hematoxylin and eosin (H&E) stained images, as well as a compact UNet 28 which segments
 intestinal glands trained on the Gland Segmentation in Colon Histology Images Challenge
 Contest (GlaS) 29 . To showcase non-biological applications as well as the ability to use
 multi-class object detectors, we also include COCO-ssd, which identifies objects in "natural
 images" (or photographs) of 80 different classes (such as humans and kites) using the COCO
 format. We also support two segmenters for fluorescence microscopy; StarDist, and Cellpose.
 Cellpose is currently unique in that it runs on the AI4Life project’s BioEngine 30 server while
 StarDist, like other Piximi models, runs client-only in the user's own browser without data
 leaving their machine. An alert is shown when selecting Cellpose which warns users that
 images will leave their machine. While Piximi will remain a primarily client-only program,
 supporting an optional remote server for certain specific models allows Piximi to run highly
 memory-intensive models or models that contain elements which are cumbersome to port to
 Tensorflow.Js 31 ,such as models containing custom postprocessing Python libraries.

 Segmentation results are accessible as Piximi object annotations, allowing researchers to edit
 and/or export segmentation masks as can be done with manually created annotations. While
 Piximi does support multiclass object finding (in which a researcher could simultaneously
 separately identify different object classes such as mitotic cells and non-mitotic cells), the object
 annotations are also available in the classifier tool as well, allowing a researcher to run an initial
 segmentation model that grabs all objects (such as cells) and then separate them into classes
 (mitotic and non-mitotic).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/RFE7
https://paperpile.com/c/0PrD9N/Cjur
https://paperpile.com/c/0PrD9N/a9CV+Kr9G
https://paperpile.com/c/0PrD9N/G4b6
https://paperpile.com/c/0PrD9N/meQz
https://paperpile.com/c/0PrD9N/764s
https://paperpile.com/c/0PrD9N/uCoc
https://paperpile.com/c/0PrD9N/rw3u
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Figure 4: Segmentation results on a test set image from the Gland Segmentation in Colon
 Histology Images Challenge Contest. Top: results of the Gland segmentation model. Bottom:
 results of the StarDistVHE nuclear detection model. Left: unedited segmentation results. Right:
 missing segmentations can be easily added using Piximi's quick-selection tool.

 Measurements

 To offer researchers a comprehensive end-to-end experience in understanding the experimental
 results within a single application, Piximi features a measurement module that provides insight
 into project images and annotation objects by quantifying key information and attributes. Users
 perform measurements by first selecting a group of images or objects to be measured, referred
 to as a “split”. Currently users can specify splits by first selecting the object kind they’re
 measuring (such as "image", "cells" or "glands"), then they further narrow the selection by
 specifying the category the object or images belong to, and/or the training partition. For
 instance, a split may be all of the “cell membrane” objects categorized as “LargeDiffuse”, or all
 of the imported images used for validation in a model. The measurements available are split into
 two groups, image level measurements and object level measurements. The image level
 measurements include measurements of the intensity of the image (total, median, standard

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 deviation, etc.) and the object level measurements include measurements of object geometry
 (area, perimeter, sphericity, etc.). See the Methods for the full list of measurements and their
 implementations.

 Figure 5: In-app web measurement functionality in Piximi. Image and object measurements can
 be made and exported; objects or images which have been assigned to categories will show the
 average, standard deviation, and median value within each category.

 Selecting the splits and measurements will populate the table with the total, median, and
 standard deviation statistics for the measurements for each split. Users can sort and filter the
 rows of the table using the functions provided in the column headers. Users can create multiple
 tables at a time and easily switch between them and collapse the ones they aren’t working in.

 Following the design principle of interoperability, measurements can be exported to a CSV file to
 use for further downstream analysis. Exported measurements can easily be used in other data
 exploration tools like Morpheus 32 or CellProfiler Analyst 7 . The CSV file contains the per
 image/object measurements.

