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Abstract10

Quality control (QC) is a crucial step to ensure the reliability and accuracy of the data obtained11

from RNA sequencing experiments, including spatially-resolved transcriptomics (SRT). Existing12

QC approaches for SRT that have been adopted from single-nucleus RNA sequencing (snRNA-13

seq) methods are confounded by spatial biology and are inappropriate for SRT data. In addition,14

no methods currently exist for identifying histological tissue artifacts unique to SRT. Here, we15

introduce SpotSweeper, spatially-aware QC methods for identifying local outliers and regional16

artifacts in SRT. SpotSweeper evaluates the quality of individual spots relative to their local17

neighborhood, thus minimizing bias due to biological heterogeneity, and uses multiscale methods18

to detect regional artifacts. Using SpotSweeper on publicly available data, we identified a19

consistent set of Visium barcodes/spots as systematically low quality and demonstrate that20

SpotSweeper accurately identifies two distinct types of regional artifacts, resulting in improved21

downstream clustering and marker gene detection for spatial domains.22
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1 Main24

Spatially-resolved transcriptomics (SRT) has revolutionized our ability to profile cells in their spatial con-25

text, providing unprecedented insights into human health and disease. This technology not only enables26

the exploration of cellular heterogeneity and interactions within defined tissue architectures, but it also27

catalyzes the advancement of computational tools designed for SRT data analysis [1–3]. Many computa-28

tional tools have been designed to improve or augment existing workflows designed for single-cell analysis,29

including spatially variable gene detection [4], spot-level cellular deconvolution [5], and spatially-aware30

clustering [6]. While the transition from single-cell data analysis to spatially-aware computational strate-31

gies has enhanced the resolution of biological inference by using spatial information, one critical aspect,32

namely quality control (QC), has been overlooked.33

For next generation sequencing technologies, QC is a process that helps identify and remove low34

quality observations which may negatively impact downstream analyses, such as clustering and differential35

expression tests, leading to spurious findings [7, 8]. Unlike single-cell/nucleus RNA-sequencing (sc/snRNA-36

seq), which capture mRNA transcripts from a cell body or nucleus, SRT profiles mRNA transcripts from a37

wide variety of biological domains (i.e., neuronal processes vs cell bodies) that display substantial variation38

in gene expression signatures [8]. However, current methods for detecting outliers or low quality observa-39

tions in SRT use methods developed for sc/snRNA-seq, such as fixed and data-driven global thresholds,40

which implicitly assume that all observations are derived from a homogeneous sample (i.e., exclusively cell41

bodies). We show here that these methods fail to account for biological heterogeneity present in SRT and42

result in unwanted biases at the stage of QC. For example, in human brain tissue, global QC methods43

naively flag more low quality observations from white matter compared to gray matter due to the natural44

molecular and cellular differences [8–11]. As spatial atlases increasingly grow in size [12], this motivates45

the need to develop robust, spatially-aware QC methods to ensure the integrity of downstream analyses46

using SRT data.47

Here, we introduce spatially-aware QC metrics and a computational pipeline to identify and discard48

low-quality observations and regional artifacts generated by sample processing errors in SRT data. We49

illustrate the utility of our methods on postmortem human brain tissue with expert manual annotations50

profiled on the 10x Genomics Visium Spatial Gene Expression platform [9, 10]. We first demonstrate51

that standard QC metrics are confounded with natural biological heterogeneity. Compared to widely used52

global QC methods, our spatially-aware QC approach is less susceptible to these biological confounds which53

enables the preservation of high-quality spots across diverse spatial domains, thus ensuring the integrity of54
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downstream analyses. Applying SpotSweeper to multiple publicly available datasets, we identified a set of55

Visium barcodes that display systematically low library size. Moreover, using multiscale approaches, we56

demonstrate that SpotSweeper is able to accurately identify two distinct classes of regional artifacts within57

the tissue, namely dryspots and hangnails, caused by incomplete coverage of permeabilization agents and58

tissue damage, respectively. These methods are implemented in the SpotSweeper R package within the59

Bioconductor framework, allowing for direct integration with workflows using established Bioconductor60

infrastructure for SRT data [13].61

2 Results62

2.1 Overview of SpotSweeper and the methodological framework63

The SpotSweeper framework introduces two spatially-aware QC approaches for SRT data that can identify64

(i) individual low quality spots and (ii) region-level artifacts in a tissue section across multiple spots. We65

utilize established QC metrics such as library size or total unique molecular identifiers (UMI) [14], number66

of unique genes detected [15], and percent of reads mapping to mitochondrial genes [16] for both spot-level67

and regional artifact detection.68

We first introduce the spot-level QC approach (Figure 1A) based on established methods for spatial69

outlier detection [17]. For each spot i, we define a local neighborhood using k-nearest neighbors based on70

spatial coordinates around each spot. Then, we calculate a robust z-score for all spots in the neighborhood:71

