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Abstract1

Rational decision-makers invest more time pursuing rewards they are more confident2

they will eventually receive. A series of studies have therefore used willingness to wait3

for delayed rewards as a proxy for decision confidence. However, interpretation of4

waiting behavior is limited because it is unclear how environmental statistics influence5

optimal waiting, and how sources of internal variability influence subjects’ behavior. We6

trained rats to perform a confidence-guided waiting task, and derived expressions for7

optimal waiting that make relevant environmental statistics explicit, including travel8

time incurred traveling from one reward opportunity to another. We found that rats9

waited longer than fully optimal agents, but that their behavior was closely matched10

by optimal agents with travel times constrained to match their own. We developed11

a process model describing the decision to stop waiting as an accumulation to bound12

process, which allowed us to compare the effects of multiple sources of internal variability13

on waiting. Surprisingly, although mean wait times grew with confidence, variability14

did not, inconsistent with scalar invariant timing, and best explained by variability in15

the stopping bound. Our results describe a tractable process model that can capture16

the influence of environmental statistics and internal sources of variability on subjects’17

decision process during confidence-guided waiting.18

Introduction19

A decision maker’s estimate of the probability that a decision is correct given the evidence20

is referred to as decision confidence1,2. Confidence is critical for learning improvements21

in decision policy in response to feedback3, for deciding whether to act or gather more22

information4, and for determining how to long to wait for an expected outcome before23

seeking reward elsewhere5. However, study of the neural underpinnings of confidence has24

been limited by the difficulty of measuring confidence in animal subjects.25

Recent work6,5 has developed a promising assay of decision confidence by asking how26

long subjects are willing to wait for a rewarding outcome after a decision before moving on27

to another reward opportunity. This temporal post-decision wagering paradigm has been28

used to study confidence in olfactory5,7, auditory7, visual8, and mnemonic9 decisions,29
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and has been used to study hallucinations10. Temporal post-decision wagers have also30

been used to probe learning about environmental reward statistics11.31

The premise of these confidence-guided waiting studies is that reward-rate-maximizing32

(“optimal”) agents are willing to wait longer for delayed rewards when they are more33

confident in their decisions. Modulations in willingness to wait are therefore understood to34

reflect variations in decision confidence. However, optimal waiting behavior also depends35

on the opportunity cost of opting to continue waiting for reward rather than starting a36

new trial, which is set by the maximum achievable environmental reward rate5,12,13,14,15.37

Previous work on this task did not explicitly define the environmental reward rate and38

therefore cannot specify how to choose the optimal average willingness to wait in a given39

environment, which is the first-order statistic that needs to be optimized in order to40

maximize reward rate. A complete account of optimal behavior in this task requires a41

definition of the reward rate that specifies all relevant environmental statistics affecting42

the environmental reward rate. Without such an account, it is not possible to determine43

whether animal subjects performing this task are behaving optimally.44

Here, we trained rats to perform an auditory evidence accumulation task16 requiring45

binary decisions followed by a temporal wager5. We developed an expression for the46

reward rate in the task, which allowed us to find the reward-rate-maximizing waiting47

policy. Doing so made explicit a key environmental statistic: the travel time that is48

incurred when moving on from one reward opportunity to the next. We found that rats49

performing the task spent longer waiting for rewards than optimal agents who maximized50

reward rate on matched datasets. This finding was consistent with the observation of51

“overharvesting” in foraging studies17,14. However, when we measured each individual52

subject’s travel times and treated these as constraints on agents’ behavior, the rats’53

overall average willingness to wait was not different from the optimal agents’, suggesting54

that their waiting behavior was approximately optimal.55

In addition to finding near-optimal overall average waiting behavior, the rats’ also56

showed modulation of wait times by decision confidence, as has been seen previously5,7,8,10,57

consistent with optimal agents. However, it is not clear how the near-optimal behavior58

we observed can be executed algorithmically in the brain. Nor is it clear how that59

decision might evolve in time and be influenced by sources of internal variability other60

than confidence. To develop a candidate model of the waiting decision process, we61

used the sequential probability ratio test (SPRT) to derive a decision variable that62

could achieve optimal waiting via an accumulation to bound process, as is often used in63

decision-making tasks18,19,20. The decision variable was initialized at a point encoding64

the decision confidence and evolved with a linear drift toward a single fixed bound that65

encoded the estimate of the environmental reward rate. The drift in this model came66

from the observation that as time elapses without reward after a decision, the odds that67

the trial will be rewarded eventually decrease. Under the model, waiting continues until68

the moment that the decision variable crosses the bound at which point the current trial69

is abandoned.70

The process model allowed us to compare various mechanistic sources of noise that71

might effect the decision process16. We considered variability in the drift rate that72

would produce the property of scale invariance often observed in the literature on73

timing judgments21,22,23, whereby the standard deviation of timing judgments grows74

proportionally to the interval being timed. We also considered diffusion noise that would75

corrupt the decision variable in each time step and cause the standard deviation of76

timing judgments to scale with the square root of the interval being timed, as in the77

drift diffusion model24. Finally, we considered variability in the setting of the bound,78
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which would cause variability in timing judgments to be constant across all intervals79

being timed. Surprisingly, we found that, whereas scale invariant timing noise had been80

assumed to dominate during this task5, the data was most consistent with variability81

in the bound. We speculate that the dominance of this source of variability may arise82

from continual learning of the bound setting based on a recency weighted average of the83

reward history, as has been observed in previous studies14,11 and is used in models of84

foraging as evidence accumulation25.85

Our results lay out a more complete theory of optimal behavior in temporal post-86

decision wagering tasks and present a process model for estimating the moment-to-moment87

cognitive state of subjects during the waiting decision process. Taken together, these88

contributions increase the interpretive value of post-decision temporal wagers for studies89

of confidence and learning.90

Results91

Evidence accumulation task with confidence-guided waiting92

We trained rats (n=16) to perform an auditory evidence accumulation task16 with93

randomly delayed reward delivery (Fig. 1a), as in Lak et al. 5 . The task requires two94

decisions of interest. First, the animal should decide which of two reward ports is more95

likely to provide a water reward given the auditory stimulus. Then, the animal must96

decide how long to wait for reward to be delivered before moving on to the next trial. In97

principle, this decision could be made at the time of the port choice, but may also be98

characterized as a series of decisions to wait at the chosen port for another timestep or99

abandon the port and move on.100

Port choice Rats performed the task in a chamber containing an array of three nose101

ports. Rats initiated trials by poking their nose into a central nose port, which triggered102

stimulus playback. The stimulus consisted of two trains of auditory clicks, generated103

from two different Poisson rates, played from speakers on either side of the rat’s head.104

The rat’s task was to listen to the click trains and then, after a “go” cue, report which105

click train had the larger number of clicks by poking it’s nose into the reward port on the106

side associated with the higher click rate. Trials where the rat withdrew from the center107

port before the “go” cue were labeled “center poke violations,” invalidated, and the rat108

was moved on to the next trial after a brief white noise stimulus.109

There were two versions of this task, referred to as the location task and the frequency110

task. Each rat was trained to perform one of the two tasks (location task, n=9; frequency111

task, n=7). In the location task, one click train was played from a speaker to the left of112

the center port and the other click train was played from a speaker to the right of the113

center port. Rats were rewarded for choosing the port on the same side as the speaker114

that emitted the greater number of clicks. In the frequency task, the clicks were played115

in stereo, but the clicks in the two click trains were played at different frequencies. The116

high frequency click train instructed rightward choices, whereas the low frequency click117

train instructed leftward choices. The click trains depicted in Fig 1a correspond to the118

location task. Trial difficulty was controlled by varying the rates of the two click trains.119

Wait time decision After reporting a decision at the reward port, rats did not receive120

immediate feedback. Instead, after correct choices, reward delivery was delayed until121

an experimenter-determined reward time, tr. On a subset of correct trials (mean: 7.1%122
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Figure 1: Evidence accumulation task with delayed rewards (A) Schematic of the task
structure. Rats first make a port choice based on an auditory stimulus. On non-probe trials,
if the port choice is correct, a reward is scheduled for delivery. The rat waits at the chosen
port until either the reward is delivered or the rat decides to abandon the current trial and
move on to the next. (B) Example trials from an example rat aligned to the time of the port
choice. Correct port choices (purple bars) often lead to rewards (cyan bars), but sometimes
the animal abandons the trial and center pokes to start a new trial before reward is delivered
(an example is annotated). Error trials (orange bar) are never signalled and the rat eventually
has to abandon the trial (an example is annotated). If the animal fails to hold it’s nose in the
center port during the stimulus period, the trial is considered a “center violation” (an example is
annotated), increasing the time to the next possibly rewarded trial. (C) Probability of choosing
the rightward reward port is plotted as a function of the evidence, operationalized as the click
difference (#R−#L), normalized by the total number of clicks (#R+#L), denoted ∆/Σ. Each
rat is shown as a gray trace and the average (with 95% confidence intervals) of the gray curves
is shown in black. (D) Wait time distributions for an example rat conditioned on whether the
decision was incorrect (shaded orange), correct with a baited reward (shaded cyan), or a correct
probe trial (shaded purple). The reward delay distribution used to draw reward delivery time on
non-probe trials is underlaid (cyan trace). (E) Violin plots showing each rat’s wait times for error
trials (orange) and correct probe trials (purple). Medians are plotted as dashed white lines with
25th and 75th as dotted white lines. (F) Mean wait time for an example rat in correct probe trial
(purple) and error trials (orange) as a function of the absolute evidence strength, |∆/Σ|. Data
are overlaid on linear fits to the correct and error trials separately. Errorbars are bootstrapped
95% confidence intervals. (G) Wait time chronometric curve showing the mean wait times from
F plotted as a function of the strength of evidence favoring the chosen option, |∆/Σ| × correct.
Data are overlaid on a linear fit to all the data. (H) Wait time chronometric curve for each rat
computed as in g (gray traces) along with the mean (with 95% confidence intervals) of all the
gray traces (black trace).

