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‭Abstract‬
‭Deep learning has greatly accelerated research in biological image analysis yet it often requires‬
‭programming skills and specialized tool installation. Here we present Piximi, a modern,‬
‭no-programming image analysis tool leveraging deep learning. Implemented as a web‬
‭application at Piximi.app, Piximi requires no installation and can be accessed by any modern‬
‭web browser. Its client-only architecture preserves the security of researcher data by running all‬
‭computation locally. Piximi offers four core modules: a deep learning classifier, an image‬
‭annotator, measurement modules, and pre-trained deep learning segmentation modules. Piximi‬
‭is interoperable with existing tools and workflows by supporting import and export of common‬
‭data and model formats. The intuitive researcher interface and easy access to Piximi allows‬
‭biological researchers to obtain insights into images within just a few minutes. Piximi aims to‬
‭bring deep learning-powered image analysis to a broader community by eliminating barriers to‬
‭entry.‬
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‭Introduction‬
‭Image analysis has played a crucial role throughout the history of biological and medical‬

‭research. Within the last few decades, the amount and variety of image data generated and‬
‭analyzed has increased dramatically, requiring powerful tools to automate tasks such as cell‬
‭segmentation or classification. These tools are essential in the automated analysis of image‬
‭data  but also allow researchers to focus on more sophisticated tasks than manually annotating‬
‭or classifying cells. Currently, the bioimaging community relies heavily on popular Graphical‬
‭User Interface (GUI)-based open-source applications relying on classical image processing and‬
‭machine learning, such as general-purpose tools like ImageJ‬‭1‬ ‭/ Fiji‬‭2‬‭, CellProfiler‬‭3‬‭, Icy‬‭4‬‭, and‬
‭napari‬‭5‬ ‭and more specialized tools such as ilastik‬‭6‬‭, CellProfiler Analyst (CPA)‬‭7‬ ‭and Advanced‬
‭Cell Classifier (ACC)‬‭8‬‭. Despite the wide adoption of various tools supporting image analysis in‬
‭biomedical research, these programs all come with their limitations. Most of them require the‬
‭installation of a local program or setting up a controlled computing environment which not only‬
‭adds an additional hurdle for many researchers but also often limits the available platforms.‬
‭Additionally, many tools are complicated to use, lack sufficient researcher documentation, have‬
‭slightly outdated researcher interfaces, or are designed for specific use cases only.‬

‭The last decade of image analysis has seen a wide adoption of deep learning-based tools‬
‭and algorithms, further accelerating bioimage analysis‬‭9‬‭. Cellpose‬‭10‬ ‭is a highly popular‬
‭stand-alone deep learning segmentation tool for bioimage analysis and offers powerful‬
‭pre-trained cell segmentation models, and significant efforts have been made to deploy deep‬
‭learning tools through napari; Fiji (by the DeepImageJ project‬‭11‬‭); CellProfiler‬‭12‬‭; and in ilastik,‬
‭QuPath‬‭13‬ ‭and other tools via the Bioimage Model Zoo‬‭14‬‭. However, the fact remains that using‬
‭most deep learning workflows requires comfort in writing code and running it through a‬
‭command line interface or in complex deployment or programming environments which can‬
‭require additional steps to troubleshoot dependency installation‬‭15‬‭. The required programming‬
‭skills limit the researcher base and thus the potential applications of deep learning in bioimage‬
‭analysis‬‭16‬‭. These practical limitations generally limit modern applications of deep learning for‬
‭less-computationally-comfortable researchers in many fields.‬

‭Here we present Piximi, an open-source, no-code, and modern web-based deep learning‬
‭application. Our goal was to offer a complete deep learning bioimage analysis workflow in a‬
‭single, easy-to-use tool.‬

‭In this initial version, Piximi offers four core functionalities:‬

‭1) Classifier: allowing researchers to easily label images or objects within images, such as‬
‭cells, and train a classifier to recognize them.‬

