
OR I G I N A L AR T I C L E

Computational drug prediction in hepatoblastoma by
integrating pan-cancer transcriptomics with
pharmacological response

Mario Failli1,2 | Salih Demir3 | Álvaro Del Río-Álvarez4 |

Juan Carrillo-Reixach4,5 | Laura Royo4 | Montserrat Domingo-Sàbat4 |

Margaret Childs5 | Rudolf Maibach6 | Rita Alaggio7 | Piotr Czauderna8 |

Bruce Morland9 | Sophie Branchereau10 | Stefano Cairo11,12 |

Roland Kappler3 | Carolina Armengol4,13 | Diego di Bernardo1,2

1Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy

2Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Naples, Italy

3Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany

4Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain

5Nottingham Clinical Trials Unit, Nottingham, United Kingdom

6International Breast Cancer Study Group Coordinating Center, Bern, Switzerland

7Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy

8Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, Gdansk, Poland

9Department of Oncology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom

10Bicêtre Hospital, Le Kremlin-Bicêtre, France

11XenTech, Evry, France

12Champions Oncology, Rockville, Maryland, USA

13Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid, Spain

Abbreviations: ACTB, beta-actin; AFP, alpha-fetoprotein; ALL, acute lymphocytic leukemia; ALVO, alvocidib; AML, acute myeloid leukemia; ATCC, The American
Type Culture Collection; BCP-ALL, B-cell precursor acute lymphoblastic leukemia; C1, hepatoblastoma subgroup 1; C2, hepatoblastoma subgroup 2; CARBO,
carboplatin; CCL, cancer cell line; CCLE, Cancer Cell Line Encyclopaedia; CDK9, cyclin-dependent kinase 9; CHIC-HS, Children’s Hepatic Tumors International
Collaboration; CTNNB1, beta-catenin; CTRL, Control; CTRPv2, Cancer Therapeutics Response Portal version 2; DGCP, drug-gene correlation profile; DINA,
Dinaciclib; DREAM, Dialogue for Reverse Engineering Assessment and Methods; EdU, ethynyl deoxyuridine; ES, enrichment score; EW, Ewing sarcoma; FDA, Food
and Drug Administration; FDR, false discovery rate; FP, false positive; GEP, gene expression profile; GSEA, gene set enrichment analysis; H, high; HB,
hepatoblastoma; HCC, hepatocellular carcinoma; HDFa, Human Dermal Fibroblast Adult; HDFn, Human Dermal Fibroblast Neonatal; HRP, horseradish peroxidase; I,
intermediate; i.p., intraperitoneal; Ki-67, A protein associated with cell proliferation; L, low; LC, liver cancer; MB, medulloblastoma; MKI67, marker of proliferation Ki-67;
MLL-ALL, MLL-rearranged acute lymphoblastic leukemia; MSigDB, Molecular Signature Database; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;
MYC, MYC protein; NB, neuroblastoma; NCI, National Cancer Institute; NICLO, niclosamide; NT, nontumor; OLA, olaparib; PARP1, poly (ADP-ribose) polymerase 1;
PCAT, PDX for childhood cancer therapeutics; PCC, Pearson correlation coefficient; PDX, patient-derived xenograft; SDS, sodium dodecyl sulfate; SIOPEL-3,
International Childhood Liver Tumours Strategy Group - SIOPEL 3 Clinical Trial; T-ALL, T-cell acute lymphoblastic leukemia; TP, true positive; VENETO, venetoclax;
VL, very low; WT, Wilms tumor; YAP, Yes-associated protein.

Mario Failli and Salih Demir contributed equally.

Supplemental Digital Content is available for this article. Direct URL citations are provided in the HTML and PDF versions of this article on the journal’s website,
www.hepjournal.com.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

Received: 9 June 2023 | Accepted: 11 August 2023

DOI: 10.1097/HEP.0000000000000601

Hepatology. 2024;80:55–68. www.hepjournal.com | 55

https://orcid.org/0000-0002-3490-7714
https://orcid.org/0000-0002-3490-7714
https://orcid.org/0000-0002-3490-7714
https://orcid.org/0000-0002-3490-7714
https://orcid.org/0000-0002-4725-5970
https://orcid.org/0000-0002-4725-5970
https://orcid.org/0000-0002-4725-5970
https://orcid.org/0000-0002-4725-5970
https://orcid.org/0000-0002-4725-5970
https://orcid.org/0000-0002-8581-2803
https://orcid.org/0000-0002-8581-2803
https://orcid.org/0000-0002-8581-2803
https://orcid.org/0000-0002-8581-2803
https://orcid.org/0000-0002-4690-4027
https://orcid.org/0000-0002-4690-4027
https://orcid.org/0000-0002-4690-4027
https://orcid.org/0000-0002-4690-4027
https://orcid.org/0000-0002-1911-7407
https://orcid.org/0000-0002-1911-7407
https://orcid.org/0000-0002-1911-7407
http://www.hepjournal.com
http://creativecommons.org/licenses/by/4.0/
http://www.hepjournal.com


Abstract

Background and Aims: Hepatoblastoma (HB) is the predominant form of

pediatric liver cancer, though it remains exceptionally rare. While treatment

outcomes for children with HB have improved, patients with advanced

tumors face limited therapeutic choices. Additionally, survivors often suffer

from long-term adverse effects due to treatment, including ototoxicity,

cardiotoxicity, delayed growth, and secondary tumors. Consequently, there

is a pressing need to identify new and effective therapeutic strategies for

patients with HB. Computational methods to predict drug sensitivity from a

tumor’s transcriptome have been successfully applied for some common

adult malignancies, but specific efforts in pediatric cancers are lacking

because of the paucity of data.