± 1.6%), rewards were omitted to provide an uncensored report of the rat’s maximum123

willingness to wait on that trial. We refer to these trials as “probe” trials (but, note that124
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“catch” trials is another common terminology). On error trials, feedback was omitted125

entirely. Rats were allowed to give up waiting for reward and move on to a new trial at126

any time after making the port choice by withdrawing from the reward port and poking127

into the center port. A series of example trials is shown in Figure 1b.128

In these experiments, reward delays were drawn from an exponential distribution, so129

that the density of reward delays was given by130

P (tr = t) =
1

τ
e−(tr−tr,min)/τ (1)

with time constant τ = 1.5, and a minimum reward delay tr,min ∈ (.05, .5). The131

exponential distribution has a flat hazard rate on the interval t ∈ (tr,min,∞). This means132

that, given that reward is set to be delivered on a trial, but hasn’t been delivered so far133

by time tw, the probability of receiving reward in the next time step is constant. We will134

write the hazard rate of the reward distribution as135

P (rw | ¬Rw, R∞) = 1/τ (2)

where rw ≡ tr ∈ (tw, tw + δt) is used to indicate the event that reward is delivered in136

the infinitesimal timestep δt beginning with time tw, the sum Rw ≡ ∑w−1
i=0 ri is used137

to indicate whether reward is baited at some time before tw, and the negation, ¬Rw,138

indicates that no reward is baited before tw. In this notation, R∞ is used to indicate139

whether reward is set to be delivered eventually in the trial. The resulting mean reward140

delay is ⟨tr⟩ ≈ tr,min + τ for trials where reward was baited.141

Rat behavior All rats included in the study learned to perform the task with at least142

60% accuracy (group mean: 74.4% correct trials). We computed each rat’s psychometric143

function for the port choice (Figure 1c). The psychometric function was defined as the144

probability of making a rightward choice given the stimulus evidence favoring rightward145

choice. Stimulus evidence favoring rightward choice is defined as the click difference146

normalized by the total number of clicks, ∆/Σ ≡ #R−#L
#R+#L , where #R represents the147

number of clicks favoring rightward choice and #L represents the number of clicks favoring148

a leftward choice on a given trial.149

We measured time spent waiting for reward at the side port in three trial types of150

interest: error trials, correct probe trials (where no reward is baited), and correct trials151

where reward is baited. We excluded trials where the animal took more than 2 seconds152

to initiate a new trial by center poking after leaving the chosen port. This is a standard153

criterion used to focus analysis on trials where the animal is engaged in the task5. The154

example rat was willing to wait long enough to receive reward on most correct trials,155

so the distribution of waiting times on correct trials where reward was baited closely156

resembles the reward delay distribution (Figure 1d).157

On trials where the rat waited long enough to receive reward, the full duration that158

the rat would have been willing to wait is unknown, because reward delivery censors our159

observation of the full willingness to wait. We used the probe trials to measure how long160

rats were willing to wait on correct trials. On both error trials and correct probe trials,161

rats were willing to wait much longer than the typical reward delays (Fig 1d,e). This162

held across all rats who learned the task (Fig 1e). Additionally, all rats waited longer at163

the choice port after correct choices on probe trials than after errors (Fig. 1d,e; p < .01,164

rank-sum test, 16/16 rats), indicating that waiting was guided by an internal estimate of165

decision accuracy.166
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To measure the modulation of wait time by the stimulus evidence, we plotted the167

example rat’s average wait time as a function of the absolute stimulus strength, |∆/Σ|,168

separately for correct probe trials and error trials (Fig 1f). We expected correct trials with169

strong signal to be the trials in which the animal has the highest confidence on average.170

Indeed, wait times were longest for correct trials where the evidence most strongly favored171

the choice made by the animal, as has been seen previously5,7,10. Correspondingly, wait172

times were shortest in the trials where the evidence most strongly favored the alternative173

not chosen by the animal. We expect these to be the trials where the animal has the174

lowest confidence on average.175

To create an axis along which both confidence and wait time should increase mono-176

tonically, we used the strength of the evidence supporting the option chosen by the rat,177

|∆/Σ| × correct. This quantity takes positive values when the animal makes a correct178

choice and negative values when the choice is incorrect. When we plot the example179

rat’s wait times against this axis, we see a graded increase in wait time as a function of180

evidence supporting the choice (Fig 1g). The data is overlaid on a linear fit to the data,181

which has a significantly positive slope (Pearson’s r = .22, p < .01). We computed wait182

time as a function of evidence supporting choice for all rats (Fig 1h) and computed linear183

fits to each rat. All rats had a significant, positive relationship between waiting time and184

the strength of evidence for the chosen option (p < .01 for 16/16 rats). This indicates185

that all of our rats modulated waiting times by their decision confidence.186

Overall reward rate maximization depends on travel time187

Previous work5 has shown that in order to maximize reward rate in decision tasks with188

delayed reward, subjects should be willing to wait longer when they are more confident in189

their decisions. However, the trial-by-trial modulation of waiting time by confidence alone190

is not enough to maximize the long term average reward rate. To maximize the long term191

average reward rate, subjects must also find an appropriate overall average willingness to192

wait. This value depends on a variety of other environmental statistics that influence193

the environmental reward rate. However, previous work has not developed an explicit194

expression for the environmental reward rate in the task, so it has not been possible195

to test whether rats learn this first-order optimization of overall wait time. In another196

study of rats performing confidence-guided waiting for delayed rewards, Stolyarova et al. 8
197

noted that their rats’ overall wait times were long relative to the average time of reward198

delivery, as is true in our rats. The authors interpreted this observation as likely being a199

deviation from optimality in rat behavior. This would be consistent with previous studies200

in human14 and animal subjects17,26 which report a bias, referred to as “overharvesting,”201

toward spending more time than would be optimal on a given reward opportunity before202

moving on to the next. Here, we develop a definition of the reward rate that makes all203

relevant environmental statistics explicit. We can then determine the optimal average204

willingness to wait for a given environment, making it possible to test whether subjects205

achieve optimal behavior in the task.206

To develop an expression for reward rate in our task, we make use of optimal foraging207

theory12,13, which describes the optimal time an agent should spend in a series of “patches”208

containing depleting, continuous rewards before traveling to the next patch. In each trial,209

we think of the rat’s nose poke into the chosen reward port as an entry into a “patch.”210

We refer to the time spent at the port as tport. We refer to the elapsed time between211

leaving the reward port on a given trial and entering a reward port on the next trial212

as “travel time” and note it in equations as t0 (Fig. 2a). In this task, the travel time213
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Figure 2: Across trial reward maximization depends on travel time (A) Task timing
can be broken into travel time, t0, time at the port, tport, and time spent drinking reward, tdrink
(top). Travel time includes all periods between the end of the waiting/drinking period and the
start of the next period of waiting, including trial reinitiation time, treinit, stimulus playback
time, tstim, and movement time, tmove (bottom). (B) Expected reward per trial, g(tw), if willing
to wait for time tw. Colormap shows probability of eventual reward, αC0. Points indicate 2s
increments of tw. (C) Expected time spent at the port per trial, E [tport | tw], plotted as in B.
(D) Expected reward in a trial, g(tw), as a function of expected time at the port, E [tport | tw],
plotted as in B and C. The effect of an additional 2s increment in tw now depends on tw and αC0.
(E-J) Consider reward maximization for an example agent with αC0 = .67 on every trial. (E)
Expected reward per trial, g(tw), plotted as a function of trial time, T (tw) = t0 + E [tport | tw]
(solid purple trace). The reward rate is RR = g(tw)

T (tw) and is maximized when RR∗ = ∂g
∂T (t

∗
w) (red

point) at T (t∗w). The red trace from the origin through this point has the highest slope of any
line from the origin through the purple trace. All other values of T (tw) are suboptimal (e.g., gray
and black points achieve the reward rate RRsub, which is the slope of the gray and black traces).
Here, t0 is set to 2.5s. (F) The reward rate for the example agent is plotted as a function of T (tw)
(dashed red trace) with the maximum reward rate marked (red point) along with the reward rate
achieved if not willing to wait long enough (gray point) or willing to wait too long (black point).
(G) The instantaneous reward expectation within a trial after time tw passes without receiving
reward, ∂g

∂T = P (rw | ¬Rw) is plotted as a function of tw (solid purple trace). The session reward
rate from F is shown for comparison (solid red trace). Reward rate is maximized if the agent sets
a moving on threshold, κ = RR∗ (dashed red trace). Suboptimal reward is achieved when κ is
not set to RR∗ (e.g., gray and back traces). (H) Probability of reward, g(tw) = P (Rw), plotted
as a function of expected port time, T (tw)− t0 = E [tport | tw] (rather than as a function of T as
in E). Reward maximizing solutions are marked for three values of t0, including the same from
E, one (darkest red trace) smaller, and one larger (lightest red trace). (I) Instantaneous reward
expectation plotted as in G with the reward rates and optimal settings of κ for the three levels of
t0 used in H. (J) Optimal wait time, t∗w, as a function of travel time, t0, for all levels of αC0 used
in panels b-d, except αC0 = 1, which corresponds to t∗w = ∞. Example levels of t0 are marked
for the example level of αC0 (red points).
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includes the period of trial reinitiation from leaving the reward port on the previous trial214

to entering the center port on the current trial (labeled treinit in Fig 2a), plus the stimulus215

period during which the rat hears the stimulus to inform the port choice (labeled tstim216

in Fig 2a), and the time it takes to move from the center port to the chosen reward217

port (labeled tmove in Fig 2a). Unlike in the classical foraging theory where reward is218

continuous and the agent has perfect information about the patch identity, rewards in219

our task are stochastic, limited to at most one per trial, and the subject has only partial220

information about whether it is in a rewarded or unrewarded patch. The optimal strategy221

for such a task has been described for environments where rewarded and unrewarded222

patches occur with equal probability15. We generalize that theory to arbitrary initial223

probability of being in the rewarded patch.224

The partial information about patch type comes from the agent’s decision confidence,225

an estimate of the probability that the port choice was correct at the time of the decision226

given the available perceptual evidence, which we write as227

C0 ≡ P (correct | percept). (3)