Zi =
0.675 · (xi −mi)

MADi

where xi is the QC metric (e.g. library size, number of detected genes, or the percent of reads mapping to72

mitochondrial genes) for the ith spot, mi is the median of the neighbors’ values, and the denominator is73

the median absolute deviation (MADi), defined as:74

MADi = median(|xj −mi|), ∀j ∈ Neighbors(xi)

We add a scaling factor of 0.675 (the 75th percentile of the standard normal distribution) to make the75

MAD comparable to the standard deviation under the assumption of normally distributed data [18]. This76

in turn makes the proposed z-score comparable to a standard z-score. Spots can then be discarded as local77

outliers based on their z -score.78
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Figure 1: An overview of SpotSweeper: spatially-aware QC methods to identify and eliminate
low-quality spots and region-level artifacts in SRT data. Data: postmortem human brain tissue
section profiled on the 10x Genomics Visium Spatial Gene Expression platform with annotated spatial
domains for gray matter (Layers 1-6) and white matter (WM) [10]. (A) Using the k -nearest neighbors of
each spot, SpotSweeper identifies region-level artifacts and low-quality spots. In contrast to exisiting QC
metrics for SRT data, key advantages of SpotSweeper are it (B) is less biased by differences across spatial
domains, (C) retains more high-quality spots, (D) accurately detects local outliers, and (E) accurately
detects compromised spots due to region-level artifacts. Created with BioRender.com

Next, we introduce the region-level QC approach (Figure 1A). Our method is based in the idea that79

region-level artifacts can be distinguished by unusually small variation in mitochondrial ratio due to loss80

of natural biology variability and we give examples in the following sections. To enhance the detection of81

these artifacts, we implement a multiscale approach that leverages multiple scales or varying neighborhood82
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sizes to capture both local and broader spatial patterns. Similar to the spot-level QC methods, the k -83

nearest neighbors for each spot are first identified based on the spatial coordinates. For each neighborhood84

size (i.e., scale), local variance of the mitochondrial ratio is calculated for each central spot and adjusted85

for a mean-variance relationship using robust linear regression via the iterative re-weighted least squares86

algorithm (see Methods for more details). The residuals of the linear regression are taken to be the87

mean-corrected local variance. Principal component analysis is then performed on the mean-corrected88

local variances of all neighborhood sizes for dimensionality reduction. k -means clustering (k=2) is then89

performed in the first two principal components to identify regional artifacts compared to high-quality90

tissue.91

2.2 Key innovations of SpotSweeper92

The key innovations of SpotSweeper compared to commonly used QC approaches for SRT data are as93

follows. First, SpotSweeper assesses the quality of individual spots relative to their local neighborhood as94

opposed to existing approaches that assess the quality of spots relative to spots across the whole tissue95

slide. This is implemented using k-nearest neighbors via spatial coordinates and helps overcome potentially96

problematic global QC approaches due to differences in spatial domains (Figure 1B) and retains more high97

quality spots (Figure 1C). Second, SpotSweeper leverages local outlier approaches leading to improved98

spatially-aware QC metrics within a tissue (Figure 1D), and can be applied across multiple tissue sections.99

Finally, SpotSweeper is the first method capable detecting of region-level artifacts that are distinct in SRT100

data by taking advantage of the local variance of QC metrics (Figure 1E).101

2.3 Global QC approaches are confounded with spatial domains102

In this section, we show that standard QC metrics are confounded by natural biological variation in SRT.103

Consequently, commonly used QC approaches that identify global outliers across entire tissue sections lead104

to biased removal of spots across spatial domains. Here, we use a dataset profiling dorsolateral prefrontal105

cortex (DLPFC) from postmortem human brain tissue measured on the 10x Genomics Visium Spatial Gene106

Expression platform [10]. We picked this dataset because the DLPFC contains substantial differences across107

spatial domains, namely between white matter (WM) and six gray matter domains (cortical layers L1-L6)108

(Figure 2A). Some layers, such as L2, L3, L5, and L6 contain cell-bodies (i.e., soma), while other layers109

(L1 and WM) exclusively contain neuronal processes (i.e., dendrites and axons). In addition, soma-rich110

layers substantially differ in cell-type composition.111
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Figure 2: SpotSweeper improves quality control using local versus global approaches to
identify outliers or low quality spots. (A) Manually-annotated cortical layers in a single human
dorsolateral prefrontal cortex (DLPFC) tissue sample fromMaynard et al. [10]. (B-C) Spot plots displaying
the number of detected genes overlaid with the low quality spots (red) identified using (B) common QC
approaches across the tissue (global outliers) using fixed thresholds (>0.275 and <500, respectively) and
(C) local outliers as detected by SpotSweeper. (D) Scatter plot of the number of detected genes (x-
axis) and percent of reads mapping to mitochondrial genes (y-axis) with low quality spots identified using
SpotSweeper. (E-G) Ridge plots of the distribution of library size, percent of mitochondrial genes, and
number of detected genes across cortical layers. Red dotted lines indicate fixed thresholds to identify
outliers. (H) Box plots of the percent of discarded spots (global outliers) across cortical layers (n=12
tissue samples). (I-K) Ridge plots showing the distribution of z -normalized QC metrics for library size,
mitochondrial ratio, and unique genes. (L) Box lots displaying the percent of discarded spots (local outliers)
across cortical layers using SpotSweeper.