Approach and Results: In this study, we used DrugSense to assess drug

efficacy in patients with HB, particularly those with the aggressive C2 sub-

type associated with poor clinical outcomes. Our method relied on publicly

available collections of pan-cancer transcriptional profiles and drug

responses across 36 tumor types and 495 compounds. The drugs predicted

to be most effective were experimentally validated using patient-derived

xenograft models of HB grown in vitro and in vivo. We thus identified 2 cyclin-

dependent kinase 9 inhibitors, alvocidib and dinaciclib as potent HB growth

inhibitors for the high-risk C2 molecular subtype. We also found that in a

cohort of 46 patients with HB, high cyclin-dependent kinase 9 tumor

expression was significantly associated with poor prognosis.

Conclusions: Our work proves the usefulness of computational methods

trained on pan-cancer data sets to reposition drugs in rare pediatric cancers

such as HB, and to help clinicians in choosing the best treatment options for

their patients.

INTRODUCTION

Hepatoblastoma (HB) is the main pediatric liver
cancer; however, it is a very rare disease with an
approximate incidence of one case in 1 million children
per year.[1] HB is characterized by a low mutation
burden,[2] but with a high recurrence of activating
CTNNB1 mutations[3,4]; hence, the determinants of the
clinical heterogeneity of HB are mainly related to
differences in their transcriptome and epigenome
rather than its genome. In line with this observation,
2 main transcriptomic (C1 and C2) and epigenomic
(Epi-CA and Epi-CB) HB subtypes have been identi-
fied and associated with clinical behavior.[5,6] In
particular, the C2 subtype displays features of aggres-
sive tumors characterized by having a stemness-like
profile, high proliferation, and upregulation of MYC
protein (MYC) target genes, resulting in a poor clinical
outcome.

Significant improvements have occurred in the
treatment of children diagnosed with HB. However,
there are still limited treatment options for patients
resistant to current treatments.[7] Accordingly, there is
an urgent need to define new and efficient therapeutic
strategies for patients with HB.

Transcriptomic profiles have been effectively used
to identify tumor subtypes, tumor-specific master
regulators, and risk stratification in the most commonly
occurring cancers.[8] Moreover, computational meth-
ods to predict drug sensitivity from baseline molecular
features of cancer cell lines (CCLs) have been
described in the literature, aided by the availability of
large-scale genomic and transcriptomic data together
with cell line–specific response to hundreds of drugs
and research compounds.[9–15] Specifically, it has
been shown that the basal gene expression profile
(GEP) of a CCL, measured in bulk or even at the
single-cell level, can be used to predict its sensitivity,
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or resistance, to hundreds of drugs[13,14,16,17] and drug
combinations.[18]

Here, we asked whether computational methods
to predict drug sensitivity that are trained on pan-
cancer transcriptional data sets could be successfully
used to find therapeutic drugs also in the case of
patients with HB, for which transcriptional profiles[5]

measured in the 2 prognostic C1 and C2 HB subtypes
are available.

To this end, we implemented a simple computational
approach, which we named DrugSense, to identify
drugs specific for the C2 subtype starting from their
tumor transcriptional profile. DrugSense exploits large
publicly available data sets[9] containing transcriptional
profiles of 1375 pan-CCLs and their drug response to
495 compounds to identify gene expression biomarkers
of both drug sensitivity and drug resistance for each
compound. DrugSense then uses these biomarkers to

identify the drugs to which the patient will be most
sensitive to, starting from the tumor’s transcriptional
profile.

We applied DrugSense to predict drug sensitivity in a
cohort of 24 patients with HB. We found 2 cyclin-
dependent kinase 9 (CDK9) inhibitors, alvocidib and
dinaciclib, acting as potent HB growth inhibitors for the
high-risk C2 tumor subtype,[5,6] which were then further
validated in HB patient-derived xenograft (PDX) models
grown in vitro and in vivo.