If the agent believes that all correct choices are rewarded, then their initial estimate of228

the probability that the choice will eventually be rewarded is C0. If the agent believes229

that correct choices are only rewarded in some fraction, α, of non-probe trials, then the230

probability that the choice will be rewarded eventually is231

P (R∞) = P (R∞ | correct)P (correct | percept) = αC0. (4)

Later, we will see that the agent’s posterior belief about whether the port choice will be232

rewarded (rewarded or unrewarded) falls over time.233

We will simplify the expression for reward rate as a function of the subject’s willingness234

to wait for reward across trials by beginning with the case of an agent who has no trial to235

trial variation in decision confidence (i.e., P (correct | percept) = P (correct)). This agent236

should therefore be willing to wait the same amount of time, tw, on every trial. We can237

write the expected overall reward rate for an agent willing to wait until time tw as the238

ratio of expected reward per trial, g(tw), and expected time per trial, Ttotal(tw):239

RRtotal =
g(tw)

Ttotal(tw)
=

g(tw)

t0 + E [tport | tw] + E [tdrink | tw]
(5)

where t0 is the “travel” time between leaving the chosen side port on one trial and nose240

poking at a side port on the next trial, E [tport | tw] is the expected time spent at the side241

port, and E [tdrink | tw] is the expected time spent consuming reward. While E [tdrink | tw]242

affects the overall reward rate, it can be ignored for the reward maximization process243

(see Supplemental Information for derivation).244

Both expected reward on each trial, g(tw), and expected time at the port, E [tport | tw],245

depend implicitly on the probability that reward will be delivered eventually if the agent246

waits long enough (P (R∞); equation 4). Expected reward per trial rises exponentially as a247

function of willingness to wait toward an asymptote at αC0 (Figure 2b; see Supplemental248

Information for mathematical details). Expected time at the port per trial increases as249

a function of willingness to wait, but does not asymptote except in the case that all250

trials are eventually rewarded (αC0 = 1; Figure 2c; see Supplemental Information for251

mathematical details). Otherwise, greater willingness to wait increases expected time252

spent at the port on each trial (in the extreme case where no trials are rewarded, the253

expected time at the trial is equal to willingness to wait). Figure 2d shows how expected254
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reward per trial increases as the expected time at the port increases when tw is varied,255

combining the information in Figures 2b and c.256

We can maximize the total reward rate in equation 5 by computing its derivative and257

setting it to zero, which yields258

∂g

∂Ttotal
(t∗w) = RR∗

total (6)

where t∗w and RR∗ are the reward-rate-maximizing willingness to wait and the corre-259

sponding reward rate at that optimal t∗w (see supplement for derivation). This is a260

generalization of the marginal value theorem12 to the case of stochastic rewards15. That261

is, equation 6 states that the prescribed rule for maximizing reward rate is to be willing262

to wait for reward until the time, t∗w, when the derivative of expected reward rate within263

the trial, ∂g
∂Ttotal

(t∗w), falls to the level of the maximum achievable reward rate across trials,264

RR∗
total. The latter quantity is the opportunity cost of continuing to wait for reward265

rather than beginning a new trial.266

As noted above, we can simplify the computation by ignoring the reward consumption267

time in the denominator of equation 5. Instead, we will maximize the expected reward268

per time spent pursuing (not consuming) reward, T (tw):269

RR =
g(tw)

T (tw)
=

g(tw)

t0 + E [tport | tw]
, (7)

which is maximized when270

∂g

∂T
(t∗w) = RR∗. (8)

(Note that previous work5 assumed the optimality condition ∂g
∂T (t

∗
w) = RR∗

total, which271

produces suboptimal behavior when tdrink ̸= 0, as is the case in our data.)272

This reward maximization rule can be understood graphically by plotting expected273

reward in a trial, g(tw), as a function of expected time pursuing reward in the trial, T (tw),274

for an example agent (Fig 2d,e). The reward rate for any choice of tw will be equal to275

the slope of a line that passes from the origin through the point (T (tw), g(tw)). The276

maximum possible slope (i.e., maximum possible reward rate) is achieved when this line277

is tangent to the reward rate curve satisfying equation 8 (Fig 2e,f). In standard optimal278

foraging theory, the forager receives continuous reward and gives up and moves on at279

a time under its full control, E [tport | tw] = tw, which would mean that ∂T
∂tw

= 1 and280

equation 8 reduces to the marginal value theorem. However, because our task provides281

at most one reward per trial, the agent must estimate the expected rate of reward in282

each trial through experience and then set an upper bound, tw, on the time it will spend283

waiting for reward delivery.284

Optimizing wait time Now that we have found the condition under which reward285

rate is maximized (equation 8), we are able to find t∗w for a given set of environmental286

statistics. To do so, we first compute the derivative in left hand side of equation 8, which287

we write as288

∂g

∂T
(tw) = lim

δt→0

g(tw + δt)− g(tw)

T (tw + δt)− T (tw)
. (9)

For an agent that has already waited for time tw, this quantity takes one of two values.289

If reward has already been delivered, the derivative is zero (g(tw) = g(tw + δt) = 1), and290
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the agent should move on to the next trial as soon as it finishes consuming reward. In291

the second case, the agent has not yet received the reward (g(tw) = 0). In this case, the292

expected reward after waiting for an additional time step is the probability of receiving293

reward in the next time step given that it hasn’t been delivered so far, P (rw | ¬Rw).294

This quantity is the hazard rate of the distribution of reward delays including the trials295

in which no reward is baited. We refer to this quantity as the instantaneous reward296

expectation after waiting for time tw without reward. We can write it as a product of297

the reward hazard rate for trials where reward is baited (equation 2) and the posterior298

probability that reward will be delivered in a trial given that it has not been delivered so299

far:300

P (rw | ¬Rw) = P (rw | ¬Rw, R∞)P (R∞ | ¬Rw). (10)

We refer to the second term as the agent’same posterior belief that reward will be delivered301

on a given trial after waiting for time tw without receiving reward. We write this quantity302

using Bayes’ rule303

P (R∞ | ¬Rw) =
P (¬Rw | R∞)P (R∞)

P (¬Rw)
(11)

and evaluate it for the distribution used in our experiment304

P (R∞ | ¬Rw) =
αC0e

−(tw−tr,min)/τ

1− αC0 + αC0e−(tw−tr,min)/τ
(12)

(see Supplemental Information materials for detailed derivation). This quantity has the305

value αC0 at the time of choice (tw = 0) and falls to 0 as time passes. Note that when306

the agent is unaware of the probe trials (i.e., the agent estimates α = 1), equation 12307

is equal to the posterior belief that the port choice was correct, the posterior decision308

confidence, after waiting for time tw without reward.309

Substituting equations 2 and 12 into equation 10, we get the instantaneous reward310

expectation after waiting for time tw without receiving reward311

P (rw | ¬Rw) =
1

τ
· αC0e

−(tw−tr,min)/τ

1− αC0 + αC0e−(tw−tr,min)/τ
(13)

for tw ≥ tr,min (instantaneous reward expectation is 0 for tw < tr,min). Note that312

equation 13 is equivalent to equation 5 in Lak et al. 5 if we substitute C = αC0 and313

t = tw − tr,min. However, our derivation clarifies that even though the reward hazard314

rate is fixed in the task, there is a decrease in instantaneous reward expectation while315

waiting for reward that can be attributed to a decrease in the posterior belief that the316

trial will be rewarded as time passes without reward delivery. Later, we will make use of317

this observation to develop a model for describing the port-leaving decision as a process318

that unfolds in time.319

Instantaneous reward expectation (equation 13) for the example agent is plotted as320

a function of elapsed time without reward in Figure 2g. To find t∗w, the agent needs to321

estimate the instantaneous reward expectation as a function of tw and choose a moving322

on threshold, κ, whose optimal value is RR∗ (Fig 2g). When κ < RR∗, the agent is323

impatient and receives a below average reward rate, and when κ > RR∗, the agent wastes324

time at the reward port that would be better spent starting a new trial. Choosing the325

appropriate threshold will lead to optimal waiting with326

t∗w = tr,min + τ

(
log

αC0

1− αC0
− log

RR∗τ
1−RR∗τ

)
(14)
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(see Supplementary Information for detailed derivation). This is equivalent to equation 6327

in Lak et al. 5 if we again substitute C = αC0, set tr,min = 0, and substitute κ = RR∗.328

But note that in Lak et al. 5 , κ is defined in words as the “environmental reward rate”329

whereas we have developed an explicit expression for RR∗, which clarifies that the correct330

RR∗ in this expression is not the total environmental reward rate (equation 5), but rather331

the reward per time spent pursuing reward (equation 7). Moreover, because we have332

provided an expression for RR that makes all relevant environmental statistics explicit,333

we can now compute t∗w for a given experiment, which was not possible previously.334

The optimal strategy for maximizing reward is influenced by the confidence on a given335

trial and all of the factors that influence the maximum achievable reward rate, including336

the probe trial fraction, the reward delivery time constant τ , and the travel time, t0. As337

t0 increases, the maximum possible reward rate decreases and the value of t∗w increases.338

The reward optimization procedure is depicted for three example levels of travel time in339