‭2) Annotator: providing multiple flexible tools for creating object bounding boxes and‬
‭segmentation outlines to allow researchers to annotate images directly in Piximi for use in‬
‭downstream tasks.‬

‭3) Segmenter: allowing researchers to find object within images using pre-trained instance‬
‭segmentation and object detection networks‬
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‭4) Measurements: capturing various properties of images or entities identified therein, such as‬
‭size, shape, and intensity. Measurements can then be plotted to examine distributions or‬
‭between-group differences.‬

‭Piximi is implemented as a freely available web application (https://www.piximi.app/). Thus,‬
‭unlike many other tools in the field of image analysis, it is available on any operating system‬
‭(PC, MAC, Linux, and mobile) through any modern browser and without any installation‬
‭required. In addition to its ease of access, we aimed to create an easy-to-use, no-code‬
‭application that democratizes science by allowing everyone to leverage deep learning on their‬
‭projects without any programming skills.‬

‭Piximi offers multiple tools in a single application, which allows researchers to complete full‬
‭workflows within a single tool rather than switching between different programs for individual‬
‭sub-tasks. It relies on commonly used data formats such as the COCO object detection format,‬
‭to guarantee interoperability with existing tools and frameworks. Generally all computation is‬
‭done on the local device and no image data is sent to a server (client-only); certain models will‬
‭run data on a remote server but only with researcher permission. This privacy-preserving‬
‭implementation is a key feature allowing use on sensitive or confidential data such as medical‬
‭images, or in low-resource settings where internet access is occasionally available but not‬
‭consistently reliable.‬

‭Piximi can also be used across a variety of image domains and was intentionally designed to‬
‭support a large variety of use cases. Early adopters have explored this tool for various imaging‬
‭tasks including cell type classification, annotation of radiology images, and application of‬
‭segmentation models on histology images. By enabling deep-learning-based image analysis for‬
‭a range of researchers who were previously excluded due to a lack of computational skills,‬
‭allowing them to turn images into answers for a variety of scientific questions.‬

‭Results‬

‭Classifier‬
‭The classifier module offers an intuitive and easy way of classifying large numbers of images.‬
‭Unlike related tools such as CPA or ACC, Piximi does not require a separate feature extraction‬
‭step but instead works on the raw images. Researchers can import images into Piximi from a‬
‭local directory, and label a subset of them (that is, point out to the software which images‬
‭correspond to which categories of interest). These labels are used as ground truth in the training‬
‭process, so that the deep-learning classifier learns to predict labels for unknown images.‬
‭Hyperparameters of the model can be adjusted, such as loss function, learning rate, number of‬
‭epochs, and the train and validation split among the labeled images can be defined.‬
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‭Simple classification example project‬
‭To demonstrate the ease of use of classifying images using Piximi we created an example‬
‭project based on a set of HeLa cell images showing the differential localization of the healthy‬
‭versus disease-associated variant of the PLP1 protein‬‭17‬‭.‬

‭To classify unlabeled images as either reference (healthy) or variant (disease-associated), we‬
‭used Piximi to train a classifier. Using a training set of only 50 labeled cell images each, the‬
‭classifier correctly identifies the majority of images, reaching an F1 score of 0.81 after just 50‬
‭epochs of training. The training process on Piximi in the browser finishes in only a few minutes‬
‭on a typical laptop.‬

‭Figure 1: Evaluation results on the PLP1 localization classification example project, provided‬
‭within Piximi (Open -> Project -> Example Project -> Human PLP1 localization).Two channels‬
‭were imaged during the experiment, channel 0 shows the targeted PLP1 protein (green), and‬
‭DNA (blue) is imaged in channel 1. The dataset contains 129 images labeled as either wild-type‬
‭or mutant. a) Shows the training history and b) shows useful evaluation metrics. c) and d) show‬
‭two examples of the prediction result for reference and variant respectively.‬
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‭Continuous training/human-in-the loop‬
‭Piximi supports continuous training of models. This enables training models more efficiently by‬
‭applying a “human-in-the-loop” approach: after annotating a small subset of images, a‬
‭researcher can specify the classifier and train it, then show the predictions of the network.‬
‭Classification errors can be corrected by reassigning the respective images to the correct label.‬
‭Restarting the training procedure resumes training where it previously stopped, using the‬
‭now-expanded training set.‬