Computational prediction of drug response
from GEPs

DrugSense is schematically depicted in Figure 1A, B
and it is divided into a training phase and an analysis
phase. During the training phase, which is executed

F IGURE 1 Overview of DrugSense and in silico validation in CCLs and PDX models in the Childhood Cancer Therapeutics portal. (A) Training
phase: expression biomarkers of resistance and sensitivity are identified for each drug present in the CTRPv2 database. Biomarkers are selected by
correlating gene expression with drug potency across cell lines. The drug potency is as the AUC of the dose-growth inhibition curve. Each dot refers to
one cell line and indicates the cell line-specific expression of the gene (y-axis) and the cell line-specific drug potency (x-axis). The PCC between gene
expression and drug potency is thus computed for each gene. Genes are ordered by PCC to obtain the DGCP. (B) Analysis of a tumor transcriptional
profile: the gene expression profile is sorted from the most to the least expressed gene and compared against the DGCP of a drug by Gene Set
Enrichment Analysis. The drug G-score is defined as the geometric mean of four p-values computed by performing 4 Gene Set Enrichment analyses
to check whether: (1) the 250 most expressed genes in the tumor tend to be biomarkers of sensitivity; (2) the 250 least expressed genes in the tumor
tend to be biomarkers of resistance; (3) the 250 biomarkers of sensitivity at the bottom of the DGCP tend to be upregulated in the tumor; (4) the 250
biomarkers of resistance at the top of the DGCP tend to be downregulated in the tumor. Drugs are then ranked by their G-score in ascending order
according to their predicted potency. (C, D) CCL/drug pairs are ranked according to their G-score in ascending order and reported as percentiles on
the x-axis. The PPV is normalized against the random PPV (black dashed line) obtained by ordering drug randomly rather than according to their
G-score. Normalized PPVs for 672 CCLs from solid (gray) and 83 from liquid (red) tumors in (C), whereas PPV curves for 6 distinct collections of cell
lines from pediatric tumors are shown in (D). (E, F) PDX/drug pairs are ranked according to their G-score in ascending order and reported as
percentiles on the x-axis. Normalized PPV of DrugSense for all PDXs derived from solid tumors (gray) and liquid tumors (red) are shown in (E). PPV
curves for PDX belonging to the 6 distinct pediatric tumors are shown in (F). Abbreviations: ALL, acute lymphocytic leukemia; AML, acute myeloid
leukemia; BCP-ALL, B-cell precursor acute lymphoblastic leukemia; CCL, cancer cell line; CCLE, Cancer Cell Line Encyclopaedia; CTRPv2, Cancer
Therapeutics Response Portal; DGCP, drug-gene correlation profile; EW, Ewing sarcoma; LC, liver cancer; MB, medulloblastoma; NB, neuroblas-
toma; MLL-ALL, MLL-rearranged acute lymphoblastic leukemia; PCC, Pearson correlation coefficient; PDX, patient-derived xenograft; T-ALL, T-cell
acute lymphoblastic leukemia; WT, Wilms tumor.

COMPUTATIONAL DRUG PREDICTION IN HEPATOBLASTOMA | 57



only once, DrugSense identifies biomarkers of
sensitivity and resistance for each compound of
interest by combining large-scale publicly available
data sets of bulk GEPs of untreated cells from the
Cancer Cell Line Encyclopaedia,[9] with drug response
data from the Cancer Therapeutics Response
Portal (CTRPv2). These databases contain the bulk
expression profiles of 1375 CCLs across 36 tumor types
and their drug response to 495 compounds. Once these
biomarkers have been identified during the analysis
phase, they can be used to analyze the bulk GEP of a
tumor and to score the drugs according to their
predicted potency, as depicted in Figure 1B.

During the training phase, for each gene and for each
drug (ie, a gene/drug pair), DrugSense computes the
Pearson correlation coefficient between the expression
of the gene and the in vitro response to the drug across
all CCLs. As shown in Figure 1A, biomarkers of drug
resistance must be positively correlated with the AUC of
the dose-growth inhibition curve across CCLs (the more
expressed the gene is in a CCL, the higher the drug
concentration needed to inhibit cell growth); vice versa,
a negative correlation denotes a biomarker of drug
sensitivity. Genes are thus ranked according to their
correlation coefficient to give rise to a “drug-gene
correlation profile” (DGCP). Genes at the top of the
DGCP are positively correlated with the AUC and are
thus likely markers of resistance, and vice versa those
at the bottom of the DGCP are likely markers of
sensitivity. At the end of the training phase, for each
of the 495 drugs in the CTRPv2 database, there will
be a corresponding DCGP. In the analysis phase,
DrugSense uses DGCPs to rank drugs according to
their anticancer effect starting from the GEP of a tumor
sample, as shown in Figure 1B. To do so, DrugSense
performs four different gene set enrichment analysis
(GSEA)[19] for each drug. The geometric mean of
individual probabilities (ie, the G-score) is then
computed for the drug (Figure 1B). The smaller the
G-score, the higher the likelihood that the tumor is
sensitive to the drug. Finally, drugs are ranked in
ascending order according to their G-score, with drugs
with the smallest G-score at the top of the list.