Current approaches typically perform spot-level QC based on approaches developed for snRNA-seq112

data [19, 20], namely, setting global fixed [15] and data-derived thresholds [21–23]. Using standard QC113

metrics for SRT data, such as library size, proportion mitochondrial genes, and number of unique genes114

[19, 20] we show here that these global QC approaches result in an uneven number of spots being labeled115

as low quality across spatial domains. (Figures 2B). As expected, soma-rich layers (L2-6) showed greater116

library sizes and number of unique genes compared to spatial domains that only contain neuronal processes117
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(L1 and WM) (Figures 2E,G), whereas L1 and L3 showed the highest mitochondrial ratio (Figure 2F).118

In fact, global outliers detected with moderately conservative fixed thresholds set at 500 total genes, 500119

unique genes, and 0.275 mitochondrial percent were biased to discarding spots in layers with low number120

of transcripts (L1 and WM) and high mitochondrial ratio (L3) when applying SpotSweeper to multiple121

tissue sections within the Maynard et al. [10] DLPFC samples (n=12 tissues) (Figures 2H, S1). This122

resulted in an average of 9.34%, 4.70%, and 9.74% of spots excluded from L1, L3, and WM, respectively,123

across samples.124

2.4 QC approaches based on local outlier detection controls for confounding biology125

Using SpotSweeper, we show that by restricting outlier detection to local neighborhoods, our approach126

reduces the biased exclusion of spots across different spatial domains (Figure 2C), while still identifying127

spots with relatively low library size/unique genes and high mitochondrial ratio (Figure 2D). We show128

that z -normalizing QC metrics based on local neighborhoods successfully normalizes their distributions129

across spatial domains (Figures 2I-K). For defining local outliers, we chose to use a cutoff of three130

standard deviations from the mean under a standard Normal distribution. Using thresholds of <-3 z-131

scores for library size and unique genes detection, and >3 z-scores for mitochondrial ratio, this approach132

leads to discarded spots more uniformly distributed across the spatial domains compared to global QC133

approaches using either using fixed thresholds (Figure 2L), or data-driven thresholds such as median-134

absolute deviations (Figure S1). SpotSweeper excluded an average of 0.21%, 0.28%, and 0.40% of spots135

excluded from L1, L3, and WM, respectively, which ultimately resulted in the retention 1,670 high quality136

spots (an average of 139.17 per sample) compared to fixed thresholds.137

2.5 SpotSweeper detects consistent set of spots with systematically low library size138

When applying SpotSweeper to the Maynard et al. [10] DLPFC samples (n=12 Visium samples), we139

noticed SpotSweeper identified a consistent set of six spots as low quality based on library size across140

all 12 tissue sections (Figure 3A). This motivated us to expand the datasets considered to explore if141

additional datasets also identified a similar set of low quality spots. We considered a larger DLPFC data142

from Huuki-Myers et al. [9] with n=30 Visium samples as well as n=1 Visium samples of mouse coronal143

brain sections generated by 10x Genomics. In all three datasets, we found that the identical six spots144

contained less total UMI counts (or library size) compared to neighboring spots (indicated by negative145

z-scores) in all samples across all three datasets (n=43 total) (Figure 3B), and were considered local146
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Figure 3: SpotSweeper detects consistent set of spots with systematically low library
size driven by barcode biases. (A) Six Visium barcodes/spots were consistently flagged as having
systematically-low library size Maynard et al. [10] (n=12), Huuki-Myers et al. [9] (n=30), and mouse brain
(10x Genomics; n=1) datasets. (B) Violin plots comparing local library size z-scores for consistent outliers
versus all other spots for each dataset. Red dots were detected as outliers by SpotSweeper. (C) Spots
detected as local outliers based on high library size (>3 z-scores) are not found across multiple samples,
unlike low outliers (<-3 z-scores). (D) Best-fit sequence alignment of the DNA barcodes underlying con-
sistent outliers shows substantial homology with 4 out of 6 barcodes containing a CGTGTA sequence. (E)
Volcano plot showing differentially expressed k -mer sequences between consistent outliers and the top six
barcodes ranked by mean library size across all Visium samples (n=43). Positive values indicate increased
expressing in outlier spots. (F) Boxplots of total UMI counts for Visium barcodes/spots that contain
differentially expressed k-mers from top ranked (AAC) and outlier (GTGT) spots show biases towards
higher and lower library sizes, respectively, compared to all other spots.