‭This iterative process can be repeated until the evaluation results are satisfactory. This‬
‭approach typically results in better overall results while requiring considerably less manual‬
‭annotation of images‬‭10,18,19‬‭.‬

‭Figure 2: Example workflow for human-in-the-loop training using MNIST‬‭20‬‭. a) Abstraction of‬
‭steps in a human-in-the-loop learning procedure. b) Example MNIST digits predicted as “3” after‬
‭a few iterations. The misclassified digits can be corrected by assigning them to the right label‬
‭(“8” and “7”). c) Example of correctly predicted digits. Images with easy patterns such as “1”s‬
‭are mostly correctly identified after only a small number of manually labeled examples. d)‬
‭Researchers can inspect the confusion matrix available in Piximi to see which classes are‬
‭misclassified the most, to focus their efforts where most needed.‬

‭Annotator‬
‭A common step in most bioimage analysis workflows is the boundary annotation of objects in‬
‭images, such as cells. Recent years have seen a surge in useful annotation tools such as‬
‭QuPath‬‭13‬‭,‬‭ITK-SNAP‬‭21‬‭, and various napari plugins.‬
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‭Object annotations are especially important for follow-up deep-learning tasks such as‬
‭segmentation or cell-type classification which first require the identification of individual cells or‬
‭nuclei.‬

‭We implemented an annotator as part of Piximi which follows the designed principles outlined in‬
‭the introduction. Without any installation steps, Piximi offers a selection of tools to annotate‬
‭objects of interest. Simple annotation tools such as‬‭rectangular, elliptical, polygonal tools allow‬
‭the user to manually draw simple geometric shapes around the objects of interest, while more‬
‭sophisticated tools automatically mark the region of interest.‬‭The quick-selection tools use the‬
‭SLIC algorithm‬‭22‬ ‭to calculate so-called superpixels in the images, which typically encompass a‬
‭single object. Similarly, the “Color tool” uses a flood fill algorithm to directly identify objects‬
‭based on researcher-selected thresholds. This tool is particularly useful for objects visually‬
‭identified by color intensities, such as stained compartments of cells or hyper-intense areas‬
‭within the image. For grayscale images in particular, it might often be enough to identify objects‬
‭using a simple threshold. For such cases, the Piximi annotator offers a threshold tool that‬
‭annotates regions below the specified threshold within the bounding box. Annotation can easily‬
‭be corrected by manually adding or subtracting regions using any available tool.‬

‭The annotator module also serves as an image viewer for inspecting images more closely.‬
‭Piximi supports both multichannel as well as 3D images. Researchers can slide through the‬
‭z-dimension of the images and individually annotate each slice. Researchers can select which‬
‭channels to show or hide and assign colors to specific channels.‬

‭In keeping with the core design principle of interoperability, annotations in Piximi can easily be‬
‭exported and used in subsequent machine learning pipelines, for example to train deep learning‬
‭models using common frameworks such as TensorFlow‬‭23‬ ‭or PyTorch‬‭24‬‭. Available commonly‬
‭used data formats include‬‭labeled instance masks,‬‭binary instance masks, binary semantic‬
‭masks, and COCO-formatted‬‭25‬ ‭annotation data.‬

‭Figure 3: Use of the Piximi annotator on brightfield (left), fluorescence (center) and MRI (right)‬
‭data.‬
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‭Segmenter‬
‭Segmentation is another common task in bioimage analysis. Many downstream analysis tasks‬
‭including cell type prediction or feature extraction require the segmentation of individual cells‬
‭within the tissue or cell population. Options include well-known segmentation algorithms such as‬
‭distance-based watershed, complex segmentation tools such as CellProfiler‬‭3‬‭, and many deep‬
‭learning-based segmentation algorithms including Cellpose‬‭10‬ ‭or StarDist‬‭8,26‬‭. Deep learning‬
‭algorithms regularly outperform classic image analysis pipelines‬‭27‬‭. However, deep learning‬
‭pipelines are often complex to set up and require the installation of various dependent‬
‭packages.‬