 In addition to the numerical table, users also have the options to visualize their measurements
 using a selection of plots – histogram, swarm, and scatter – and apply color and size mapping.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/JVbt
https://paperpile.com/c/0PrD9N/Wk8q
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Users can specify the parameters for the plots in the left section of the plot tab. Each plot has a
 associated group of parameters, some which vary depending on the plot: the parameters for
 histogram (Figure 6A) are the x-axis measurement and the number of bins, the scatterplot
 (Figure 6B) takes x- and y-axis measurements, as well as an option to map the mark size to a
 measurement and color to a split, and the swarm plot (Figure 6C) takes a y-axis measurement,
 swarm group which is associated with a split (category or partition), mark size, and an option to
 toggle a measurement statistics overlay which displays the median, std, and upper and lower
 quartiles of a group (Figure 6D).

 Figure 6: Snapshot of the histogram (A), scatterplot(B), swarm plot(C), and the swarm plot with
 a statistics overlay(D) as well as the associated parameters for each of the plots.

 Users can select from a large number of color themes to apply to the plots, and each plot will
 have its own associated theme. It is also possible to create multiple plots at the same time.
 Each new plot opens in a new tab within the table, and each tab can be renamed to allow for
 greater clarity when working with multiple plots. Plots which are no longer needed can be easily
 deleted using the delete button in the tab. Users will also have the ability to save the plots then
 generate using Piximi.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Data and model interoperability
 Piximi was developed with interoperability with other tools in mind. Image labels, predictions,
 and measurements can easily be exported and used for further downstream analysis using
 various tools.

 The architecture graph and weights of any models trained in Piximi can also be downloaded and
 imported into other tools and workflows. This enables training an initial classifier on Piximi using
 the human-in-the-loop approach to limit manual annotation of images, then exporting the model
 to run inference on large datasets on a cluster or in the cloud (which are not currently suitable
 for processing by Piximi). Conversely, models developed and trained in a Jupyter Notebook or
 other Python environment can also be imported into Piximi. For instance, we trained a UNet for
 intestinal gland segmentation in H&E stained images of colorectal tissues. This trained model
 was then imported into Piximi, enabling the segmentation workflow to be run directly in the
 Piximi browser application, circumventing the need for a complex Python environment or a
 computing server. This enhances model accessibility for non-computational researchers as well
 as substantially increases reproducibility.

 Discussion

 Here we described Piximi, a modern web application that offers an easy-to-use, intuitive
 non-code interface to perform common image analysis tasks. In this first version, Piximi offers
 four core modules: a deep learning classifier, an image annotator, pre-trained segmentation
 models, and measurements. These modules are not implemented as standalone tools but are
 interoperable within Piximi. All analysis results and data, including classification prediction,
 labels, measurements, and annotation or segmentation masks can easily be exported to
 common data formats, yielding a reproducible record of analysis and allowing results to be used
 with other tools and workflows. This interoperability with the broader image analysis community
 is a key feature of Piximi.

 Piximi is implemented as a client-only web application without any server component. Unless
 the user chooses a pretrained model only supported remotely, no images or data are uploaded
 to a server and all computation is done locally. In addition, Piximi can be served via a Docker
 container which enables institutional researchers to deploy Piximi within their local network
 easily.

 The implementation of Piximi as a web application also eliminates the need for an installation
 process. Additionally, Piximi can be accessed from any modern web browser and, beyond
 accessing example data sets or remote server tools like Cellpose, continuous internet
 connection is not needed following initial loading.

 However, implementing Piximi as a web application creates certain limitations. Most notably the
 performance of training deep learning models in the browser is limited compared to non-web
 GPU workflows. Large datasets or large images might be slower to handle compared to
 comparable traditional applications. In general, web applications like Piximi also currently lack

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 access to the local file system and direct interaction with image analysis libraries written in Java
 or Python. Instead, most image analysis features in Piximi are re-implementations in JavaScript.
 Nevertheless, major developments in web applications such as File System Access API or
 WebAssembly (WASM) will benefit applications like Piximi.