outliers (<-3 library size local z-scores) in over half of all samples (Figure 3C). The total UMI counts,147

unique genes, and mitochondrial ratio for these spots versus all others are shown in Figure S2. Only148

spots underlying tissue samples were included in these analyses. Importantly, we did not find any spots149

that with higher than average transcripts compared to neighbors that were repeatedly detected as local150

outliers across many samples (Figure 3C).151

In the Visium platform, every spot has a synthetic DNA barcode that is assigned to a specific152
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spatial coordinate, and the barcode assigned to a given spatial coordinate is same across all Visium assays.153

Considering previous work demonstrating how synthetic DNA barcodes sequences can lead to downstream154

bias in PCR amplification [24, 25], we hypothesized that the synthetic DNA barcodes associated with155

these problematic Visium spots are responsible for downstream biases. If so, we predicted that barcodes156

likely have homologous sequences. To this hypothesis, we performed multiple sequence alignment of these157

six barcodes and indeed found remarkable homology with four out of six barcodes containing a CGTGTA158

sequence (Figure 3D). To determine if barcode sequences may be driving downstream biases in library size,159

we next conducted differential k -mer analysis between these six low quality spots and the top six mean-160

ranked barcodes (Figure S3) to determine if there were k -mers differentially associated with barcodes161

that consistently show small or large library size, respectively. We found that a number of k -mers were162

indeed differentially expressed between the six consistent outliers compared to the six top mean-ranked163

spots (Figure 3E), and these differentially expressed k-mers were sufficient to distinguish outlier from164

top mean-ranked barcodes (Figure S3). AAC and GTGT were the longest k -mers associated with top165

ranked and low quality spots, respectively. We finally show that, on average, spots containing AAC and166

GTGT k -mers showed bias towards larger and smaller library sizes, respectively (Figure 3F). Collectively,167

these results suggest that the spatial barcodes present in Visium arrays have inherent biases that lead to168

systematically low library size and unique genes detected.169

2.6 Spatial transcriptomics methods are susceptible to regional artifacts170

In histopathology, tissue artifacts have been defined as “an artificial structure or tissue alteration on a171

prepared microscopic slide as a result of an extraneous factor” [26] and have been characterized to include172

(pre)fixation, processing, staining, or mounting artifacts [27]. In the context of the 10x Genomics Visium173

Spatial Gene Expression platform, tissues are also mounted on slides and regional artifacts can occur in a174

similar way. However, there currently lack studies both characterizing and identify regional artifacts. In175

this section, we begin by considering the Huuki-Myers et al. [9] dataset with n=30 Visium samples and176

characterize two types of regional artifacts unique to SRT data (Figure 4). Finally, we demonstrate how177

SpotSweeper provides computational methods to detect the tissue artifacts (Figure 5).178

The first type of region-level artifact is an incomplete coverage of permeabilization agents, and179

referred to here as ‘dryspot’ artifacts. These dryspot artifacts are caused by incomplete tissue coverage of180

permeabilization agents (Figure 4A). Permeabilization is an essential step that releases mRNA content181

from tissue samples that are then captured and barcoded in each Visium spot. Because dryspot artifacts182
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Figure 4: Characterizing region-level technical artifacts unique to spatial transcriptomics.
Schematics showing how (A) incomplete coverage of Visium capture areas by permeabilization liquids (i.e.,
dry spots) results in large regions with low library size and unique genes, and (B) tissue damage during (1)
dissection from a drill used to dissect human brain regions results in (2) hangnail artifacts with attenuated
or altered biological signal. Dryspot artifacts (C) cannot be seen in histological images, but instead
present as areas with (D) low library sizes and (E) no difference mitochondrial ratio. (F) Dryspot artifacts
distinctly cluster using spatially-aware clustering methods. (H-J) Unlike dryspots, hangnail artifacts are
clearly visible in histological images, present with similar library size and mitochondrial ratio as the rest of
the sample, and get incorrectly clustered with one of the cortical layers. In this case, BayesSpace cluster
5 which we approximate as cortical layer 6. Panels A and B created with BioRender.com

are not due to differences in tissue quality (Figure 4C), they present as regions with drastically lower183

library size (Figure 4D) and unique genes (Figure S4), but no substantial difference in mitochondrial184

ratio (Figure 4E). Due to this drastic difference in detected transcripts, dryspots often form distinct185

clusters using spatially-aware clustering methods (Figure 4F). This prevents the accurate detection of186

six cortical layers and white matter in the DLPFC tissue section, and further confounds the underlying187