‭The segmentation module within Piximi offers a selection of pre-trained segmentation models‬
‭that allow researchers to quickly identify nuclei or cells. A pre-trained model is selected from the‬
‭available model zoo and inference is applied to the images opened in Piximi. The web-based‬
‭implementation and easy-to-use interface allow the obtaining of segmentation results of cells‬
‭within just a few minutes. The ease of use of these models in Piximi is especially notable for‬
‭small datasets where setting up a custom pipeline would be infeasible or overly onerous.‬

‭Currently, the annotator offers five pre-trained segmentation models. There are two segmenters‬
‭which work on hematoxylin and eosin (H&E) stained images: StarDistVHE to identify nuclei in‬
‭hematoxylin and eosin (H&E) stained images, as well as a compact UNet‬‭28‬ ‭which segments‬
‭intestinal glands trained on the Gland Segmentation in Colon Histology Images Challenge‬
‭Contest (GlaS)‬‭29‬‭. To showcase non-biological applications as well as the ability to use‬
‭multi-class object detectors, we also include COCO-ssd, which identifies objects in "natural‬
‭images" (or photographs) of 80 different classes (such as humans and kites) using the COCO‬
‭format. We also support two segmenters for fluorescence microscopy; StarDist, and Cellpose.‬
‭Cellpose is currently unique in that it runs on the AI4Life project’s BioEngine‬‭30‬ ‭server while‬
‭StarDist, like other Piximi models, runs client-only in the user's own browser without data‬
‭leaving their machine. An alert is shown when selecting Cellpose which warns users that‬
‭images will leave their machine. While Piximi will remain a primarily client-only program,‬
‭supporting an optional remote server for certain specific models allows Piximi to run highly‬
‭memory-intensive models or models that contain elements which are cumbersome to port to‬
‭Tensorflow.Js‬‭31‬‭,such as models containing custom postprocessing Python libraries.‬

‭Segmentation results are accessible as Piximi object annotations, allowing researchers to edit‬
‭and/or export segmentation masks as can be done with manually created annotations. While‬
‭Piximi does support multiclass object finding (in which a researcher could simultaneously‬
‭separately identify different object classes such as mitotic cells and non-mitotic cells), the object‬
‭annotations are also available in the classifier tool as well, allowing a researcher to run an initial‬
‭segmentation model that grabs all objects (such as cells) and then separate them into classes‬
‭(mitotic and non-mitotic).‬
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‭Figure 4: Segmentation results on a test set image from the Gland Segmentation in Colon‬
‭Histology Images Challenge Contest. Top: results of the Gland segmentation model. Bottom:‬
‭results of the StarDistVHE nuclear detection model. Left: unedited segmentation results. Right:‬
‭missing segmentations can be easily added using Piximi's quick-selection tool.‬

‭Measurements‬

‭To offer researchers a comprehensive end-to-end experience in understanding the experimental‬
‭results within a single application, Piximi features a measurement module that provides insight‬
‭into project images and annotation objects by quantifying key information and attributes. Users‬
‭perform measurements by first selecting a group of images or objects to be measured, referred‬
‭to as a “split”. Currently users can specify splits by first selecting the object kind they’re‬
‭measuring (such as "image", "cells" or "glands"), then they further narrow the selection by‬
‭specifying the category the object or images belong to, and/or the training partition. For‬
‭instance, a split may be all of the “cell membrane” objects categorized as “LargeDiffuse”, or all‬
‭of the imported images used for validation in a model. The measurements available are split into‬
‭two groups, image level measurements and object level measurements. The image level‬
‭measurements include measurements of the intensity of the image (total, median, standard‬
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‭deviation, etc.) and the object level measurements include measurements of object geometry‬
‭(area, perimeter, sphericity, etc.). See the Methods for the full list of measurements and their‬
‭implementations.‬