Figure 2h,i.340

We found the optimal willingness to wait, t∗w, as a function of travel time, t0, for all341

the levels of αC0 by using root finding to solve equation 8 (Figure 2j; see Methods for342

details). The amount of time that a reward rate maximizing agent is willing to wait in343

this task increases monotonically as travel time increases for all levels of αC0 (except 0344

and 1, where the agent should either not be willing to wait at all, or should always be345

willing to wait until the reward is delivered, respectively).346

Rats maximize reward rate after accounting for travel time347

Now that we can compute t∗w for an agent with fixed confidence across trials, we can348

test whether our rats achieved the maximum possible reward rate across trials. To do349

this, we compared rats’ willingness to wait, averaged across trials, to t∗w, the willingness350

to wait that would maximize the reward rate for an agent with fixed confidence across351

trials. To estimate the rats’ average willingness to wait across trials, we computed the352

average wait time for correct probe trials and for a subset of error trials, subsampled so353

that the proportion of error trials used in this analysis matched the proportion in the full354

dataset (which also includes non-probe trials; Fig 3c,d). To compute t∗w for each subject’s355

dataset, we estimated the necessary terms from that subject’s data: α was the fraction356

of non-probe trials in the rat’s dataset, C0 was the fraction of correct trials, and t0 was357

estimated from the mean travel time for the rat (after excluding the longest 1% of travel358

times, because the rats occasionally fully disengaged from the task for long periods of359

time; Fig 3a, b). Using these terms allowed us to evaluate both sides of equation 8 and360

compute t∗w by root finding (see Methods for details).361

A fully optimal agent performing this task should spend as little time traveling from362

one reward opportunity to the next. However, our rats spent more time than necessary363

traveling between reward opportunities. This was due to the self-paced nature of the364

task and exacerbated by center poke violations, which caused trials to be invalidated,365

further delaying time to the next reward opportunity. We reasoned that it may be very366

difficult for the rats to further minimize travel time. Among other things, decreasing367

travel times would require reducing the center port violation rate, which the animal is368

presumably already incentivized to do as much as possible. Therefore, we treated travel369

time as a constraint experienced by the animal and used the agents with matched travel370

times to ask whether the rats maximized reward rate given this constraint. To compare371

each rat to an agent who had also minimized travel time, we also computed t∗w for an372

agent whose average t0 was set to the value of the shortest travel time achieved by the373
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b c da

Figure 3: Rats maximize reward rate after accounting for travel times (A)
Cumulative distribution of travel times, t0, for each rat (black traces). We excluded the
longest 1% of travel times for each rat to compute the mean travel time (dashed red line).
(B) Minimum t0 for each rat (gray diamonds) and mean included t0 for each rat (red
points). Means of the presented values are shown as horizontal lines for the minimum
and mean t0 values. (C) Each rat’s willingness to wait is plotted as a function of the
optimal willingness to wait for an agent with the same reward delivery statistics, trial
accuracy, and the same mean travel time as the rat, but without trial-by-trial variations
in confidence (red points). Each rat’s willingness to wait is also plotted as a function of
the optimal willingness to wait for an agent as described, but with travel time equal to
the minimum travel time achieved by the rat (gray diamonds). Rat willingness to wait is
estimated by computing the mean wait time in correct probe trials and in a subsample
of error trials (subsampled so that the proportion of error trials in this analysis is equal
to the proportion of error trials for the full dataset when all correct trials are included).
Optimal willingness to wait was determined by root finding using equation 8. The mean
and 95% confidence intervals are shown as crosses for each group. The shade of the red
points indicates the fraction of the reward maximizing agent’s reward rate achieved by
the rat. For the comparison between the rat and the agent with matched mean t0, the
shade of red of the points indicates the fraction of the maximized agent reward rate
achieved by the rat. (D) Difference between the rat data and the agent data for the rats’
travel times (red points) and for the shorter travel times (gray diamonds). Colormap is
the same as in C. The mean difference for each group is marked with a horizontal line.

rat across sessions (Fig 3b).374

We found that the rats’ average willingness to wait was not different from the reward375

maximizing agents’ with matched travel times (p = .25, paired t-test; Fig 3c,d). However,376

rats’ wait times were much longer than those of the agents optimized with short travel377

times (p = 6.15×10−11, paired t-test; Fig 3c,d). Subjects “overharvested” relative to fully378

optimal agents, as has been seen in previous studies of foraging behaviors17,14. However,379

when travel time is treated as constrained, and behavior is optimized over tw alone,380

subjects’ overall willingness to wait was near-optimal, approximately maximizing their381

overall reward rate.382

Process model for optimal confidence-modulated waiting383

To understand how the port-leaving decision might be implemented in the brain, we384

developed a process model that described the decision to stop waiting as an accumulation385

to bound process. This model provides us with a cognitively tractable algorithm that386

can achieve optimal waiting and model the cognitive state of the animal during this task,387

which may be useful for studies of neural recordings in the task. It also allows us to388

capture variability in waiting that may be explained by sources of internal variability389
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b

a

Figure 4: Optimal waiting can be implemented with linear drift from a
confidence-dependent initial point to a fixed bound (A) Optimal wait time
procedure as presented in fig 2g,i, but scaled by τ , so that we track the evolution of
P (R∞ | ¬Rw) to a bound κτ . Two settings of κ are shown (gray and black dashed traces)
along with the bound hitting times for different levels of αC0 (left) and the resulting wait
times are plotted against αC0 (right). (B) Equivalent model with linear drift from an
initial point x0 = log αC0

1−αC0
, which terminates at a bound Z = log κτ

1−κτ . This process
leads to the same waiting times as in A. Colormaps are the same as in A, but note
that C0 = 0 and C0 = 1 do not appear in panel B, because they start at −∞ and +∞,
respectively, and never hit the bound.

other than variations in decision confidence.390

To develop such a model, we used the sequential probability ratio test18 to derive a391

tractable update rule, a linear drift with time, for a decision variable that can be used392

to produce optimal wait times. From equations 8 and 10, we know that optimal policy393

is to stop waiting when the instantaneous reward expectation falls to the level of the394

maximum reward rate in the environment, or equivalently, when the posterior belief that395

reward will be delivered eventually, P (R∞ | ¬Rw) falls to the maximum reward rate in396

the environment scaled by τ397

P (R∞ | ¬Rw) = RR∗τ. (15)

We can describe an agent who uses this strategy, but does not necessarily choose the398

optimal bound by replacing RR∗ with a parameter κ whose optimal value is κ∗ = RR∗.399

This process is shown in Figure 4a.400

To produce a decision variable that is tractable to update, we define xw as the log401

odds of eventual reward delivery, given that reward has not been delivered by time tw:402

xw = log
P (R∞ | ¬Rw)

P (¬R∞ | ¬Rw)
. (16)

To find an update rule that integrates the information from the passage of time without403

reward into xw, we decompose xw into two terms representing the previous value xw−1404
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and an update ∆x when timestep w elapses without reward (note that if reward is405

delivered in timestep w, the process ends):406

xw = log

(
P (R∞ | ¬Rw−1)

P (¬R∞ | ¬Rw−1)

P (¬rw | R∞,¬Rw−1)

P (¬rw | ¬R∞,¬Rw−1)

)

= xw−1 + log (P (¬rw | R∞,¬Rw−1)∆t)

∆x = log (P (¬rw | R∞,¬Rw−1)∆t) (17)

In the time before the earliest possible reward delivery (tw < tr,min), the update term is407

0 and xw is constant, afterward x drifts at the hazard rate of the reward distribution408

∆x = log

(
1− 1

τ
∆t

)
= −1

τ
∆t

where we have used log(1− n) ≈ −n for |n| << 1. Taking the timestep to zero, we get409

the linear drift dynamics410

dx = −1

τ
dt, (18)

which we can combine with equation 4 to write xw as a function of it’s initial value x0:411

xw = x0 − (tw − tr,min)/τ x0 = log
αC0

1− αC0
. (19)

By equations 15 and 16, we know that the agent should stop waiting when xw hits a412

bound specified by413

Z∗ = log
RR∗τ

1−RR∗τ
. (20)

If the waiting process terminates when x hits the bound Z∗, we achieve the reward414

maximizing wait times equivalent to equation 14:415

t∗w = tr,min +
Z∗ − x0

A∗ (21)

where A is a drift rate whose optimal value is A∗ = −1/τ . The evolution of xw and416

equivalence of this waiting process with that of Figure 4a is shown in Figure 4b. This417

expression for optimal willingness to wait is equal to equation 6 in Lak et al. 5 after418

setting tr,min = 0 and C = αC0. But, now also has an algorithmic interpretation that419

may be possible to implement in the brain. In words, optimal wait time decisions can be420

made by initializing a decision variable at a value that is set by the decision confidence421

and evolving it toward a fixed bound that is set by the overall reward rate and reward422

delivery timing in the task. The drift rate toward that bound is set by the reward hazard423

rate.424

Contributions of different sources of timing noise to waiting process425

In studies of timing judgments, subjects often exhibit the phenomenon of scale invariance426

in which the standard deviation of timing estimates increases linearly in proportion to427

the interval to be timed21,22. A previous model5 of confidence-guided waiting behavior428

assumed that scale invariant timing noise was the dominant source of noise affecting wait429

times. However, this has not been directly tested and it is not clear that timing in this430
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Figure 5: Candidate timing noise models (A-C) We consider three candidate models
for adding noise to the wait time decision. In all three models, the agent makes left/right
port choice based on a stimulus, which is corrupted by perceptual noise and creates an
accompanying decision confidence, C0. The waiting decision variable (DV), x is created
by setting x0 = log αC0

1−αC0
where α is the fraction of non-probe trials. And x drifts with

rate A toward a boundary Z. The agent is willing to wait for reward until x hits the
bound Z, but gives up and moves immediately when the bound is hit. (A) Left panel
shows example particles from a model in which the noise comes from variability in the
drift rate. This noisy drift model produces the scale invariant property in which the
ratio of the standard deviation of hitting times to the mean of hitting times is constant
across all x0 values. Traces are colored according to the binned normalized evidence
favoring the choice, |∆Σ | × correct. Second panel from left shows kernel density estimates
of bound hitting times for each of the bins of normalized evidence favoring the choice
with the same colormap. The third panel from the left shows the mean wait time as a
function of the normalized evidence favoring the choice (black trace with points colored
by bin). The second panel from the right shows the standard deviation of the bound
hitting times as a function of the mean in each bin (black trace with points colored by
bin). The generative relationship between standard deviation and mean is underlaid
(pink trace). Any deviation reflects noise added by the psychometric decision process.
The rightmost panel shows the coefficient of variation (CV) as a function of the mean
wait time in each bin (black trace with points colored by bin). Again, the generative
relationship is underlaid (pink trace). (B) Plots are as in A, but for a model with a
diffusion noise process in which noise is added in every time step. The pink traces from
A are maintained for comparison. (C) Plots as in A and B, but for a model in which
noise comes from variability in the bound. The pink traces from A and B are maintained
for comparison.

task is dominated by the same sources of variability as in interval timing tasks where431

the goal is to learn to respond when reward is most likely, rather than to persist until432

the moment that reward is sufficiently unlikely that it is worth giving up and moving433

on. It is also not trivial to separate noise in the timing decision from variability in the434
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confidence level that might result from any given percept.435