biology.188

The second type of artifact is from tissue damage that may occur during dissection, and referred189
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Figure 5: SpotSweeper accurately detects dryspot and hangnail tissue artifacts. (A) Spot plot
visualizing a dryspot artifact using log2-transformed library size. (B) Density-based clustering methods
(DBSCAN) can be used to detected dryspot tissue artifacts in log2-transformed library size and unique gene
space. (B) Spot plots showing dryspot artifact automatically annotated as the cluster with smaller library
size. (D) Removing dryspot artifacts results in the discovery of an additional spatial domain using spatially-
aware clustering (BayesSpace). (E) Spot plot displaying the first principal component of the multiscale
variance (1-5 concentric circles for each spot) of mitochondrial ratio. (F) k -means clustering (k=2) on the
first two principal components of the multiscale variance successfully distinguishes the hangnail artifact
from high-quality tissue. (G) Spot plots showing the hangnail artifact automatically annotated as the
cluster with lower average multiscale variance. (H) Bar plots showing that removing the detected hangnail
increases the ranking of canonical L6 marker genes.

to here as ‘hangnail’ artifacts. These artifacts are caused by tissue damage, such as from a high-powered190

drill used to dissect small regions from a frozen human brain (Figure 4). This form of tissue damage191

results in loss of interpretable biological signal. Unlike dryspot artifacts, hangnails are often visually192

apparent in histological images (Figure 4H), but do not show substantial differences in average library193

size (Figure 4I), genes detected (Supplementary Figure S4B), or mitochondrial ratio (Figure 4J).194

Because of this, spots underlying hangnail artifacts tend to cluster with spatial domains (in this case,195

L6) corresponding to high-quality, non-damaged tissue regions (Figure 4K). This presents a significant196

problem for artifact removal.197

2.7 SpotSweeper identifies regional artifacts unique to spatial transcriptomics198

Here, we propose methods to identify region-level artifacts, both dryspot and hangnail artifacts. Because199

dryspot artifacts present with substantially lower library size (Figure 5A), Huuki-Myers et al. [9] pre-200
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viously discarded this dryspot using manual library size thresholds. However, we show in Figure 2 that201

fixed thresholding is biased by differences across biological domains and results in the inadvertent dis-202

carding of high quality tissue spots. SpotSweeper improves this by implementing DBSCAN clustering203

on log2-normalized QC metrics of library size and number of unique genes detected to identify dryspot204

artifacts (Figures 5B-C). Removing the dryspot artifact improves spatial domain detection, allowing for205

the accurate discovery of an additional cortical layer cluster in place of the artifact (Figure 5D).206

Unlike dryspots, hangnail artifacts are more complex. Upon visual inspection of the mitochondrial207

ratio of hangnail artifacts (Figure 4J), we noticed that hangnails display low variance across spots com-208

pared to non-artifact domains. Taking advantage of this, we developed a QC method that successfully dis-209

tinguishes hangnail artifacts based on the multiscale variance of mitochondrial ratio (Figure 5E). Hangnail210

artifacts are distinguishable in the first principal component of the multiscale variance (Figures 5F-G),211

and we found that k -means is superior to both Gaussian mixture models and density-based clustering212

non-parametric algorithms (DBSCAN) in clustering artifact from non-artifact spots (Figure S5). We213

additionally show that multiscale variance is superior to using a single neighborhood size for region-level214

artifact detection (Figure S5). Removing hangnail artifacts identified by SpotSweeper leads to improved215

downstream analyses, as evidenced by improved ranking of known L6 marker genes in one-vs-all spatial do-216

main DE analyses (Figure 5H). These results highlight the importance of accurate artifact identification217

and removal in enhancing the reliability of SRT data.218

3 Discussion219

Quality control is vital across next-generation sequencing technologies to ensure data accuracy and integrity220

[7]. We present here the first spatially-aware QC methods developed specifically for SRT data. SpotSweeper221

improves spot-level quality control by using local k -nearest neighbor approaches to detect outliers within222

their spatial context, resulting in increased retention in high-quality spots. Using SpotSweeper, we dis-223

covered a set of spots in the 10x Genomics Visium platform with systematically low library size. We also224

characterized region-level artifacts unique to SRTs, and developed spatially-aware methods to detect and225

remove these artifacts. SpotSweeper can be used with spot-based SRTs to detect and remove both low226

quality spots and region-level artifacts prior to downstream analyses.227

We demonstrated here that local outlier detection with SpotSweeper is superior to global outlier228

approaches commonly used for SRT data. Previous work has attempted to account for biological hetero-229

geneity within snRNA-seq datasets by clustering nuclei based on their gene expression profiles prior to230

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.06.597765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597765
http://creativecommons.org/licenses/by-nc-nd/4.0/


performing cell-level QC [28]. This can be computationally expensive for large datasets and is ineffective231

when low quality nuclei form a distinct cluster. We circumvent these issues by leveraging the spatial coordi-232

nates inherent to SRTs to normalize each spot based on their surrounding neighbors using a fast k -nearest233

neighbors algorithm. This ultimately increases the retention of high-quality spots, and thus, the statistical234

power for downstream analyses. We additionally characterized two distinct regional artifacts, dryspots and235

hangnails that are unique to SRT, and demonstrate that SpotSweeper is capable of accurately identifying236

these artifacts. This further improves clustering and marker gene detection, and is likely to have important237

implications for between-condition differential expression analyses (i.e., case vs control) [7, 29].238