‭Figure 5: In-app web measurement functionality in Piximi. Image and object measurements can‬
‭be made and exported; objects or images which have been assigned to categories will show the‬
‭average, standard deviation, and median value within each category.‬

‭Selecting the splits and measurements will populate the table with the total, median, and‬
‭standard deviation statistics for the measurements for each split. Users can sort and filter the‬
‭rows of the table using the functions provided in the column headers. Users can create multiple‬
‭tables at a time and easily switch between them and collapse the ones they aren’t working in.‬

‭Following the design principle of interoperability, measurements can be exported to a CSV file to‬
‭use for further downstream analysis. Exported measurements can easily be used in other data‬
‭exploration tools like Morpheus‬‭32‬ ‭or CellProfiler Analyst‬‭7‬‭. The CSV file contains the per‬
‭image/object measurements.‬

‭In addition to the numerical table, users also have the options to visualize their measurements‬
‭using a selection of plots – histogram, swarm, and scatter – and apply color and size mapping.‬
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‭Users can specify the parameters for the plots in the left section of the plot tab. Each plot has a‬
‭associated group of parameters, some which vary depending on the plot: the parameters for‬
‭histogram (Figure 6A) are the x-axis measurement and the number of bins, the scatterplot‬
‭(Figure 6B) takes x- and y-axis measurements, as well as an option to map the mark size to a‬
‭measurement and color to a split, and the swarm plot (Figure 6C) takes a y-axis measurement,‬
‭swarm group which is associated with a split (category or partition), mark size, and an option to‬
‭toggle a measurement statistics overlay which displays the median, std, and upper and lower‬
‭quartiles of a group (Figure 6D).‬

‭Figure 6: Snapshot of the histogram (A), scatterplot(B), swarm plot(C), and the swarm plot with‬
‭a statistics overlay(D) as well as the associated parameters for each of the plots.‬

‭Users can select from a large number of color themes to apply to the plots, and each plot will‬
‭have its own associated theme. It is also possible to create multiple plots at the same time.‬
‭Each new plot opens in a new tab within the table, and each tab can be renamed to allow for‬
‭greater clarity when working with multiple plots. Plots which are no longer needed can be easily‬
‭deleted using the delete button in the tab. Users will also have the ability to save the plots then‬
‭generate using Piximi.‬
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‭Data and model interoperability‬
‭Piximi was developed with interoperability with other tools in mind. Image labels, predictions,‬
‭and measurements can easily be exported and used for further downstream analysis using‬
‭various tools.‬

‭The architecture graph and weights of any models trained in Piximi can also be downloaded and‬
‭imported into other tools and workflows. This enables training an initial classifier on Piximi using‬
‭the human-in-the-loop approach to limit manual annotation of images, then exporting the model‬
‭to run inference on large datasets on a cluster or in the cloud (which are not currently suitable‬
‭for processing by Piximi). Conversely, models developed and trained in a Jupyter Notebook or‬
‭other Python environment can also be imported into Piximi. For instance, we trained a UNet for‬
‭intestinal gland segmentation in H&E stained images of colorectal tissues. This trained model‬
‭was then imported into Piximi, enabling the segmentation workflow to be run directly in the‬
‭Piximi browser application, circumventing the need for a complex Python environment or a‬
‭computing server. This enhances model accessibility for non-computational researchers as well‬
‭as substantially increases reproducibility.‬

‭Discussion‬

‭Here we described Piximi, a modern web application that offers an easy-to-use, intuitive‬
‭non-code interface to perform common image analysis tasks. In this first version, Piximi offers‬
‭four core modules: a deep learning classifier, an image annotator, pre-trained segmentation‬
‭models, and measurements. These modules are not implemented as standalone tools but are‬
‭interoperable within Piximi. All analysis results and data, including classification prediction,‬
‭labels, measurements, and annotation or segmentation masks can easily be exported to‬
‭common data formats, yielding a reproducible record of analysis and allowing results to be used‬
‭with other tools and workflows. This interoperability with the broader image analysis community‬
‭is a key feature of Piximi.‬