DrugSense was trained separately on the 672 CCLs
from solid tumors, for which drug potency data were
available for 445 drugs, and on the 83 CCLs from
liquid tumors across 414 drugs, resulting in a total of
859 (= 445+414) DGCPs (Supplemental Figure S1A,
B, http://links.lww.com/HEP/I17). Moreover, as shown
in Supplemental Figure S1C, http://links.lww.com/
HEP/I17 for both solid and liquid tumors, genes in
the same pathways as the drug target tend to be
significantly anticorrelated with the drug AUC as
compared to genes belonging to pathways unrelated
to the drug target (Mann-Whitney test p-value< 2.2e-
16), thus confirming the biological relevance of the
resulting DGCPs.

To assess whether DrugSense could indeed predict
drug sensitivity from a tumor’s transcriptional profiles,
we first applied it to the GEPs of the very same CCLs
used in the training phase. As a gold standard, we took
advantage of the CTRPv2 database to assign to each
CCL, one or more drugs to which the CCL is sensitive
to, according to the reported experimental dose-
response curves (Methods). As shown in Figure 1C,
DrugSense precision for both solid and liquid
CCLs proved to be up to 6-fold and 15-fold better
than random, respectively. Figure 1D reports the
performance in terms of positive predictive value
(PPV) only for the subset of CCLs derived from
pediatric tumors. As a negative control, we analyzed
solid CCLs with DrugSense trained on liquid CCLs, and
vice versa. In this case, the PPV is close to the random
value, as expected (Supplemental Figure S1D, http://
links.lww.com/HEP/I17). We also confirmed the robust-
ness of DrugSense against algorithm’s parameters,
specifically we varied the gene set size used for the
GSEA analyses (Supplemental Figure S2, http://links.
lww.com/HEP/I17) and also how individual -values are
integrated when computing the G-score (Supplemental
Figures S2 and S3, http://links.lww.com/HEP/I17). In all
the tested cases, the overall PPV of DrugSense was
only minimally affected.

As cell lines are more proliferative than tumors in a
patient, the use of cell line–based drug-sensitivity
profiles may bias toward the selection of antiproliferative
agents that interfere with the cell cycle. Hence, we
performed an additional analysis by first grouping drugs
according to their known targets, so that drugs whose
targets belong to the same biological pathways are in
the same group. To this end, we extracted gene sets
representing well-defined biological pathways from the
manually curated Molecular Signature Database
(MSigDB).[20] We then calculated the PPVs for each
group of drugs to assess for differences in predictive
power. As shown in Supplemental Figure S4, http://
links.lww.com/HEP/I17, we did not observe any bias for
any biological pathway, including the cell cycle.

As an additional validation, we applied DrugSense to
a separate data set of transcriptional profiles measured
in the same CCLs but derived from the Genomics of
Drug Sensitivity in Cancer database.[10] The aim of the
new benchmark was to assess whether applying
DrugSense on transcriptional profiles not used during
the training phase and measured with a different
platform (ie, microarrays) would result in similar
precision. PPV curves shown in Supplemental Figure
S1E–G, http://links.lww.com/HEP/I17 confirm that this is
the case.

We also assessed DrugSense performance in ana-
lyzing transcriptional profiles from a collection of 39 PDX
for Childhood Cancer Therapeutics (PCAT) portal,[21] of
which 31 from solid tumors and 8 from liquid tumors,
whose response to 44 drugs was experimentally
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measured. Out of these 44 drugs, 23 were present in
DrugSense for solid tumors, and 21 for liquid tumors
(Supplemental Figure S1H, I, http://links.lww.com/HEP/
I17). We generated a gold standard by calling a PDX
sensitive to a drug if it was classified in PCAT as inducing
either a complete response or a partial response; if
instead the PCAT classification was stable disease or
progressive disease, the PDX was deemed resistant to
the drug. DrugSense precision is reported in Figure 1E, F
by plotting the PPV for all the PDX-drug pairs ranked in
ascending order by their G-score.

DrugSense performed significantly better on solid
tumor than liquid tumors; this could be due to the small
sample size, as only 8 PDX models were available for
liquid tumors versus 31 for solid tumors. We also
computed tumor-specific performance of DrugSense,
as shown in Figure 1F. As a negative control, we
analyzed PDX transcriptional profiles from solid tumor
PDXs with DrugSense trained on liquid tumors, and
vice versa. As shown in Supplemental Figure S1J,
http://links.lww.com/HEP/I17, the precision was close to
the random value, as expected. These data show that

DrugSense achieves a better than random performance
for 4 out of the 5 pediatric tumor subtypes.

Finally, we compared the performance of Drug-
Sense with other computational methods that have
been previously published. We used the benchmark-
ing data from a recent international challenge that
focused on adult cancers.[15] As shown in Supplemen-
tal Figure S5, http://links.lww.com/HEP/I17, Drug-
Sense achieved comparable results to the other
methods on adult cancers, despite its simplicity and
easy interpretability.