The proposed methods have some limitations that are open directions for future work. SpotSweeper239

is currently only compatible with spot-based SRT platforms, such as Visium. Image-based methods, such240

as MERFISH [30] and Xenium [31], profile the location of hybridized mRNA molecules with subcellular241

resolution. Regional artifacts due to tissue damage are also likely to remain a problem for image-based242

technologies. However, these technologies are limited to a smaller number of genes and thus typically do243

not include mitochondrial genes. While SpotSweeper currently uses multiscale variance of mitochondrial244

ratio to detect these artifacts, it is possible that a similar approach utilizing the negative control genes245

normally included in image-based methods may be useful for detecting damaged tissue sections. In addition,246

rasterization techniques that aggregate mRNA counts into spatial pixels [32] will increase compatibility247

with the current SpotSweeper workflow, while ensuring the scalability of our approaches for imaging-based248

platforms. Moreover, the current implementation of SpotSweeper should be amenable to future spot-249

based technological advancements, such as the VisiumHD platform from 10x Genomics [33], that have250

substantially increase spatial resolution with complete tissue coverage.251

In summary, we propose the first spatially-aware QC methods that detect both spot- and regional-252

level artifacts for SRT data. These methods reduce bias due to biological heterogeneity and accurately253

identify regional artifacts that arise due to common tissue processing errors, improving both marker gene254

detection and spatial clustering steps. Our method is freely available at https://bioconductor.org/packa255

ges/SpotSweeper.256
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4 Methods257

4.1 Preprocessing258

The SpotSweeper workflow begins by using standard preprocessing steps. For the analyses performed here,259

we added spot-level QC metrics (i.e. library size, unique genes, and mitochondrial ratio) by using the260

addPerCellQCmetrics function from the scuttle R/BioConductor package. No gene expression data is261

otherwise used for in the SpotSweeper workflows.262

4.2 Global QC methods263

We used common QC workflows developed for snRNA-seq were implemented in the scater R/Bioconductor264

package. Individual spots were determined to be global outliers based on fixed thresholds (< 500 total265

transcripts, < 500 unique genes, or > 0.25 mitochondrial ratio) using the isOutlier function. The data266

were then summarized to the show the percent of discarded spots per manually annotated spatial domain267

for each sample, and visualized using the and escheR R/Bioconductor packages[34].268

4.3 Spot-level algorithm and parameters269

In contrast to global outliers, we define local outliers as spots that are outliers within their local neighbors270

in one or more of the three standard QC metrics (i.e., library size, unique genes detected, or mitochondrial271

ratio). Local neighborhoods are defined as the k -nearest neighbors[35] for each spot using their spatial co-272

ordinates using the BiocNeighbors R/Bioconductor package[36]. For Visium samples, we find that a neigh-273

borhood of three concentric circles (k=18) around each spot works well. Robust z-score transformation[17]274

of each spot is then used to normalize QC features across local neighborhoods. For each spot i, the robust275

z-score transformation can be formally defined as:276

Zi =
0.675 · (xi −mi)

MADi

where mi is the median of the neighbors’ values:277

mi = median(xj), j ∈ Neighbours(xi)
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and the median absolute deviation (MAD) is defined as:278

MADi = median(|xj −mi|), j ∈ Neighbours(xi)

Adding the scaling factor of 0.675 makes the MAD comparable to the standard deviation under the as-279

sumption of normally distributed data. This in turn makes the robust z-score comparable to a standard280

z-score[18].281

4.4 Detection and analysis of Visium spots with systematically low total UMI282

Visium spots with systematically low total UMI (n=6 in total) were defined as spots that were detected as283

local outliers (< 3 z-scores) in over half (> n=22) of the total Visium samples used across Maynard et al.284

(n=12), Huuki-Myers et al. (n=30), and mouse coronal brain section (10x Genomics; n=1) datasets. Local285

outliers were detected using the localOutliers function from the SpotSweeper R/BioConductor package.286

The barcodes identifying these spots were then saved for further analyses.287

4.5 Barcode sequence alignment and differential K-mer analysis288

To better determine how barcode sequences may bias total UMI counts, we calculated the mean library289

size for each spot/barcode across all Visium samples (n=43) and the six barcodes with the highest mean290

UMI total were found. To compare the sequences of top mean-ranked barcodes and barcode with sys-291

temaic biased towards small library size, DNAStringSet objects were made using the barcodes with the292

Biostrings R/BioConductor package. We then aligned the sequences using the msa function from the msa293