‭Piximi is implemented as a client-only web application without any server component. Unless‬
‭the user chooses a pretrained model only supported remotely, no images or data are uploaded‬
‭to a server and all computation is done locally. In addition, Piximi can be served via a Docker‬
‭container which enables institutional researchers to deploy Piximi within their local network‬
‭easily.‬

‭The implementation of Piximi as a web application also eliminates the need for an installation‬
‭process. Additionally, Piximi can be accessed from any modern web browser and, beyond‬
‭accessing example data sets or remote server tools like Cellpose, continuous internet‬
‭connection is not needed following initial loading.‬

‭However, implementing Piximi as a web application creates certain limitations. Most notably the‬
‭performance of training deep learning models in the browser is limited compared to non-web‬
‭GPU workflows. Large datasets or large images might be slower to handle compared to‬
‭comparable traditional applications. In general, web applications like Piximi also currently lack‬
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‭access to the local file system and direct interaction with image analysis libraries written in Java‬
‭or Python. Instead, most image analysis features in Piximi are re-implementations in JavaScript.‬
‭Nevertheless, major developments in web applications such as File System Access API or‬
‭WebAssembly (WASM) will benefit applications like Piximi.‬

‭Future work on Piximi will focus on both expanding the feature set and improving the‬
‭performance and researcher experience of Piximi. Performance improvements will include‬
‭support for large images and larger overall datasets. In addition to pre-trained segmentation‬
‭models, future versions of Piximi will also support trainable segmentation models. We also aim‬
‭to include more efficient human-in-the-loop training by providing a researcher interface that‬
‭guides through this process—by identifying hard-to-classify images and guiding the researchers‬
‭through the process, the training process will converge faster and likely produce better results.‬

‭In conclusion, we presented a new, modern web application for image analysis. We showed‬
‭particular use cases of Piximi for quickly and efficiently running cell type classification, nuclear‬
‭segmentation, and tissue segmentation using the included deep learning tools.‬

‭Although initially created to bring bioimage analysis tools to a broader audience, Piximi can be‬
‭used for any other research field as well. Its web-based implementation and intuitive no-code‬
‭researcher interface enable us to bring deep learning-based image analysis tools to researchers‬
‭who were previously excluded or faced major barriers in accessing such networks. We believe‬
‭Piximi's powerful features, ease of access, and ease of use help it fill a unique niche in the‬
‭image analysis ecosystem.‬

‭Online Methods‬

‭Implementation details‬
‭Piximi’s source code is publicly available on GitHub and is provided under a BSD-style‬
‭open-source license.‬

‭Piximi is implemented using state-of-the-art web development tools. The application is written in‬
‭TypeScript using the React library for the UI. Libraries such as React allow us to develop‬
‭custom components which streamlines development as well as providing performance benefits‬
‭which stem from the ability to monitor and cut down on re-renders. In order to accomplish the‬
‭goal of providing an intuitive user experience with a low barrier to entry, styling is implemented‬
‭via the MaterialUI library, which adheres to the widely used open-source Material Design system‬
‭developed by Google.‬

‭Application state and data are managed using the Redux Library, which allows for the creation‬
‭of a “store” which holds the data and provides a simple api for Create, Read, Update, and‬
‭Delete (CRUD) functionality. Since this store is accessed by many different components used in‬
‭the application, Redux provides methods and guidelines for ensuring only deliberate mutation of‬
‭the store. The otherwise immutability of the store guarantees that data and state stay consistent‬
‭and in-sync between app re-renders and the various components.  Application data (images,‬
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‭annotations, categories, and images/objects (collectively referred to as "kinds")) are kept in the‬
‭store within modified “entity adapters”. The entity adapter is provided by Redux as a way to‬
‭quickly access data by storing it in id-based lookup tables along with providing a list of the ids‬
‭within each adapter. We modified the entity adapters to allow for updating the data in a‬
‭non-permanent way, storing only the changes made until the user decides to save those‬
‭changes or revert them.‬