 Future work on Piximi will focus on both expanding the feature set and improving the
 performance and researcher experience of Piximi. Performance improvements will include
 support for large images and larger overall datasets. In addition to pre-trained segmentation
 models, future versions of Piximi will also support trainable segmentation models. We also aim
 to include more efficient human-in-the-loop training by providing a researcher interface that
 guides through this process—by identifying hard-to-classify images and guiding the researchers
 through the process, the training process will converge faster and likely produce better results.

 In conclusion, we presented a new, modern web application for image analysis. We showed
 particular use cases of Piximi for quickly and efficiently running cell type classification, nuclear
 segmentation, and tissue segmentation using the included deep learning tools.

 Although initially created to bring bioimage analysis tools to a broader audience, Piximi can be
 used for any other research field as well. Its web-based implementation and intuitive no-code
 researcher interface enable us to bring deep learning-based image analysis tools to researchers
 who were previously excluded or faced major barriers in accessing such networks. We believe
 Piximi's powerful features, ease of access, and ease of use help it fill a unique niche in the
 image analysis ecosystem.

 Online Methods

 Implementation details
 Piximi’s source code is publicly available on GitHub and is provided under a BSD-style
 open-source license.

 Piximi is implemented using state-of-the-art web development tools. The application is written in
 TypeScript using the React library for the UI. Libraries such as React allow us to develop
 custom components which streamlines development as well as providing performance benefits
 which stem from the ability to monitor and cut down on re-renders. In order to accomplish the
 goal of providing an intuitive user experience with a low barrier to entry, styling is implemented
 via the MaterialUI library, which adheres to the widely used open-source Material Design system
 developed by Google.

 Application state and data are managed using the Redux Library, which allows for the creation
 of a “store” which holds the data and provides a simple api for Create, Read, Update, and
 Delete (CRUD) functionality. Since this store is accessed by many different components used in
 the application, Redux provides methods and guidelines for ensuring only deliberate mutation of
 the store. The otherwise immutability of the store guarantees that data and state stay consistent
 and in-sync between app re-renders and the various components. Application data (images,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 annotations, categories, and images/objects (collectively referred to as "kinds")) are kept in the
 store within modified “entity adapters”. The entity adapter is provided by Redux as a way to
 quickly access data by storing it in id-based lookup tables along with providing a list of the ids
 within each adapter. We modified the entity adapters to allow for updating the data in a
 non-permanent way, storing only the changes made until the user decides to save those
 changes or revert them.

 Using TensorFlow.js 31 , we are able to store arbitrary numerical arrays as tensors. Therefore, in
 addition to the training and inference of models, we are able to store all image data in much
 more compute-efficient data structures. This provides a distinct advantage over using
 JavaScript's primitive arrays as it allows us to carry out image processing algorithms with
 gpu-bound, vectorized operations at the whole-array level, rather than needing to sequentially
 iterate over each individual element in a multidimensional array and perform cpu-bound
 arithmetic and logical operations on them.

 The use of TensorFlow.js also allows for the selection of multiple compute backends. Currently,
 for the browser, this includes cpu-bound operations via the "cpu" (vanilla javascript) and "wasm"
 (XNNPACK library compiled to WASM) backends and a "gpu" backend with gpu-bound
 operations which are implemented in OpenGL Shading Language (GLSL) and routed through
 WebGL. There is an in-progress "webgpu" backend for gpu-bound operations which utilizes the
 more modern and performant WebGPU API available in most modern browsers.

 Since javascript is single-threaded, computationally intensive tasks run the risk of freezing up
 the UI, preventing users from further interaction with the application until the task is complete.
 We therefore employ Web Workers in various points in the code, which allows Piximi to run
 scripts in background threads without affecting the main UI. Data is sent back and forth between
 the main thread and the worker using a system of messages, allowing Piximi to provide useful
 information about the running process during calculation. An added benefit of using Web
 Workers is the ability to spawn a process in Piximi and switch to another tab in the browser
 while the computation takes place, increasing the efficiency of a user’s workflow.