R/BioConductor package.294

All K-mer possibilities (e.g. A, AC, TGT, etc) for k = 1-4 were counted using the Biostrings R295

package. Differential K -mer testing between top and bottom mean-ranked barcode groups was carried296

out using student’s t-test. Volcano plots of differentially expressed K -mers were generated using the En-297

hancedVolcano R/CRAN package. Differential K -mers were further visualized using a heatmap generated298

by the pheatmap R package.299

4.6 Artifact-level model and parameters300

To find regional artifacts in the Huuki-Myers et al. dataset, the standard QC metrics (library size, unique301

genes, and mitochondrial ratio) for all samples were first visualized by generating spot plots using the302

escheR package. Visualization of hangnail artifacts revealed low variance in mitochondrial ratio (Figure303

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.06.597765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597765
http://creativecommons.org/licenses/by-nc-nd/4.0/


4J). Taking advantage of this, we developed a method to classify hangnail artifacts based on the multiscale304

variance. First, the local variance of mitochondrial ratio is computed at various scales (i.e., neighborhood305

sizes). To do this, multiple neighborhood sizes were defined as one to five concentric circles around each306

spot. For Visium, the exact neighborhood size, K, per concentric circle, c, can be defined as:307

Kc = 3c2 + 3c

To assess the variability of mitochondrial content, we calculated the variance of the mitochondrial308

ratio within each defined local neighborhood. Preliminary analyses revealed that the mean mitochondrial309

ratio was a significant predictor of variance, suggesting a bias in local variance estimations related to310

the mean. To correct for this mean bias, we implemented robust linear regression using the iterative re-311

weighted least squares algorithm[37]. This approach models the mean-variance relationship while being312

robust to the influence of outliers. We used the rlm function from the MASS package in R[38], applying313

default parameters. The residuals from this model provided an estimate of the local variance, adjusted for314

the mean mitochondrial ratio.315

Following the estimation of mean-corrected local variance, principal component analysis is applied316

to the log-normalized local variances to reduce the dimensionality of the dataset; ultimately aiming to317

separate normal biological variance and variance induced by technical artifacts. We find that hangnail318

artifacts distinctly cluster in the first two principal components (Figure 5F). To classify these artifacts, we319

employed k -means clustering[39] with k=2. The classification of neighborhoods into artifact or non-artifact320

categories was subsequently determined by identifying the cluster with the lower average local variance.321

This cluster is automatically annotated as the artifact group. This is implemented in the findArtifacts322

function in the SpotSweeper package.323

For the detection of dryspot artifact, the DBSCAN algorithm [40] was applied to the log2-transformed324

number of the UMI counts (library size) and log2-transformed number of unique genes. This was imple-325

mented using the dbscan function from the DBSCAN R/CRAN package[41] with the radius of the epsilon326

neighbor set to 0.5 (eps = 0.5) and the minimum number of points set to 20 (minPts = 20). Default327

parameters were otherwise used. We have implemented this procedure in the findDryspot function within328

the SpotSweeper package.329
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4.7 Spatially-aware clustering of spatial domains330

Clustering of spatial domains (i.e., cortical layers) was achieved using the spatially-aware clustering method,331

BayesSpace[42]. To prepare the data, the mRNA counts for all samples were log-normalized using the332

logNormCounts function from the scuttle package. The mean-variance relationship was modeled using333

the modelGeneVar function prior to finding the the top 3000 highly-variable genes using the getTopHVGs334

function (both from the scran package), and dimensional reduction was performed with the top 3000 highly-335

variable genes using the runPCA function from the scater package. Spatially-aware clustering was then336

performed on the top 50 principal components using the spatialCluster function from the BayesSpace337

R/Bioconductor with 7 clusters (q = 7) and 10,000 iterations (nrep = 10000). This was conducted before338

and after artifact removal to determine the impact of discarding regional artifacts.339

4.8 Differential expression analysis between spatial domains340

To determine the rank of canonical marker genes before and after artifact removal in Figure 5, one vs all341

differential expression analyses were conducted for BayesSpace cluster #5 (shown in Figure 4; yellow) both342

before and after artifact removal using the findMarkers function from scran. The rankings of canonical343

L6 marker genes (CCK, SCN3B, KRT17, SEMA3E, NR4A2, NTNG2, and SYNPR)[10, 43, 44] were then344

compared.345

4.9 Computational Implementation346

SpotSweeper is implemented as an R package within the Bioconductor framework, using the BiocNeighbors347

package for local neighborhood detection, stats package for mean and variance calculations, spatialEco348

package for robust z-score normalization, scater for the implementation of principal component analysis,349

and escheR package for visualization. SpotSweeper takes advantage of the existing SpatialExperiment350

infrastructure for loading SRT input data and storing results. This allows for seemless integration in the351

existing Biocondcutor-based workflows.352

4.10 Visium human DLPFC datasets353

The (n = 12) Visium human DLPFC dataset fromMaynard et al. consists of twelve total samples from three354