Computational identification of potentially
therapeutic drugs for high-risk patients
with HB

We applied DrugSense to published transcriptional
profiles[5] measured in a cohort of patients with C1 and
C2 subtype HB. As depicted in Figure 2A, we first
analyzed the individual transcriptional profile of each
patient in the cohort to obtain one list of drugs ranked

F IGURE 2 DrugSense identifies drugs specific for the aggressive C2 hepatoblastoma subtype. (A) Transcriptional profiles in a cohort of 24
patients with hepatoblastomawhose tumor belonging either to the C1 subtype (n=18) or the C2 subtype (n=8). Each profile was separately
analyzed by DrugSense yielding a ranked list of drugs for each patient. The patient-specific ranked lists of drugs for patients of the same subtype
(C1 or C2) were aggregated together to yield a single list of drugs. At the end of the process, only 2 subtype-specific ranked lists of drugs remain,
one for the C1 subtype and one for the C2 subtype. (B) The 11 drugs predicted to be specific for the C2 subtype ordered by median G-score. (C, D)
Median G-score across patients with C1 (C) and patients with C2 (D) for each of the 445 drugs. Highlighted regions show the top 20 ranked drugs
(purple) and bottom 50 ranked drugs (orange) determined using the Cross-Entropy Monte Carlo algorithm to aggregate the drug-ranked lists of
individual patients (Methods). Abbreviations: D, drug; G, G-score; GEP, gene expression profile.
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according to their predicted potency for each patient (ie,
from small to large G-scores); we used a Cross-Entropy
Monte Carlo algorithm to aggregate the drug lists across
patients of the same subtypes to obtain only one ranked
list of the top 20 drugs (out of 445 drugs) predicted to be
most effective for each of the two subtypes (ie, C1 or C2).
Interestingly, 11 drugs were found to be specific for
patients with C2 HB, as shown in Figure 2B, while the
remaining 9 drugs were found to be in common between
the 2 lists (Supplemental Figure S6, http://links.lww.com/
HEP/I17). As a negative control, we also aggregated the
lists of drugs across patients to yield the ‘worst’ 50 drugs
found at the bottom of the lists, for each of the two
subtypes (ie, C1 or C2).

To experimentally validate the potency of the drugs
found by our computational approach, we selected
three drugs among the 11 C2-specific top-ranking drugs
(ie, the most potent out of 445 drugs) (Figure 2B, D) and
3 drugs predicted to be ineffective in patients with both
C1 and C2 (Figure 2C, D) and tested for their potency in
7 PDX cell culture models of HB. These models have
been established from a human PDX collection that
originates from patients with HB with characteristic
clinical and molecular aspects (Supplemental Figure
S7, http://links.lww.com/HEP/I17).

Specifically, among the 11 drugs predicted to be
most potent in patients with C2, we selected alvocidib
and dinaciclib, as these 2 have as a common target the

CDK9, which is involved in RNA elongation during
transcription,[22] and niclosamide, an antihelminthic drug
that has been recently reported to be effective in
blocking proliferation of cancer cells.[23,24] Among the
2 lists of bottom 50 drugs (ie, 1 for patients with C1 and
the other for patients with C2) we found 23 drugs in
common between the 2 (Supplemental Table S1, http://
links.lww.com/HEP/I17); we thus selected the only 2
drugs (out of 23) that are Food and Drug Administration
(FDA)-approved: the widely used chemotherapeutic
agent carboplatin, and venetoclax, a drug targeting
the antiapoptotic B-cell lymphoma-2 protein. As a third
drug to test, we selected the FDA-approved drug
olaparib, as this is a PARP1 inhibitor known to inhibit
growth in combination therapies in HCC models,[25] and
it is found in the bottom half of the ranked lists for both
C1 and C2 patients, and thus predicted not to be
effective (Figure 2C, D).

As shown in Figure 3A, the 3 top-ranked drugs:
niclosamide, alvocidib, and dinaciclib, all have a strong
inhibitory effect on the viability of tumor cells, differently
from the bottom-ranked drugs carboplatin, venetoclax,
and olaparib. Of note, similar drug concentrations of all
drugs had little inhibitory effect on the growth of normal
neonatal and adult skin fibroblasts (Figure 3A). These
data strongly suggest that DrugSense can predict
effective drugs from transcriptomic data with high
accuracy for patients with HB.

F IGURE 3 In vitro validation of DrugSense in hepatoblastoma cell culture models. (A) A heatmap showing drug sensitivity of the 7 liver cancer
models and normal neonatal (HDFn) and adult (HDFa) skin fibroblasts to CARBO, OLA, VENETO, NICLO, ALVO, and DINA. AUC values are the
mean out of 2 independent cell viability experiments, each consisting of duplicate measurements. The color scale from orange to purple indicates
increasing sensitivity to drug treatment. Ki-67 depicts relative RNA expression of the MKI67 gene normalized to the housekeeping gene TATA-box
binding protein. (B) Western blot detection of CDK9 and ACTB in 7 cultures from PDX cell lines established from patients with hepatoblastoma. (C)
Correlation of sensitivity (AUC) toward dinaciclib and alvocidib with relative CDK9 protein expression (normalized to ACTB expression) in 7 liver
cancer models (PDX) and normal neonatal (HDFn) and adult (HDFa) fibroblasts. Pearson r and 2-tailed p-values were calculated, and linear
regression is given as dashed lines. (D) Dose-response curves of alvocidib and dinaciclib treated cells of the 2 most sensitive tumor models
PDX282 and PDX303, as well as the PDX214 model. Error bars stand for standard error of the mean of 2 independent experiments, each
consisting of duplicate measurements. Abbreviations: ACTB, beta-actin; ALVO, alvocidib; CARBO, carboplatin; CDK9, cyclin-dependent kinase 9;
DINA, dinaciclib; HDF, Human Dermal Fibroblasts; NICLO, niclosamide; OLA, olaparib; PDX, patient-derived xenograft; VENETO, venetoclax.
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Preclinical validation supports CDK9
inhibition as a promising therapeutic
approach for HB