 Measurement implementation

 Measurements are calculated using a mix of tensorflow and custom functions, and are
 computed within web workers to keep the main thread unburdened. As mentioned previously,
 measurements are separated into two groups, image level measurements and object level.

 The image level encapsulates several measurements for the image intensity and are calculated
 for each channel of the images. These measurements include: total, mean, median, standard
 deviation, mean absolute deviation (MAD), lower quartile, and upper quartile of the pixel
 intensities. The MAD is computed as

 , 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (| 𝑥
 𝑖
 − 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥) |)

 and the lower(upper) quartile is defined as the intensity value of the pixel for which 25%(75%) of
 the pixels in the object have lower values.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/rw3u
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Unlike image level measurements, which can be performed on both images and objects, object
 level measurements require that the object have a mask generated by Piximi, and thus cannot
 be performed on pure images uploaded to Piximi. The object measurements currently
 implemented are used to measure geometrical features of the objects:

 - Area: sum of the number of pixels in the object
 - Perimeter: total number of pixels around the boundary of the object
 - Bounding Box Area: total number of pixels in the bounding box
 - Extent: the proportion of the pixels in the bounding box that are also in the region,

 computed as

 𝐸𝑥𝑡𝑒𝑛𝑡 = 𝐴
 𝑜𝑏𝑗𝑒𝑐𝑡

 / 𝐴
 𝐵𝐵𝑂𝑋

 - Equivalent Diameter: the diameter of a perfect circle with an area equal to the area of
 the object

 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 2 𝐴
 𝑜𝑏𝑗𝑒𝑐𝑡

 / π

 - Diameter of equal perimeter (PED): the diameter of a circle whose perimeter equal to
 that of the object

 𝑃𝐸𝐷 = 𝑃
 𝑜𝑏𝑗𝑒𝑐𝑡

 / π

 - Sphericity: measures the ratio of the perimeter of the equivalent circle, , to the real 𝑃
 𝐸𝐶𝑃𝐶

 perimeter of the object, . The result ranges from 0 (irregularly shaped) to 1 𝑃
 𝑟𝑒𝑎𝑙

 (spherical).

 𝑆 = 𝑃
 𝐸𝑄𝑃𝐶

 / 𝑃
 𝑟𝑒𝑎𝑙

 = 2 π 𝐴
 𝑟𝑒𝑎𝑙

 / 𝑃
 𝑟𝑒𝑎𝑙

 - Compactness: the degree to which the object is compact, with circular shapes being
 most compact and irregular objects will have a value greater than 1, increasing in
 irregularity. Measured as the inverse of sphericity.

 𝐶 = 1/ 𝑆

 All the measurements are stored per image/object within Piximi, and only need to be
 recomputed if the underlying data changes.

 Model Zoo
 Piximi’s classifier offers two different classification model types: “SimpleCNN” is a simple
 implementation of a fully convolutional network. Additionally, researchers can use a Mobilenet, 33

 a small and efficient deep-learning model for object classification. These networks were
 specifically developed to achieve high classification accuracy while having significantly fewer

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://paperpile.com/c/0PrD9N/iYQc
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 parameters and lower inference latency than comparable models. Mobilenets are often used in
 mobile applications and web services. Piximi uses a frozen pre-trained mobilenet and trains an
 additional layer mapping from the last hidden layer to the specified output shape.

 The first version uses the four pre-trained segmentation models mentioned above: COCO-SSD,
 StarDistVHE, and a UNet model for identifying glands in tissue images.

 Data Formats
 Piximi supports common image files such as png, jpeg and Tiff. Tiff files can have an arbitrary
 number of z-dimensions or channels. On importing the images, the researcher specifies the
 number of channels for hyperstack images. Additionally, Piximi supports uncompressed DICOM
 files as well.

 Projects on Piximi, including labels and images, can be downloaded into a Zarr file to save
 projects on local disk. Annotations and segmentation masks can be exported using common
 formats including COCO formatted JSON or binary schematic masks.