We used the process model defined in the previous section to examine the patterns436

of timing variability expected when different aspects of the process were corrupted by437

noise. We considered three possible ways of adding timing noise to our process model.438

In the first, we add noise to the drift rate, A (Fig 5a). This produces scale invariant439

variability. For a given initial point, x0, the standard deviation in bound hitting times440

that is proportional to the mean. In the second model, we added diffusion noise to the441

position of x at each time step, which adds a random walk to the deterministic drift442

(Fig 5b). In this model, the standard deviation of wait times is proportional to the square443

root of the mean hitting times for a given x0, meaning that the standard deviation will444

grow slower than for the scale invariant model. Finally, we considered a model with445

a noisy bound (Fig 5c). In this model, the standard deviation is constant regardless446

of the initial point x0. The noise parameters were chosen for each model to produce a447

coefficient of variation (CV; ratio of standard deviation to the mean) of 0.3 when x0 = 0.448

For the scale invariant model, the CV is 0.3 for all values of x0, which is the level of noise449

assumed in Lak et al. 5 .450

While the patterns of timing variability produced by each of these models are simple451

when the initial wait time decision variable, x0, is known, we don’t have access to x0 for452

our rats. To understand the pattern of variability expected under each model when x0 is453

unknown, we generated simulated x0 values for 50,000 trials. To do this, we supposed a454

signal detection theory model of the decision process in which the stimulus is characterized455

by the ratio between the click difference and the total number of clicks on each trial,456

s = ∆
Σ . For each trial, we generated a percept by adding noise with standard deviation457

σs to the stimulus, p = s+ ξ where ξ ∼ N (0, σ2
s). Decisions we made by comparing the458

stimulus to a decision boundary, b = 0. Confidence was then defined (beginning with459

equation 3) as460

C0 ≡ P (correct | p)

=

∫

s
P (correct | p, s)P (p, s)ds

=

∫

s
1sign(p)=sign(s)P (p | s)P (s)ds (22)

where we are integrating the probability of experiencing the percept p given the stimulus461

s over all levels of s that would produce a correct choice (see Supplemental Information462

for full equations). For the simulations, we assumed a uniform prior, P (s), and the463

probability of a percept given a stimulus is the Gaussian P (p | s) = N (s, σ2
s). We used464

a value of σ2
s that best fit an example rat (see Methods for details). We assumed an465

accurate estimate of the non-probe trial frequency, α. Combining this with confidence,466

we produced a sample x0 for each trial using equation 19. We then generated a sample467

willingness to wait on each trial by applying the drift dynamics (equation 18) until the468

particle hit a bound Z (set to −3 in the simulations), chosen to produce a similar range469

of wait times as observed in data.470

To determine what patterns we would be able to see in our rat data, we analyzed the471

simulated dataset for models with each source of timing noise as though we did not know472

generative x0, but could only observe the stimulus, choice accuracy, and willingness to473

wait on a given trial. We binned trials by the evidence supporting choice, ∆
Σ × correct.474

We then plotted conditioned kernel density estimates of willingness to wait for each bin.475

We also computed the mean, standard deviation, and coefficient of variation (standard476

deviation divided by mean) in each bin.477
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Figure 6: Scale invariant noise is not the dominant source of variability in the
data (A) Average wait times for an example rat for correct probe trials and proportionally
sampled error trials as a function of evidence for chosen option bin. (B) Kernel density
estimate for the wait times in each bin from A (the same colormap is used to indicate
evidence bin). (C) Standard deviation of the wait times in each bin (points connected
by black trace) is overlaid on the predicted relationship between wait time standard
deviation and mean under scale invariance with a coefficient of variation equal to .3 (pink
trace). (D) Coefficient of variation (the standard deviation divided by the mean) in each
bin is plotted as a function of mean wait time in each bin for the data (points) and for
the scale invariant model shown in C (pink trace). (E) All rats’ mean wait times plotted
as a function of evidence for chosen option as in A. (F) All rats’ wait time standard
deviations plotted against mean wait time as in C. Again, overlaid on the prediction
from scale invariance. (G) Standard deviation in each bin for all rats plotted against the
difference between the mean wait time in the bin and the average of the bins for that
rat. (H) Coefficient of variation plotted as in G for all rats with the mean across rats
overlaid (black trace). If scale invariance was the dominant source of noise, each rat’s
trace should be flat.

All models achieved increasing mean willingness to wait as a function of evidence478

supporting choice. But, the models had different relationships between standard deviation479

and mean within each bin. The variable drift model produced a roughly proportional480

increase in standard deviation as the mean grew, corresponding to flat coefficient of481

variation, as expected under scale invariant noise (Fig 5a). But, there was additional482

noise across all bins that arose from variability in confidence (x0) within each bin. The483

diffusion noise model produced a slightly sublinear increase in standard deviation as the484

mean grew, corresponding to a decreasing coefficient of variation (Fig 5b). Finally, the485

bound noise model produced a distinctly sublinear increase in standard deviation as the486

mean grew, with almost no increase between the last two evidence bins (Fig 5c). This487

corresponded to a dramatic decline in the coefficient of variation for the simulated data.488
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Scalar variability is not the dominant source of noise in rat waiting data489

To test whether scale invariant timing noise was the dominant noise source affecting rats’490

waiting time decisions, we analyzed the rat data using the analysis methods used to study491

the simulated data. We analyzed the mean and standard deviation of probe trial wait492

times in bins of normalized evidence strength favoring the rat’s choice (∆/Σ× correct).493

The average wait time in each bin is shown for an example rat in Figure 6a. The494

distribution of wait times in each of these bins is shown for the example rat in Figure 6b.495

We compared the standard deviation of wait times in each of the bins to the mean (Fig 6c)496

and computed the coefficient of variation in each bin (Fig 6d) for the example rat. The497

pattern we observed was not consistent with the simulated data for the model with scale498

invariant timing variability caused by noisy drift. Instead, the pattern we observed was499

sublinear, with minimal increase in standard deviation between the last two bins.500

We repeated this procedure for all rats. Average wait time as a function of binned501

evidence for choice is shown for all rats in Figure 6e. The standard deviations as a502

function of average wait time are plotted for all rats in Figure 6f (as in Figure 6c). To503

compare across rats, we subtracted off the average wait time of the bins from each rat’s504

data (Fig 6g). We find a consistent pattern across rats that the relationship between505

standard deviation and mean wait time is flatter than expected under the scale invariant506

model. We then examined the coefficients of variation along this axis and plotted them507

together for comparison (Fig 6h). Across rats, we see a consistent downward trend in the508

coefficients of variation, inconsistent with scale invariant timing noise. This suggests that509

other sources of noise dominate any scale invariant noise that exists in our rats’ behavior.510

Additionally, the standard deviation appears to increase more slowly than expected if511

diffusion process was the dominant source of noise. Qualitatively, the variability in our512

data appears most consistent with the model in which variability in the bound dominates.513

This variability may stem from noise, but may also stem from continual learning of the514

appropriate bound setting as a recency-weighted average of the reward rate history11,14.515

Discussion516

We trained rats to perform a task requiring auditory evidence accumulation16 combined517

with a post-decision temporal wager designed to assess their decision confidence5. The518

time that animals are willing to wait for a delayed reward after making a decision has519

become a popular proxy measurement of decision confidence, because we know that520

optimal agents wait longer for rewards they are more confident they will receive5,7,10.521

However, willingness to wait in optimal agents is also influenced by the maximum possible522

reward rate in the environment, which is in turn influenced by many environmental523

statistics. These statistics determine the optimal overall average willingness to wait, but524

they are not explicitly accounted for in previous studies of confidence-guided waiting.525

Here, we developed an expression for the reward rate in the environment which made526

all of the relevant environmental statistics explicit. Using this environmental reward rate,527

we derived an expression for the conditions under which reward was maximized in the528

environment. This generalized the marginal value theorem12 into the case of stochastic529

rewards15 with arbitrary initial expectations about the probability of eventual reward.530

This work made it possible to test whether rats performing this task achieved overall531

reward-rate-maximization, which we refer to as “optimal” behavior.532

One of the key statistics that determines the optimal overall average willingness to533

wait is the travel time incurred when deciding to move on from a given reward opportunity534
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and pursue the next. We observed that our animals were willing to wait longer than fully535

optimal agents who minimized travel time and then maximized reward rate by finding the536

best overall willingness to wait for that minimized travel time. Compared to these agents,537

our animals “overharvested” reward on each trial, as has been seen in other studies of538

foraging behaviors17,14. Unlike fully optimal agents, our animals took longer to travel539

between reward opportunities than was strictly necessary. We asked whether their waiting540

behavior was optimal if we treated their travel times as constrained, meaning that they541

had minimized travel time to the best of their ability and then optimized willingness to542

wait given those travel times. We found that when we treated travel times as constrained,543

the rats’ waiting behavior was near optimal.544

One limitation of our study is that we don’t know for certain that our rats’ have545

minimized travel time to the best of their ability. It is possible that rats could decrease546

time between trials and achieve a higher reward rate. One way that future studies could547

test this would be to impose a longer minimum intertrial interval and test whether rats548

found a new willingness to wait that was optimal for the increased travel times.549

To understand how our rats achieved near-optimal wait times, we developed a model550

of the wait time decision process, which sought to capture the unfolding cognitive state551

throughout the decision. Taking inspiration from the success of the drift diffusion model552

in modeling two alternative decisions27,20,24, we used the sequential probability ratio553

test18 to develop an optimal update rule for a decision variable that can control the554

port-leaving decision. This produced a continuously evolving cognitive process model555

for controlling port-leaving time via the linear drift of a decision variable toward a fixed556

bound. This process model provided a tractable algorithm for implementing optimal557

waiting in the brain in which each of the separate parameters could be learned from558

experience.559

The model also allowed us to consider sources of variability that might contribute560

to the decision process, drawing on extensive work on pacemaker accumulator models561

of timing behavior22. To understand the mapping between willingness to wait and562

confidence, it is useful to know what sources of variability are contributing to wait times.563