DrugSense revealed the 2 nonspecific CDK9 inhibitors
alvocidib and dinaciclib as the most promising drugs to be
tested preclinically. The expression of the target CDK9
was corroborated at the protein level in the 7 PDX models
(Figure 3B), being highest in cells derived from the HB
models PDX303 and PDX282 that showed the highest
sensitivity to alvocidib and dinaciclib (Figure 3C). A
subsequent 10-point dose-response curve revealed a
dramatic drop in cell viability already at concentrations in
the nanomolar range (Figure 3D). To rule out that these 2
models are intrinsically more sensitive to these drugs
because of a possible interference with the cell cycle, we

also tested PDX214, which has a similar Ki-67 proliferation
score as PDX282 (Figure 3A), but lower CDK9 protein
expression (Figure 3B). As expected, both alvocidib and
dinaciclib have less effect in PDX214 cells in terms of
cell viability than in the cells of the 2 CDK9 high expressing
PDX282 and PD303 models, thereby underscoring the
on-target effect of alvocidib and dinaciclib on CDK9. At the
cellular level, reduced viability was associated with a
significant decrease in proliferation (Figure 4A) and a
simultaneous induction of apoptosis (Figure 4B).
Moreover, the three-dimensional growth of the tumor
models as spheroids was also dramatically impaired by
treatment with alvocidib and dinaciclib (Figure 4C).

Encouraged by the promising results obtained in HB
cells derived from PDX models, we tested the efficacy
of both drugs in vivo by using the prototypical HB282

F IGURE 4 Preclinical in vivo validation of ALVO and DINA in a hepatoblastoma mouse model. (A) Proliferating cells were detected by EdU-
staining (red) and quantified in relation to Hoechst 33342-stained nuclei (blue). (B) Apoptotic cells were detected by staining caspase 3/7 activation
(green) and quantified in relation to adherent cells (phase contrast). (C) Three-dimensional growth was monitored on the indicated days (d) by
calculating spheroid volume. For all experiments in D–F, PDX282 and PDX303, and PDX214 cells were treated with vehicle (CTRL), ALVO, and
DINA. Scale bars represent 150 μm, error bars stand for SE of the mean of 2 independent experiments, each consisting of duplicate mea-
surements. p-values were calculated using a 2-tailed unpaired Student t test. (D) Experimental overview of ALVO and DINA testing in vivo.
Immune-compromised mice bearing subcutaneously transplanted PDX282 tumors were i.p. injected with 5 mg/kg body weight ALVO, 20 mg/kg
body weight DINA, or vehicle 3 times per week. Mice were killed at day 11 due to maximal tumor size of the control group. (E) Tumor growth in
mice treated with either ALVO, DINA, or vehicle. Values correspond to tumor volume and represent means + SEM. Abbreviations: ALVO,
alvocidib; CTRL, control; DINA, dinaciclib; EdU, ethynyl deoxyuridine; PDX, patient-derived xenograft.
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PDX model after subcutaneous transplantation into
nude mice (Figure 4D). This model originates from a
primary tumor of a 1-year-old patient, without multifocal
and metastatic disease, harbors a CTNNB1 mutation as
well as the C2 subtype of the 16-gene signature, and
shows a medium proliferation score (Figure 3A and
Supplemental Figure S7, http://links.lww.com/HEP/I17).
i.p. application of alvocidib and dinaciclib on 3 days per
week resulted in a significant reduction of the tumor
volume, but also in some intolerances in the form of
weight loss and unexpected death (Figure 4E and
Supplemental Figure S8, http://links.lww.com/HEP/I17).
Collectively, these data qualify CDK9 inhibition as a
promising therapeutic approach for HB.