 Models are stored in one of two TensorFlow.js formats, Layers Models or Graph Models, in the
 form of a json file containing the model description (layers, ops, inputs, outputs) and sharded
 binary files containing model weights. Layers Models are fully trainable, whereas Graph Models
 are optimized for inference only. Both formats can be converted to using the tfjs-converter CLI
 tool utilizing one of several input formats, such as TensorFlow SavedModel, Keras HDF5 or
 Keras SavedModel. Likewise the Layers Model format can be converted back into Keras HDF5
 or Keras SavedModel formats. The tf2onnx tool also allows us to convert TensorFlow.js models
 to an ONNX capable format. Likewise, although more complicated, ONNX may be utilized to
 convert Torch (.pt/pth) formats to a suitable Keras format, and then ultimately to a TensorFlow.js
 Graph model.

 Acknowledgements
 The authors also want to acknowledge Pearl Ryder, Frances Hubis, and all the participants of
 the CytoAI and Piximi hackathons. Members of the Horvath, Carpenter-Singh, and Cimini labs
 are also gratefully acknowledged for their contributions to the paper, the code, the UI/UX, and
 the documentation.

 Funding
 The work was supported by grants TKP2021-EGA09, Horizon-BIALYMPH,
 Horizon-SYMMETRY, Horizon-SWEEPICS, H2020-Fair-CHARM, CZI DVP,
 HAS-NAP3,OTKA-SNN no. 139455/ARRS to PH, National Institute of General Medical
 Sciences P41 GM135019 to BAC, AEC, and KWE, R35 GM122547 to AEC, grant numbers
 2020-225720, 2018-183451, and 2021-238657 to BAC from the Chan Zuckerberg Initiative DAF,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 an advised fund of Silicon Valley Community Foundation. The funders had no role in study
 design, data collection and analysis, decision to publish, or preparation of the manuscript.

 References

 1. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image

 analysis. Nat. Methods 9 , 671–675 (2012).

 2. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat.

 Methods 9 , 676–682 (2012).

 3. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC

 Bioinformatics 22 , 433 (2021).

 4. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible

 research. Nat. Methods 9 , 690–696 (2012).

 5. Napari: A Fast, Interactive, Multi-Dimensional Image Viewer for Python . (Github).

 doi: 10.5281/zenodo.3555620 .

 6. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16 ,

 1226–1232 (2019).

 7. Stirling, D. R., Carpenter, A. E. & Cimini, B. A. CellProfiler Analyst 3.0: accessible data

 exploration and machine learning for image analysis. Bioinformatics 37 , 3992–3994 (2021).

 8. Piccinini, F. et al. Advanced Cell Classifier: User-Friendly Machine-Learning-Based

 Software for Discovering Phenotypes in High-Content Imaging Data. Cell Syst 4 ,

 651–655.e5 (2017).

 9. Gogoberidze, N. & Cimini, B. A. Defining the boundaries: challenges and advances in

 identifying cells in microscopy images. Curr. Opin. Biotechnol. 85 , 103055 (2024).

 10. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19 ,

 1634–1641 (2022).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

http://paperpile.com/b/0PrD9N/ocRt
http://paperpile.com/b/0PrD9N/ocRt
http://paperpile.com/b/0PrD9N/tW6y
http://paperpile.com/b/0PrD9N/tW6y
http://paperpile.com/b/0PrD9N/RFE7
http://paperpile.com/b/0PrD9N/RFE7
http://paperpile.com/b/0PrD9N/u9eQ
http://paperpile.com/b/0PrD9N/u9eQ
http://paperpile.com/b/0PrD9N/A2NO
http://paperpile.com/b/0PrD9N/A2NO
http://dx.doi.org/10.5281/zenodo.3555620
http://paperpile.com/b/0PrD9N/A2NO
http://paperpile.com/b/0PrD9N/q9sz
http://paperpile.com/b/0PrD9N/q9sz
http://paperpile.com/b/0PrD9N/Wk8q
http://paperpile.com/b/0PrD9N/Wk8q
http://paperpile.com/b/0PrD9N/a9CV
http://paperpile.com/b/0PrD9N/a9CV
http://paperpile.com/b/0PrD9N/a9CV
http://paperpile.com/b/0PrD9N/0d6T
http://paperpile.com/b/0PrD9N/0d6T
http://paperpile.com/b/0PrD9N/Cjur
http://paperpile.com/b/0PrD9N/Cjur
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 11. Fuster-Barceló, C. et al. Bridging the Gap: Integrating Cutting-edge Techniques into