Previous work has assumed that variability in the timing of willingness to wait would be564

dominated by the scale invariant property5 in which the standard deviation of observed565

wait times should be proportional to the animals’ desired wait time21. However, this566

assumption had not been tested. We compared three models of timing variability in567

the waiting decision process. The first was a noisy drift model, which produced scale568

invariant timing noise. The second was a diffusion noise model, in which timing noise569

grew like the square root of the interval to be timed. And finally, a noisy bound model,570

in which timing noise was constant across desired wait times. We found that our data571

was most consistent with the model dominated by bound variability.572

While our model provides an improved description of the port-leaving decision process,573

there are several avenues of possible improvement to the model that we should consider574

in the future. First, there are well-documented aspects of the port choice decision process575

that are not being accounted for here, including it’s evolution in time16, effects of trial576

history28, and change in the parameters of the decision process from trial to trial29,3.577

Second, there may be postprocessing of the stimulus following choice that leads to578

evolution of confidence independently from that instructed by the environment30. Finally,579

just as the parameters governing the choice process may evolve from trial to trial, the580

same may happen for the wait time decision either due to learning or changes in internal581

state like increasing satiety or patience31. Indeed, we speculate that continual learning of582

the bound controlling port-leaving may explain the variability we observed in our data.583
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Our model provides a tractable algorithm for solving this task, which can produce584

optimal behavior. The model can also produce a variety of forms of variability and585

deviation from optimality, which we have used to better understand the sources of586

variability in confidence-guided waiting decisions. Future work investigating the neural587

basis of confidence computations using the confidence-guided waiting paradigm should588

seek to link neural activity and perturbations of brain regions to the parameters of a589

dynamic model of the internal cognitive process for deciding when to give up and move590

on, like the one developed here. Using such a model will increase the interpretive power591

of experiments using this paradigm to understand how the brain computes confidence592

estimates and uses them to guide subsequent behavior.593
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Methods594

Subjects595

Animal use procedures were approved by the Princeton University Institutional Animal596

Care and Use Committee and carried out in accordance with NIH standards. All subjects597

were adult male Long Evans rats bred either at Princeton Neuroscience Institute (VGAT-598

ReaChR rats) or by one of the following vendors (wild type rats): Taconic, Hilltop599

and Harlan, USA. Rats were pair-housed unless implanted with infusion cannulae at600

which point they were single-housed. Rats were placed on a water restriction schedule to601

motivate them to perform the task for water rewards.602

Behavioral tasks603

Poisson Clicks We trained rats on the Poisson Clicks task16 with a post-decision wait604

time wager5,6 using an automated training protocol. Throughout training, rats were put605

on a controlled water schedule where they received at least 3% of their weight every day.606

Rats trained each day in training sessions of around 120 minutes.607

In the final stage of training, each trial began with the illumination of a center nose608

port by an LED light inside the port. This LED indicated that the rat could initiate a609

trial by placing its nose into the center port. Rats were required to keep their nose in610

the center port (“center fixation”) for a fixed duration until the LED turned off as a “go”611

signal. During center fixation, two trains of randomly-timed auditory clicks were played612

from speakers on either side of the center port after a variable delay. The duration of the613

click trains was uniformly distributed. The two click trains were each associated with614

one of two side ports and clicks in each click train were generated using different Poisson615

rates. For a given rat, the two generative rates always summed to a fixed value (20 or 40616

clicks s−1).617

After the “go” signal, rats made a port choice by poking their nose into one of the618

two side ports. If they exited from the center port before the “go” signal, the trial was619

considered a violation and they experienced a white noise stimulus followed by a short620

time out. These trials did not yield decisions or wait times, but did contribute to travel621

times.622

Choices were considered correct, and potentially rewarded, if they corresponded to623

the click train with the greater number of clicks, which corresponds to a noiseless ideal624

observer’s estimate of the larger click rate.625

Confidence-guided waiting Rewards were only delivered if the rat stayed at the side626

port until a reward time tr drawn from an exponential distribution between a minimum627

tr,min ∈ (.05s, .5s) and maximum tr,max > 15s with time constant τ = 1.5s. The resulting628

mean reward delay was ⟨tr⟩ = tr,min + τ . After errors, no feedback was delivered. Instead,629

the animal had to eventually give up on waiting for reward and start a new trial.630

With probability ζ ∈ (.05, .15), the trial was turned into a probe trial by setting631

tr = 100s. We did not allow multiple probe trials to occur consecutively. These probe632

trials allowed us to observe port-leaving times on a subset of correct trials when they633

might otherwise have been censored by reward delivery. Rats were given a grace period634

between 500 and 1500ms for leaving and returning to the choice port. If they withdrew635

from the reward port for longer than this grace period, reward was no longer available.636

If the rat returned to the center port, during or after the grace period, a new trial was637
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immediately initiated. If they returned to the chosen side port after the grace period, or638

entered the opposite side port at any time, the possibility of reward delivery was removed.639

For analysis of uncensored wait times, we focused on trials where the rat initiated a new640

trial by center poking within 2 seconds of leaving the side port.641

Shaping642

We shaped the animals by first training them to perform the Poisson Clicks task via a643

standardized set of training stages. We then added the reward delay component. First,644

fixed feedback delays were introduced on both correct and error trials and grew in each645

trial until they reached tr,min. Then, the error feedback delay was incremented from trial646

to trial until the rat never waited long enough to get the error feedback. At that point,647

the error feedback delay was set to 100s. Next, the reward delays were randomized by648

gradually increasing the exponential time constant τ and the maximum delay time tr,max.649

When the tr,max was larger than the rat’s longest waiting times, we set it to 100s. When650

τ reached it’s target value, we introduced probe trials. We did not allow multiple probe651

trials to occur in a row.652

Inclusion criteria653

Rats trained on this task were included in this study if they had more than 30 sessions654

that met the session inclusion criteria and if the fraction of unrewarded trials that ended655

with a re-initiating center poke (as opposed to re-entry in the chosen side port or entry656

into the opposite side port) met a minimum threshold of 55%. The session inclusion657

criteria required that the rat perform at least 150 trials with an overall accuracy rate658

exceeding 60%. In order to prevent the rats from developing biases towards particular659

side ports, an anti-biasing algorithm detected biases and probabilistically generated trials660

with the correct answer on the non-favored side.661

Psychometric curves662

Behavioral sensitivity was assessed using psychometric curves. The probability of choosing663

the rightward port was computed as a function of the binned normalized click difference664

(∆Σ ≡ #R−#L
#R+#L). We fit psychometric curves with 2 parameters, a bias parameter b and a665

noise parameter σ, for all rats as a function of the normalized click difference. We fit the666

data by minimizing the negative log likelihood across trials where the probability of a667

rightward choice on a given trial was given by668

P (go right) = .5

(
1 + erf

(
−b− ∆

Σ

σ
√
2

))
. (23)

Wait time chronometric curves669

Wait time modulation was assessed using error trials and correct probe trials to create670

wait time chronometric curves, which relate mean wait time to the strength of evidence671

supporting the chosen option. Strength of evidence supporting choice was computed as672

∆
Σ × y, where y = ±1 with positive values for correct port choices and negative values for673

incorrect port choices. The trials with the most evidence supporting the chosen option674

have large, positive values and the trials with the most evidence against the chosen option675

have large, negative values. The most difficult trials, with the least evidence weighing on676
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the choice, have small magnitudes. We expect confidence to increase monotonically along677

this axis. We fit a line to each rat’s wait times in the space of normalized click difference678

supporting the choice.679

Optimality analysis680

To test whether rats’ waiting times maximized overall reward rate, we found the optimal681

overall average wait time, t∗w, by evaluating equation 14 for each rat. To do this, we682

estimated the relevant terms contributing to equation 14 from the rats’ datasets: α was683

the fraction of non-probe trials in the rat’s dataset, C0 was the fraction of correct trials,684

τ and tr,min were estimated from the reward delays scheduled for the rat, and t0 was685

estimated from either the mean travel time achieved by the rat (after excluding the686

longest 1% of travel times, because the rats occasionally fully disengaged from the task687

for long periods of time), or the minimum travel time achieved by the rat. Because we688

are only interested in average overall waiting time here, we don’t need to consider the689

variations in wait time associated with confidence. Therefore, this agent was constrained690

to wait the same amount of time on every trial, which allowed us to avoid making choices691

about how to capture variations in confidence for this analysis. We used a root finding692

algorithm to evaluate t∗w for a given set of task statistics. We compared the willingness693

to wait for each of these agents to the average waiting times for the corresponding rat694

in correct probe trials and in a subset of error trials (subsampled to ensure that the695

frequency of error trials in this comparison matched that in the overall dataset). We also696

measured the optimal agent’s reward rate and the fraction of the agent’s reward rate697

achieved by the rat.698

Process model simulations with candidate noise sources699

We used euler integration to simulate the wait time decision process for three candidate700

noise models. In all simulations, we sampled 50,000 trial stimulus strengths, s, with701

replacement from the dataset of an example rat. We then generated a percept, p = s+ ξ,702

for each trial, by adding Gaussian noise, ξ ∼ N (0, σ2
s), to the stimulus. The model made703

a rightward choice if the resulting percept was greater than a decision boundary, which704

we set to zero (i.e., p > b for b = 0). Given this percept, we generated confidence levels705

according to equation 22. We then produced a corresponding x0 and updated it in 25706

millisecond timesteps (∆t = .025s) according to equation 19. The drift was set to it’s707

optimal setting A = − 1
τ (per equation 18) and the bound was set to Z = −3 to produce708

mean wait times across trials that roughly matched the example rat’s. To produce a709

model with scale invariant timing noise, and specifically a coefficient of variation of 0.3, as710

in Lak et al. 5 , we set the drift on each trial to be Atrial = − 1
τ̂ where τ̂ ∼ N (τ, 0.3τ). To711

produce a model with diffusion noise, we added Gaussian noise in each time step drawn712

from N (0, c
√
∆t) with c = 0.3

√
ZA to produce an equivalent level of noise at x0 = 0713

as produced under the scale invariant model. To produce a model with constant noise,714

we sampled a different bound on each trial Ztrial ∼ N (Z, 0.3 · |Z|). The magnitude of715

noise was again chosen to produce the same noise level as the other models for x0 = 0.716