CDK9 protein is overexpressed in patients
with aggressive C2 tumors and associated
with poor survival

We measured CDK9 protein expression in the SIOPEL-3
cohort of patients with HB.[7,26] The main features of the 46
patients with HB are detailed in Supplemental Table S2,
http://links.lww.com/HEP/I17. The CDK9 expression levels
were determined by immunohistochemistry in 46 tumor and
12 nontumor liver tissues from postchemotherapy surgical
specimens. CDK9 stainingwasweak in nontumor samples,
while it was present at heterogeneous intensities across the
tumor samples (Figure 5A). Overall, HB showed a
significant increase of CDK9 staining as compared with
nontumors adjacent livers used as controls (p=0.0025;
Figure 5B). We then stratified patients’ tumors according to
CDK9 staining. Interestingly, CDK9 overexpression,
defined as a staining above the 75th percentile, was
significantly associated with clinical and pathological
parameters of poor prognosis, as reported in Table 1,
such as patients’ age above 8 years (p=0.003), high-risk
stage defined by the Children’s Hepatic tumor International
Collaboration risk stratification (p=0.009) and an immature
main epithelial component (p=0.001). In addition, we
classified 38 out of 46 patient tumors in the 2 main HB
subtypes (C1 and C2) according to the transcriptional
expression level of the 16-gene signature[6] using
Nanostring technology. As a result, we classified 31 and
7 tumors belonging to the C1 and C2 molecular subtypes,
respectively. The C2 tumors (poor prognosis) but not C1
tumors (good prognosis) presented a significantly higher
CDK9 staining than nontumor liver samples by
immunohistochemistry (p=0.0039, Figure 5C). Finally,
we performed a survival analysis to study the impact of
CDK9 expression on patients’ outcomes. Kaplan-Meier
curves in Figure 5D showed that patients with high CDK9
staining in tumors have a poor outcome when compared to
patients with low CDK9 staining, with 3-year event-free
survival probabilities of 94% and 50%, respectively (Log-
rank=0.0005, Figure 5D). The same finding is confirmed
when considering overall survival; patients stratified

according to low and high CDK9 tumor staining have a 3-
year overall survival probability of 97% and 66.7%,
respectively (Log-rank=0 0.0039). In addition, elevated
levels of CDK9 staining were associated with older patient
age (p=0.003), a more immature main epithelial
component (p=0.01) and advanced clinical risk
stratification (p=0.009), see Table 1 for details.
Therefore, CDK9 could be an optimal therapeutic target
for aggressive C2 tumors.

DISCUSSION

We developed DrugSense, a companion online tool
(https://drugsense.tigem.it), which leverages large pub-
licly available collections of GEPs to predict drug
sensitivity from a tumor transcriptional profile. More
sophisticated approaches have been recently pre-
sented in the literature to predict drug response
leveraging genomics and transcriptomics profiles, which
differ from ours both in methodology and data types
used in the training.[27] For example, the Ideker lab[28]

introduced a machine learning approach that involves
pretraining of a general predictive model of drug in
CCLs, but then uses the “few-shot” learning to make
predictions for a specific type of human tumors. Few-
shot learning requires a set of well-characterized clinical
samples exposed to the drugs, which hampers its
application for rare tumors such as HB. The Califano
lab[29] developed a sophisticated transcription-based
oncology platform for predicting in vivo response to
antineoplastics based on an ensemble of advanced
computational approaches rooted in Information The-
ory. The need of transcriptional profiles of high-quality
tumor-matched cohorts required by this platform makes
its application to rare pediatric cancers challenging.

We applied DrugSense to find therapeutic drugs
effective against the aggressive C2 subtype of HB. Two
CDK9 inhibitors, namely alvocidib and dinaciclib, were
thus identified and extensively validated in vitro and
in vivo in PDX mouse models; moreover, CDK9
expression levels were found to be predictive of clinical
outcome in a cohort of patients with HB.

An increasing number of CDK9-inhibiting small mole-
cules have recently been introduced. First-generation and
second-generation CDK9 inhibitors, such as alvocidib and
dinaciclib, have shown promising antitumor activity. We
could also prove high CDK9 protein expression levels in
PDX cells. Moreover, we found pronounced CDK9
expression in tumor samples of patients with HB, with
high expression being associated with clinical risk factors
such as increased patients’ age and immature histology,
but most importantly, poor prognosis.

In the current study, we show that CDK9 inhibition by
dinaciclib and alvocidib impeded short-term and long-
term proliferation and induced apoptosis in high-risk
pediatric liver cancer models. Most importantly, our data
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demonstrated superior inhibition of cell proliferation by
low nanomolar concentrations of alvocidib or dinaciclib
as compared to carboplatin, which is given to patients
with HB nowadays.[30] However, at least in our
experimental setting, although using comparable con-
centrations as in earlier studies described to be safe,[31]

both drugs caused side effects such as weight loss and
unexpected death (Supplemental Figure S8, http://links.
lww.com/HEP/I17). Nevertheless, dinaciclib has been
already safely applied in dose-escalation studies in
patients with advanced malignancies[32] and its use is
currently evaluated in many clinical trials for various
human cancers. However, we cannot rule out that the
observed effect in our PDX model is attributable to the
pan-inhibitory effect of both drugs on other CDKs, which
might be more relevant for HB.