‭Using TensorFlow.js‬‭31‬‭, we are able to store arbitrary numerical arrays as tensors. Therefore, in‬
‭addition to the training and inference of models, we are able to store all image data in much‬
‭more compute-efficient data structures. This provides a distinct advantage over using‬
‭JavaScript's primitive arrays as it allows us to carry out image processing algorithms with‬
‭gpu-bound, vectorized operations at the whole-array level, rather than needing to sequentially‬
‭iterate over each individual element in a multidimensional array and perform cpu-bound‬
‭arithmetic and logical operations on them.‬

‭The use of TensorFlow.js also allows for the selection of multiple compute backends. Currently,‬
‭for the browser, this includes cpu-bound operations via the "cpu" (vanilla javascript) and "wasm"‬
‭(XNNPACK library compiled to WASM) backends and a "gpu" backend with gpu-bound‬
‭operations which are implemented in OpenGL Shading Language (GLSL) and routed through‬
‭WebGL. There is an in-progress "webgpu" backend for gpu-bound operations which utilizes the‬
‭more modern and performant WebGPU API available in most modern browsers.‬

‭Since javascript is single-threaded, computationally intensive tasks run the risk of freezing up‬
‭the UI, preventing users from further interaction with the application until the task is complete.‬
‭We therefore employ Web Workers in various points in the code, which allows Piximi to run‬
‭scripts in background threads without affecting the main UI. Data is sent back and forth between‬
‭the main thread and the worker using a system of messages, allowing Piximi to provide useful‬
‭information about the running process during calculation. An added benefit of using Web‬
‭Workers is the ability to spawn a process in Piximi and switch to another tab in the browser‬
‭while the computation takes place, increasing the efficiency of a user’s workflow.‬

‭Measurement implementation‬

‭Measurements are calculated using a mix of tensorflow and custom functions, and are‬
‭computed within web workers to keep the main thread unburdened. As mentioned previously,‬
‭measurements are separated into two groups, image level measurements and object level.‬

‭The image level encapsulates several measurements for the image intensity and are calculated‬
‭for each channel of the images. These measurements include: total, mean, median, standard‬
‭deviation, mean absolute deviation (MAD),‬‭lower quartile, and upper quartile of the pixel‬
‭intensities. The MAD is computed as‬

‭,‬‭𝑀𝐴𝐷‬‭ ‬ = ‭ ‬‭𝑚𝑒𝑑𝑖𝑎𝑛‬(‭ ‬‭|‬‭ ‬‭𝑥‬
‭𝑖‬
‭ ‬ − ‭ ‬‭𝑚𝑒𝑑𝑖𝑎𝑛‬(‭𝑥‬)‭ ‬‭|‬‭ ‬)

‭and the lower(upper) quartile is defined as the intensity value of the pixel for which 25%(75%) of‬
‭the pixels in the object have lower values.‬
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‭Unlike image level measurements, which can be performed on both images and objects, object‬
‭level measurements require that the object have a mask generated by Piximi, and thus cannot‬
‭be performed on pure images uploaded to Piximi. The object measurements currently‬
‭implemented are used to measure geometrical features of the objects:‬

‭-‬ ‭Area:  sum of the number of pixels in the object‬
‭-‬ ‭Perimeter: total number of pixels around the boundary of the object‬
‭-‬ ‭Bounding Box Area: total number of pixels in the bounding box‬
‭-‬ ‭Extent: the proportion of the pixels in the bounding box that are also in the region,‬

‭computed as‬

‭𝐸𝑥𝑡𝑒𝑛𝑡‬‭ ‬ = ‭ ‬‭𝐴‬
‭𝑜𝑏𝑗𝑒𝑐𝑡‬

‭/‬‭𝐴‬
‭𝐵𝐵𝑂𝑋‬

‭-‬ ‭Equivalent Diameter: the diameter of a perfect circle with an area equal to the area of‬
‭the object‬