We recorded each models willingness to wait on each trial as the timestep in which the717

particle x first crossed the bound Z.718
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Analysis of variability in simulations and rat data719

We used our simulations to ask what patterns of variability would be expected as a720

function of the stimulus. This was useful for analyzing rat data in which the confidence721

level and x0 level are unknown. To do this, we binned trials by the evidence supporting722

the chosen option for both the simulated data and the rat data. Within these bins, we723

computed kernel density estimates of the distribution, as well as computing the mean,724

standard deviation, and coefficient of variation (ratio of standard deviation to mean) of the725

wait times in each bin. These produced distinct patterns for each of the candidate models,726

which we then compared qualitatively to the rat data. In particular, the assumption of727

scale invariance predicted a flat coefficient of variation, which we did not observe in the728

rat data. Instead, our data was most consistent with the constant bound noise in which729

the standard deviation in each bin grows slowly as mean wait time increases.730

Acknowledgements731

We thank Athena Akrami, Adrian Bondy, Diksha Gupta, Thomas Luo, all other members732

of the Brody lab, as well as Lukas Braun, Nathaniel Daw, Javier Masís, Stefano Sarao733

Mannelli, and Pat Simen for helpful conversations and suggestions. TB acknowledges734

support by NIH grant T32 MH 65214-16. This work was supported by a grant from the735

Simons Foundation (Grant # 542953) awarded to CB, as well as NIH grant R01MH108358736

awarded to CB.737

Author contributions738

T.B. and C.K. developed the rat training protocol. T.B. managed rat training and care.739

T.B. and A.P. derived the equations and models. T.B. analyzed the data. T.B., A.P. and740

C.B. wrote the manuscript. C.B. oversaw all aspects of the project.741

Competing interests statement742

The authors declare no competing interests743

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.07.597954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.07.597954
http://creativecommons.org/licenses/by-nc-nd/4.0/


References744

[1] Alexandre Pouget, Jan Drugowitsch, and Adam Kepecs. Confidence and certainty:745

distinct probabilistic quantities for different goals. Nat. Neurosci., 19(3):366–374,746

March 2016.747

[2] Balázs Hangya, Joshua I. Sanders, and Adam Kepecs. A mathematical framework748

for statistical decision confidence. Neural Computation, 28(9):1840–1858, 09 2016.749

[3] Jan Drugowitsch, André G. Mendonça, Zachary F. Mainen, and Alexandre Pouget.750

Learning optimal decisions with confidence. Proceedings of the National Academy of751

Sciences, 116(49):24872–24880, 2019. doi:10.1073/pnas.1906787116.752

[4] Jan Drugowitsch, Rubén Moreno-Bote, Anne K. Churchland, Michael N. Shadlen, and753

Alexandre Pouget. The cost of accumulating evidence in perceptual decision making.754

Journal of Neuroscience, 32(11):3612–3628, 2012. doi:10.1523/JNEUROSCI.4010-755

11.2012.756

[5] Armin Lak, Gil M. Costa, Erin Romberg, Alexei A. Koulakov, Zachary F.757

Mainen, and Adam Kepecs. Orbitofrontal cortex is required for opti-758

mal waiting based on decision confidence. Neuron, 84(1):190–201, 2014.759

doi:https://doi.org/10.1016/j.neuron.2014.08.039.760

[6] Adam Kepecs, Naoshige Uchida, Hatim A. Zariwala, and Zachary F. Mainen. Neural761

correlates, computation and behavioural impact of decision confidence. Nature, 455762

(7210):227–231, August 2008. doi:10.1038/nature07200.763

[7] Paul Masset, Torben Ott, Armin Lak, Junya Hirokawa, and Adam Kepecs. Behavior-764

and Modality-General representation of confidence in orbitofrontal cortex. Cell, 182765

(1):112–126.e18, July 2020.766

[8] A Stolyarova, M Rakhshan, E E Hart, T J O’Dell, M A K Peters, H Lau, A Soltani,767

and A Izquierdo. Contributions of anterior cingulate cortex and basolateral amygdala768

to decision confidence and learning under uncertainty. Nat. Commun., 10(1):4704,769

October 2019.770

[9] Hannah R. Joo, Hexin Liang, Jason E. Chung, Charlotte Geaghan-Breiner, Jiang Lan771

Fan, Benjamin P. Nachman, Adam Kepecs, and Loren M. Frank. Rats use memory772

confidence to guide decisions. Current Biology, 31(20):4571–4583, 2021/11/11 2021.773

doi:10.1016/j.cub.2021.08.013.774

[10] K. Schmack, M. Bosc, T. Ott, J. F. Sturgill, and A. Kepecs. Striatal dopamine775

mediates hallucination-like perception in mice. Science, 372(6537), April 2021.776

doi:10.1126/science.abf4740.777

[11] Andrew Mah, Shannon S. Schiereck, Veronica Bossio, and Christine M. Constantino-778

ple. Distinct value computations support rapid sequential decisions. Nature Com-779

munications, 14(1):7573, November 2023. doi:10.1038/s41467-023-43250-x. Number:780

1 Publisher: Nature Publishing Group.781

[12] E L Charnov. Optimal foraging, the marginal value theorem. Theor. Popul. Biol., 9782

(2):129–136, April 1976.783

[13] David W Stephens and John R Krebs. Foraging Theory, volume 1. Princeton784

University Press, 1986. ISBN 9780691084411.785

[14] Sara M. Constantino and Nathaniel D. Daw. Learning the opportunity cost of time786

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.07.597954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.07.597954
http://creativecommons.org/licenses/by-nc-nd/4.0/


in a patch-foraging task. Cognitive, Affective, and Behavioral Neuroscience, 15(4):787

837–853, April 2015. doi:10.3758/s13415-015-0350-y.788

[15] John McNamara. Optimal patch use in a stochastic environment. Theoretical789

Population Biology, 21(2):269–288, April 1982. doi:10.1016/0040-5809(82)90018-1.790

[16] Bingni W. Brunton, Matthew M. Botvinick, and Carlos D. Brody. Rats and humans791

can optimally accumulate evidence for decision-making. Science, 340(6128):95–98,792

2013. doi:10.1126/science.1233912.793

[17] Gary A Kane, Aaron M Bornstein, Amitai Shenhav, Robert C Wilson, Nathaniel D794

Daw, and Jonathan D Cohen. Rats exhibit similar biases in foraging and intertempo-795

ral choice tasks. eLife, 8:e48429, September 2019. doi:10.7554/eLife.48429. Publisher:796

eLife Sciences Publications, Ltd.797

[18] A Wald. Sequential tests of statistical hypotheses. Ann. Math. Stat., 16(2):117–186,798

1945.799

[19] Roger Ratcliff and Gail McKoon. The diffusion decision model: theory and data800

for two-choice decision tasks. Neural Computation, 20(4):873–922, April 2008.801

doi:10.1162/neco.2008.12-06-420.802

[20] Joshua I. Gold and Michael N. Shadlen. The neural basis of de-803

cision making. Annual Review of Neuroscience, 30(1):535–574, 2007.804

doi:10.1146/annurev.neuro.29.051605.113038.805

[21] John Gibbon. Scalar expectancy theory and weber’s law in animal timing. The806

psychological review., 84(3), 1977.807

[22] Patrick Simen, Francois Rivest, Elliot A. Ludvig, Fuat Balci, and Peter Killeen.808

Timescale invariance in the pacemaker-accumulator family of timing models. Timing809

& Time Perception, 1(2):159–188, January 2013. doi:10.1163/22134468-00002018.810

Publisher: Brill.811

[23] Patrick Simen, Ksenia Vlasov, and Samantha Papadakis. Scale (in)variance in a812

unified diffusion model of decision making and timing. Psychological Review, 123(2):813

151–181, 2016. doi:10.1037/rev0000014.814

[24] Roger Ratcliff. A theory of memory retrieval. Psychological Review, 85(2):59–108,815

March 1978. doi:10.1037/0033-295x.85.2.59.816

[25] Jacob D. Davidson and Ahmed El Hady. Foraging as an evidence accu-817

mulation process. PLOS Computational Biology, 15(7):e1007060, July 2019.818

doi:10.1371/journal.pcbi.1007060.819

[26] Benjamin Y Hayden, John M Pearson, and Michael L Platt. Neuronal basis of820

sequential foraging decisions in a patchy environment. Nature Neuroscience, 14(7):821

933–939, June 2011. doi:10.1038/nn.2856.822

[27] Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan Cohen. The823

physics of optimal decision making: A formal analysis of models of performance in824

two-alternative forced-choice tasks. Psychological Review, 2006.825

[28] Diksha Gupta, Brian DePasquale, Charles D. Kopec, and Carlos D. Brody. Trial-826

history biases in evidence accumulation can give rise to apparent lapses in decision-827

making. Nature Communications, 15(1), January 2024. doi:10.1038/s41467-024-828

44880-5.829

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.07.597954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.07.597954
http://creativecommons.org/licenses/by-nc-nd/4.0/


[29] Nicholas A. Roy, Ji Hyun Bak, Athena Akrami, Carlos D. Brody, and Jonathan W.830

Pillow. Extracting the dynamics of behavior in sensory decision-making experiments.831

Neuron, 109(4):597–610.e6, February 2021. doi:10.1016/j.neuron.2020.12.004.832

[30] Joaquin Navajas, Bahador Bahrami, and Peter E Latham. Post-decisional accounts833

of biases in confidence. Current Opinion in Behavioral Sciences, 11:55–60, October834

2016. doi:10.1016/j.cobeha.2016.05.005.835

[31] Michael Bukwich, Malcolm G. Campbell, David Zoltowski, Lyle Kingsbury, Mom-836

chil S. Tomov, Joshua Stern, HyungGoo R. Kim, Jan Drugowitsch, Scott W. Linder-837

man, and Naoshige Uchida. Competitive integration of time and reward explains838

value-sensitive foraging decisions and frontal cortex ramping dynamics. bioRxiv,839

September 2023. doi:10.1101/2023.09.05.556267.840

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.07.597954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.07.597954
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information