 Biological Imaging with deepImageJ. bioRxiv 2024.01.12.575015 (2024)

 doi: 10.1101/2024.01.12.575015 .

 12. Weisbart, E. et al. CellProfiler plugins - An easy image analysis platform integration for

 containers and Python tools. J. Microsc. (2023) doi: 10.1111/jmi.13223 .

 13. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci.

 Rep. 7 , 1–7 (2017).

 14. Ouyang, W. et al. BioImage Model Zoo: A Community-Driven Resource for Accessible

 Deep Learning in BioImage Analysis. bioRxiv 2022.06.07.495102 (2022)

 doi: 10.1101/2022.06.07.495102 .

 15. Ouyang, W., Eliceiri, K. W. & Cimini, B. A. Moving beyond the desktop: prospects for

 practical bioimage analysis via the web. Front Bioinform 3 , 1233748 (2023).

 16. Sivagurunathan, S. et al. Bridging Imaging Users to Imaging Analysis - A community

 survey. J. Microsc. (2023) doi: 10.1111/jmi.13229 .

 17. Lacoste, J. et al. Pervasive mislocalization of pathogenic coding variants underlying human

 disorders. bioRxiv (2023) doi: 10.1101/2023.09.05.556368 .

 18. Wu, X. et al. A Survey of Human-in-the-loop for Machine Learning. (2021)

 doi: 10.1016/j.future.2022.05.014 .

 19. A survey on active learning and human-in-the-loop deep learning for medical image

 analysis. Med. Image Anal. 71 , 102062 (2021).

 20. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document

 recognition. Proc. IEEE 86 , 2278–2324 (1998).

 21. Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical

 structures: significantly improved efficiency and reliability. Neuroimage 31 , 1116–1128

 (2006).

 22. Achanta, R. et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

http://paperpile.com/b/0PrD9N/cuOL
http://paperpile.com/b/0PrD9N/cuOL
http://paperpile.com/b/0PrD9N/cuOL
http://dx.doi.org/10.1101/2024.01.12.575015
http://paperpile.com/b/0PrD9N/cuOL
http://paperpile.com/b/0PrD9N/2Jw9
http://paperpile.com/b/0PrD9N/2Jw9
http://dx.doi.org/10.1111/jmi.13223
http://paperpile.com/b/0PrD9N/2Jw9
http://paperpile.com/b/0PrD9N/Jp3C
http://paperpile.com/b/0PrD9N/Jp3C
http://paperpile.com/b/0PrD9N/4uts
http://paperpile.com/b/0PrD9N/4uts
http://paperpile.com/b/0PrD9N/4uts
http://dx.doi.org/10.1101/2022.06.07.495102
http://paperpile.com/b/0PrD9N/4uts
http://paperpile.com/b/0PrD9N/mr9U
http://paperpile.com/b/0PrD9N/mr9U
http://paperpile.com/b/0PrD9N/99NF
http://paperpile.com/b/0PrD9N/99NF
http://dx.doi.org/10.1111/jmi.13229
http://paperpile.com/b/0PrD9N/99NF
http://paperpile.com/b/0PrD9N/Uxlo
http://paperpile.com/b/0PrD9N/Uxlo
http://dx.doi.org/10.1101/2023.09.05.556368
http://paperpile.com/b/0PrD9N/Uxlo
http://paperpile.com/b/0PrD9N/4aCe
http://paperpile.com/b/0PrD9N/4aCe
http://dx.doi.org/10.1016/j.future.2022.05.014
http://paperpile.com/b/0PrD9N/4aCe
http://paperpile.com/b/0PrD9N/SEdD
http://paperpile.com/b/0PrD9N/SEdD
http://paperpile.com/b/0PrD9N/Gbo7
http://paperpile.com/b/0PrD9N/Gbo7
http://paperpile.com/b/0PrD9N/wek0
http://paperpile.com/b/0PrD9N/wek0
http://paperpile.com/b/0PrD9N/wek0
http://paperpile.com/b/0PrD9N/vuFd
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