‭𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟‬‭ ‬ = ‭ ‬‭2‬ ‭𝐴‬
‭𝑜𝑏𝑗𝑒𝑐𝑡‬

‭/‬π

‭-‬ ‭Diameter of equal perimeter (PED): the diameter of a circle whose perimeter equal to‬
‭that of the object‬

‭𝑃𝐸𝐷‬‭ ‬ = ‭ ‬‭𝑃‬
‭𝑜𝑏𝑗𝑒𝑐𝑡‬

‭/‬π

‭-‬ ‭Sphericity: measures the ratio of the perimeter of the equivalent circle,‬ ‭, to the real‬‭𝑃‬
‭𝐸𝐶𝑃𝐶‬

‭ ‬

‭perimeter of the object,‬ ‭. The result ranges‬‭from 0 (irregularly shaped) to 1‬‭𝑃‬
‭𝑟𝑒𝑎𝑙‬

‭(spherical).‬

‭𝑆‬‭ ‬ = ‭ ‬‭𝑃‬
‭𝐸𝑄𝑃𝐶‬

‭/‬‭𝑃‬
‭𝑟𝑒𝑎𝑙‬

‭ ‬ = ‭ ‬‭2‬ π‭𝐴‬
‭𝑟𝑒𝑎𝑙‬

‭/‬‭𝑃‬
‭𝑟𝑒𝑎𝑙‬

‭-‬ ‭Compactness: the degree to which the object is compact, with circular shapes being‬
‭most compact and irregular objects will have a value greater than 1, increasing in‬
‭irregularity. Measured as the inverse of sphericity.‬

‭𝐶‬‭ ‬ = ‭ ‬‭1/‬‭𝑆‬

‭All the measurements are stored per image/object within Piximi, and only need to be‬
‭recomputed if the underlying data changes.‬

‭Model Zoo‬
‭Piximi’s classifier offers two different classification model types: “SimpleCNN” is a simple‬
‭implementation of a fully convolutional network. Additionally, researchers can use a Mobilenet,‬‭33‬

‭a small and efficient deep-learning model for object classification. These networks were‬
‭specifically developed to achieve high classification accuracy while having significantly fewer‬
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‭parameters and lower inference latency than comparable models. Mobilenets are often used in‬
‭mobile applications and web services. Piximi uses a frozen pre-trained mobilenet and trains an‬
‭additional layer mapping from the last hidden layer to the specified output shape.‬

‭The first version uses the four pre-trained segmentation models mentioned above: COCO-SSD,‬
‭StarDistVHE, and a UNet model for identifying glands in tissue images.‬

‭Data Formats‬
‭Piximi supports common image files such as png, jpeg and Tiff. Tiff files can have an arbitrary‬
‭number of z-dimensions or channels. On importing the images, the researcher specifies the‬
‭number of channels for hyperstack images. Additionally, Piximi supports uncompressed DICOM‬
‭files as well.‬

‭Projects on Piximi, including labels and images, can be downloaded into a Zarr file to save‬
‭projects on local disk. Annotations and segmentation masks can be exported using common‬
‭formats including COCO formatted JSON or binary schematic masks.‬

‭Models are stored in one of two TensorFlow.js formats, Layers Models or Graph Models, in the‬
‭form of a json file containing the model description (layers, ops, inputs, outputs) and sharded‬
‭binary files containing model weights. Layers Models are fully trainable, whereas Graph Models‬
‭are optimized for inference only. Both formats can be converted to using the tfjs-converter CLI‬
‭tool utilizing one of several input formats, such as TensorFlow SavedModel, Keras HDF5 or‬
‭Keras SavedModel. Likewise the Layers Model format can be converted back into Keras HDF5‬
‭or Keras SavedModel formats. The tf2onnx tool also allows us to convert TensorFlow.js models‬
‭to an ONNX capable format. Likewise, although more complicated, ONNX may be utilized to‬
‭convert Torch (.pt/pth) formats to a suitable Keras format, and then ultimately to a TensorFlow.js‬
‭Graph model.‬
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