A cognitive process model captures near-optimal

confidence-guided waiting in rats

J Tyler Boyd-Meredith, Alex T Piet, Chuck D Kopec, and Carlos D Brody

Contents

1 Derivation of reward-rate-maximizing behavior 2
1.1 Expected reward per trial . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Expected time per trial . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Reward maximization doesn’t depend on consumption time . . . 4
1.3 Derivation of posterior belief that reward will be delivered . . . . . . . . 5
1.4 Derivation of optimal willingness to wait . . . . . . . . . . . . . . . . . . 5

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.07.597954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.07.597954
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Derivation of reward-rate-maximizing behavior

The total reward rate in the task is defined as the expected reward per trial, g(tw),
divided by the expected time spent in each trial, Ttotal:

RRtotal =
g(tw)

Ttotal(tw)
. (S1)

To maximize the reward rate, we find the condition such that its derivative is zero,
∂RRtotal

∂tw
= 0. We compute the derivative using the quotient rule

∂RRtotal

∂tw
=

∂g(tw)
∂tw

Ttotal(tw)− ∂Ttotal(tw)
∂tw

g(tw)

T 2
total(tw)

,

which is equal to zero when

∂g(t∗w)
∂tw

Ttotal(t
∗
w) =

∂Ttotal(t
∗
w)

∂tw
g(t∗w)

∂g(t∗w)
∂tw

∂tw
∂Ttotal(t∗w)

=
g(t∗w)

Ttotal(t∗w)
∂g

∂Ttotal
(t∗w) = RR∗

total (S2)

where t∗w is the reward-maximizing willingness to wait and RR∗
total is the reward achieved

at t∗w.
To find a solution for t∗w for a given set of task statistics from equation S2, we need

expressions for g(tw) and Ttotal(tw). To do so, we will use the notation introduced in
the main text to simplify these expressions. We will use

rw ≡ (tw, tw + δt) (S3)

to indicate whether reward is set to be delivered in some infinitesimal timestep δt be-
ginning at time tw. Then, we can indicate whether reward is set to be delivered before
time tw using the sum

Rw ≡
w−1∑

i=0

ri. (S4)

We will use the negation, ¬Rw, to indicate when no reward is delivered by time tw.

1.1 Expected reward per trial

Because at most 1 reward is delivered per trial and it always has the same magnitude,
we can set the reward magnitude to 1 and make the expected reward per trial equivalent
to the probability of reward in a trial

g(tw) ≡ P (Rw). (S5)

Our reward distribution is exponential, meaning that, given that reward is coming, the
delivery times, tr, are distributed according to

P (rw | R∞) =
1

τ
e−(tw−tr,min)/τ
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where τ is an experimenter-specified time constant and tr,min is an experimenter-specified
minimum reward time (equation 1 in the main text). The probability of receiving a
reward before time tw depends on this distribution and on the probability that reward
will be delivered on this trial, P (R∞). The probability that reward will be delivered on
this trial is estimated based on the decision confidence, C0, and the probability that a
trial is not a probe a trial, α:

P (R∞) = αC0

(equation 4 in the main text). The expected reward per trial as the probability of
receiving a reward before time tw is the cumulative density function for the exponential
given that the reward is coming times the prior probability that the reward is coming,
P (R∞):

g(tw) = P (Rw | R∞)P (R∞)

= αC0(1− e−(tw−tr,min)/τ ) (S6)

where we have used the cumulative density for an exponential to compute P (Rw | R∞).

1.2 Expected time per trial

The expected time per trial can be broken into three epochs: the time between leaving
the reward port on the previous trial and entering a reward port on the current trial,
t0, the time spent at the port on the current trial, tport, and the time spent consuming
reward on the current trial, tdrink. Adding together the expected duration of each epoch,
we get:

Ttotal = t0 + E [tport | tw] + E [tdrink | tw] . (S7)

The first quantity is referred to as the “travel time” and, for the reward-maximizing
agent, does not depend on tw. The other two quantities depend on whether reward is
set to be delivered and how long the agent is willing to wait. The consumption time,
tdrink, is either 0, if no reward is received, or a constant, if reward is delivered. Its
expectation can be written

E [tdrink | tw] = tdrinkP (Rw) = tdrinkg(tw). (S8)

We will show that E [tdrink | tw] can be ignored for the reward maximization process.

Expected time at the port To compute the expected time at the port, E [tport | tw],
we will separately consider trials in which reward is not set to be delivered and trials in
which reward will be delivered if the agent waits long enough. Marginalizing over these
possibilities gives us

E [tport | tw] = E [tport | tw,¬R∞]P (¬R∞) + E [tport | tw, R∞]P (R∞) (S9)

When no reward is set to be delivered, the agent always gives up and moves on at
the time tw:

E [tport | tw,¬R∞] = tw. (S10)
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In trials where reward is set to be delivered at some time tr, the time at the port
can take one of two values. If the agent is not willing to wait long enough to get the
reward, the agent will give up before the reward is delivered and we will again observe
time tw spent at the port:

E [tport | tw, R∞, tr > tw] = tw (S11)

If the agent is willing to wait long enough to get the reward, the reward delivery will
censor the agent’s willingness to wait and we will observe tr time spent at the port.
To compute the expected port time for this trial type, we need to marginalize over the
possible values that tr can take, as follows:

E [tport | tw, R∞, tr ≤ tw] =

∫ tw

tr,min

t · P (tr = t | R∞, tr ≤ tw)dt

=

∫ tw

tr,min

t · P (tr ≤ tw | R∞, tr = t)P (tr = t | R∞)

P (tr ≤ tw | R∞)
dt

=
1

P (tr ≤ tw | R∞)

∫ tw

tr,min

tP (tr = t | R∞)dt

=
1

P (tr ≤ tw | R∞)

∫ tw

0

t

τ
e−(t−tr,min)/τdt

=
tr,min + τ(1− e−tw−tr,min/τ )− twe

−(tw−tr,min)/τ

P (tr ≤ tw | R∞)
(S12)

Combining equations S11 and S12 and multiplying each by their probabilities, we
can compute the expected time at the port on trials where reward is set to be delivered
eventually:

E [tport | tw, R∞] = E [tport | tw, R∞, tr > tw]P (tr > tw | tw, R∞) +

E [tport | tw, R∞, tr ≤ tw]P (tr ≤ tw | tw, R∞)

= twe
−(tw−tr,min)/τ + tr,min + τ(1− e−(tw−tr,min)/τ )− twe

−(tw−tr,min)/τ

= tr,min + τ(1− e−(tw−tr,min)/τ ) (S13)

Finally, we can combine the expected port time in trials where no reward is baited
(equation S10) and trials where reward is set to be delivered if the agent waits long
enough (equation S13) to get the expected time at the port overall:

E [tport | tw] = E [tport | tw,¬R∞]P (¬R∞) + E [tport | tw, R∞]P (R∞)

= (1− αC0) tw + αC0

(
tr,min + τ

(
1− e−(tw−tr,min)/τ

))
(S14)

1.2.1 Reward maximization doesn’t depend on consumption time

As mentioned above, we can ignore the consumption time in the reward maximization
process, which simplifies equation S2. We will use T (tw) ≡ t0+E [tport | tw], to represent
the expected time spent searching for, but not consuming reward. We will use RR ≡
g(tw)
T (tw) to represent the reward rate per time spent searching for reward. We can rewrite
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equation S2 with the consumption times made explicit and show that it can be ignored

∂g

∂Ttotal
(t∗w) = RR∗

total

∂
∂tw

g(t∗w)
∂

∂tw
T (t∗w) + tdrink

∂
∂tw

g(t∗w)
=

g(t∗w)
T (t∗w) + tdrinkg(t∗w)

∂
∂tw

T (t∗w)
∂

∂tw
g(t∗w)

+ tdrink =
T (t∗w)
g(t∗w)

+ tdrink

∂
∂tw

g(t∗w)
∂

∂tw
T (t∗w)

=
g(t∗w)
T (t∗w)

∂g

∂T
(t∗w) = RR∗.

We will use equation 8 to find the optimal waiting behavior.

1.3 Derivation of posterior belief that reward will be delivered

From equation 11 in the main text, we know that the posterior belief that reward will
be delivered on a given trial after waiting for time tw without receiving reward is

P (R∞ | ¬Rw) =
P (¬Rw | R∞)P (R∞)

P (¬Rw)
.

The first term in the numerator is the probability that reward is not delivered by time tw
given that it will be delivered eventually, which is the survivor function of the exponential
distribution (or 1 minus the CDF)

P (¬Rw | R∞) = e−(tw−tr,min)/τ . (S15)

The denominator can be expressed as

P (¬Rw) = P (¬Rw | ¬R∞)P (¬R∞) + P (¬Rw | R∞)P (R∞)

= 1− αC0 + αC0e
−(tw−tr,min)/τ (S16)

where we have used equation S15 and the fact that P (¬R∞) = 1− P (R∞). Combining
these expressions with the definition of P (R∞) (equation 4), we get:

P (R∞ | ¬Rw) =
αC0e

−(tw−tr,min)/τ

1− αC0 + αC0e−(tw−tr,min)/τ
.

1.4 Derivation of optimal willingness to wait

We rearrange the terms of the optimality condition from equation 8 and use the ex-
pression we derived for the instantaneous reward expectation (equation 13) to find the
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optimal willingness to wait

∂g

∂T
(t∗w) = RR∗

P (rw | ¬Rw) = RR∗

1

τ
· αC0e

−(t∗w−tr,min)/τ

1− αC0 + αC0e−(t∗w−tr,min)/τ
= RR∗

αC0

(1− αC0)e(t
∗
w−tr,min)/τ + αC0

= RR∗τ

(1− αC0)e
(t∗w−tr,min)/τ =

αC0

RR∗τ
− αC0

e(t
∗
w−tr,min)/τ =

αC0 − αC0RR∗τ
(1− αC0)RR∗τ

e(t
∗
w−tr,min)/τ =

αC0(1−RR∗τ)
(1− αC0)RR∗τ

t∗w = tr,min + τ log

(
αC0

1− αC0

1−RR∗τ
RR∗τ

)

t∗w = tr,min + τ

(
log

αC0

1− αC0
− log

RR∗τ
1−RR∗τ

)
.
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