 Trans. Pattern Anal. Mach. Intell. 34 , 2274–2282 (2012).

 23. Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

 Preprint at https://www.tensorflow.org/ (2015).

 24. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

 arXiv [cs.LG] (2019).

 25. Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. (2014).

 26. Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for

 3D object detection and segmentation in microscopy. in 2020 IEEE Winter Conference on

 Applications of Computer Vision (WACV) (IEEE, 2020).

 doi: 10.1109/wacv45572.2020.9093435 .

 27. Caicedo, J. C. et al. Nucleus segmentation across imaging experiments: the 2018 Data

 Science Bowl. Nat. Methods 16 , 1247–1253 (2019).

 28. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical

 Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention –

 MICCAI 2015 234–241 (Springer International Publishing, 2015).

 29. Sirinukunwattana, K. et al. Gland segmentation in colon histology images: The glas

 challenge contest. Med. Image Anal. 35 , 489–502 (2017).

 30. Hypha: A Serverless Application Framework for Large-Scale Data Management and AI

 Model Serving . (Github).

 31. Smilkov, D. et al. TensorFlow.Js: Machine learning for the web and beyond. SYSML

 abs/1901.05350 , (2019).

 32. Morpheus. https://software.broadinstitute.org/morpheus/ .

 33. Howard, A. G. et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

 Applications. (2017).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 10, 2024. ; https://doi.org/10.1101/2024.06.03.597232doi: bioRxiv preprint

http://paperpile.com/b/0PrD9N/vuFd
http://paperpile.com/b/0PrD9N/KjW2
http://paperpile.com/b/0PrD9N/KjW2
https://www.tensorflow.org/
http://paperpile.com/b/0PrD9N/KjW2
http://paperpile.com/b/0PrD9N/Lg1Y
http://paperpile.com/b/0PrD9N/Lg1Y
http://paperpile.com/b/0PrD9N/rILu
http://paperpile.com/b/0PrD9N/Kr9G
http://paperpile.com/b/0PrD9N/Kr9G
http://paperpile.com/b/0PrD9N/Kr9G
http://paperpile.com/b/0PrD9N/Kr9G
http://dx.doi.org/10.1109/wacv45572.2020.9093435
http://paperpile.com/b/0PrD9N/Kr9G
http://paperpile.com/b/0PrD9N/G4b6
http://paperpile.com/b/0PrD9N/G4b6
http://paperpile.com/b/0PrD9N/meQz
http://paperpile.com/b/0PrD9N/meQz
http://paperpile.com/b/0PrD9N/meQz
http://paperpile.com/b/0PrD9N/764s
http://paperpile.com/b/0PrD9N/764s
http://paperpile.com/b/0PrD9N/uCoc
http://paperpile.com/b/0PrD9N/uCoc
http://paperpile.com/b/0PrD9N/rw3u
http://paperpile.com/b/0PrD9N/rw3u
http://paperpile.com/b/0PrD9N/JVbt
https://software.broadinstitute.org/morpheus/
http://paperpile.com/b/0PrD9N/JVbt
http://paperpile.com/b/0PrD9N/iYQc
http://paperpile.com/b/0PrD9N/iYQc
https://doi.org/10.1101/2024.06.03.597232
http://creativecommons.org/licenses/by/4.0/