different neurotypical donors, measured with the 10x Genomics Visium platform[10]. The dataset was orig-355

inally published by Maynard et al. and subsequently released through the spatialLIBD R/Bioconductor356

package. The data used in this manuscript were acquired using the fetch data function with type set to357
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”spe”. This dataset contains transcriptome-wide gene expression measurments across 47,681 spots under358

tissue areas. The data were manually annotated with labels for the six cortical layers and white matter in359

the original study, which we use as an approximate for ground truth labels for method evaluation. These360

data do not contain regional artifacts such as hangnails or dryspots.361

The (n = 30) Visium human DLPFC dataset from Huuki-Myers et al. consists of thirty total362

samples from ten different neurotypical donors, measured with the 10x Genomics Visium platform and363

made published by Huuki-Myers et al[9]. The processed data is also available via the fetch data function364

from the spatialLIBD package. This datasets contains transcriptome-wide gene expression measurements365

across 118,800 spots under with tissue areas. In this manuscript, we are especially interested in the dryspot366

and hangnail artifacts present in samples ”Br3942 mid” and ”Br8325 ant”, respectively.367

4.11 Mouse Coronal Brain dataset368

The mouse brain dataset consists of a single coronal section measured with the Visium platform, generated369

by 10x Genomics. This dataset is publicly available from 10x Genomics. For the analyses in this manuscript,370

this was acquired via the STexampleData R/Bioconductor package using the Visium mouseCoronal func-371

tion. This dataset also contains transcriptome-wide gene expression data across 2,702 spots under tissue372

areas.373

Data availability374

The DLPFC datasets used for analyses in this manuscript can be obtained from spatialLIBD (http:375

//research.libd.org/spatialLIBD) in SpatialExperiment format, which includes Manual Annotation376

labels from the original sources. All other data supporting the findings of this study are available within377

the article and its supplementary files. Any additional requests for information can be directed to, and378

will be fulfilled by, the lead contact.379

Code availability380

The code that generates these figures is deposited at https://github.com/boyiguo1/Manuscript-SpotSweep381

er (Zenodo DOI: 10.5281/zenodo.11489067). The open source software package SpotSweeper is available382

in the R programming language and freely available on Bioconductor (https://bioconductor.org/package383

s/SpotSweeper). We used SpotSweeper version 0.99.5 for the analyses in this manuscript.384
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• DLPFC: dorsolateral prefrontal cortex386

• MAD: median absolute deviation387

• QC: quality control388

• sc/snRNA-seq: single-cell/nucleus RNA-sequencing389
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• WM: white matter391
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Supplementary Figure S1: Comparison of commonly used spot-level QC methods for SRT data using
the n=12 Maynard et al. [10] Visium samples. Three different QC approaches were considered: local
outliers (SpotSweeper) (left), global outliers using fixed thresholding (middle), and global outliers using a
threshold of three MADs based on the sample-wise distributions of outliers of each mitochondrial ratio,
library size, and unique genes (right). Figure is showing boxplots of the percentage of discarded spots per
tissue sample (a point in the boxplot) stratified by the cortical layers: white matter and layers 1-6.
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Supplementary Figure S2: Violin plots showing standard QC metrics library size (A), unique genes
(B), and mitochondrial ratio (C) for the six spots that are consistent outliers across Maynard et al. (n=12),
Huuki-Myers et al. (n=30), and mouse coronal section datasets (n=1). All plots are color by sample. Only
spots underlying tissue samples were included.
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Supplementary Figure S3: (A) Sequence alignment of the top six mean-ranked barcodes reveals rel-
atively little homology across barcodes. (B) The barcode sequences and spatial coordinates of the six
consistent Visium outlier spots. (C) Heatmap of centered and scaled counts for differentially expressed (p
¡ .05) k-mers between consistent outliers and the top six mean-ranked barcodes. Hierarchical clustering
of the columns and rows nearly perfectly distinguished outliers from top ranked barcodes, demonstrating
substantial homology within the groups.
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Supplementary Figure S4: Spot plots showing that the number of unique genes (log-transformed) in
dryspot (A) and hangnail artifacts (B). (C) Box plots demonstrating that dryspot artifacts display lower
library size and uniques genes, but no difference in average mitochondrial ratio. Dryspots do display higher
average multiscale variance in mitochondiral ratio. (D) Box plots demonstrating that hangnail artifacts
display no mean differences in library size, number of unique genes, or mitochondrial ratio. Hangnails do,
however, display lower average multiscale variance in the mitochondrial ratio.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.06.597765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597765
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S5: (Rows) Comparison of hangnail detection using single-scale (k = 18; one
concentric circle per spot) versus multiscale variance (1-5 concentric cicles per spot). (Columns) Compari-
son of (k-means (k = 2), Gaussian mixed models (k = 2), and DBSCAN methods for accurately clustering
hangnail artifacts.
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