Interestingly, we also found a significant enrichment
for MYC target genes in gene expression biomarkers
of sensitivity found by DrugSense for alvocidib and
dinaciclib (Supplemental Figure S9, http://links.lww.
com/HEP/I17). As it has been described that HB highly
depends on MYC,[5] and that proliferation of hepato-
cellular cancer cells that also express high levels of
MYC could be abrogated by CDK9 gene silencing,[33] it
could be speculated that interference of the CDK9/
MYC relationship underlies the molecular mechanism
behind the effectiveness of both drugs in HB.
However, a recent study suggested the dispensability
of CDK9 in YAP-driven HB cells, even though authors
clearly detected a significant reduction of proliferation

of HepG2 cells on CDK9 silencing.[34] Nevertheless,
our data on viability, proliferation, and apoptosis
together with studies on HCC[33] and other YAP-driven
cells[35] strongly suggest that HB cell survival
requires CDK9.

METHODS

For further details, please refer to the Extended Material
and Methods in the Supplemental Material, http://links.
lww.com/HEP/I17.

Training phase of DrugSense: building the
DGCPs

We downloaded the basal GEPs [bulk RNA-sequencing
data (v21Q4)] of 1375 CCLs from the Cancer Cell Line
Encyclopaedia[9] and drug response data across the
CCLs from the CTRPv2. To identify genes whose
expression was correlated with drug potency, for each
gene and for each drug, we computed the PCC
between the expression of the gene and the effect of
the drug expressed in terms of AUC across the CCLs.
For each drug, we generated a DGCP by ranking genes
according to their PCC in descending order. In total, we
obtained 445 DGCPs, corresponding to 445 drugs, for
solid tumors and 414 DGCPs, corresponding to 414
drugs, for liquid tumors.

F IGURE 5 CDK9 is overexpressed in patients with poor prognosis. (A) Representative immunohistochemistry images of CDK9 in NT adjacent
liver tissue (top) and HB with low (middle) and high (bottom) staining of CDK9. ×40 magnification. Scale bar: 10 µm. (B) Bar plot of CDK9 staining
in tumor (T, n=46) and NT (n= 12) samples. p-value calculated with Student t test. (C) Bar plot of CDK9 staining in NTs and the 2 main
transcriptomic HB subgroups (C1, n=29; C2, n= 5). p-value calculated with ANOVA test. (D) Kaplan-Meier curves of event-free survival (left) and
overall survival (right) analysis of patients stratified according to CDK9 tumor staining. The cutoff was set at the percentile 75 of tumor CDK9
staining. Abbreviations: CDK9, cyclin-dependent kinase 9; HB, hepatoblastoma; NT, nontumor.
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Application of DrugSense: computation of
the G-score

DRUGSense applies 4 distinct GSEA[19] for each drug
to be tested, as schematized in Figure 1B. To compute
the p-value associated with each ES for each of the 4
GSEAs, DrugSense generates a null distribution of ESs
by applying GSEA to 10,000 randomized profiles by
shuffling 25% of the gene labels of the tumor GEP. This
set of four p-values, 1 for each GSEA, is averaged using
the geometric mean to assess the overall sensitivity of
the drug (ie, the G-score). As the 4 GSEA analyses may
be potentially correlated, we also applied Brown method
for p-value integration, which specifically accounts
for correlations, as an alternative approach. Despite

differences in the absolute values of the resulting p-
values, we observed that the PPVs were identical for
both methods, as shown in Supplemental Figure S3A,
http://links.lww.com/HEP/I17. This happens as the
ranked list obtained by sorting according to Brown p-
values is nearly identical to those obtained when sorting
according to the geometric mean of p-values.

Validation of DrugSense on CCLs

Precision of DrugSense in predicting drug sensitivity was
evaluated in CCLs using 2 publicly available data sets of
bulk GEPs of untreated cells. To determine if a cell line
was sensitive or not to a specific drug, we exploited the
CTRPv2 drug response dataset, which includes drug
response in terms of AUC of the dose-response of CCLs.
Drug potency across solid and liquid CCLs was kept
apart and analyzed separately. The PPVs (PPV= True
Positive/ [True Positive + False Positive] were computed
by binning cell line/drug pairs in percentiles. The PPVs
were normalized against the PPV obtained from a
random ordering of cell line/drug pairs.

Validation of DrugSense on PDX data

Precision of DrugSense in predicting drug sensitivity was
evaluated in PDX mouse models following the same
pipeline as described above for CCLs, but this time using
data from the PCAT[21] data portal on the drug response
data of 39 PDXmodels treated with one or more drugs for
which a DGCP was available in DrugSense.

Benchmarking of DrugSense in the
National Cancer Institute-Dialogue for
Reverse Engineering Assessment and
Methods challenge

To benchmark DrugSense’s ability to predict drug
response against other approaches, we used the data
provided by the National Cancer Institute-Dialogue for
Reverse Engineering Assessment and Methods drug
prediction challenge.[15] We compared DrugSense’s per-
formance with that of the nine other drug sensitivity
prediction algorithms present in the National Cancer
Institute-Dialogue for Reverse Engineering Assessment
and Methods challenge that used the same training data,
that is, gene expression (e), RNA-sequencing (n), and
outside information.

Application of DrugSense to HB

Microarray-based gene expression data of 25 HB samples
in Cairo et al[5] were first normalized using the robust

TABLE 1 Statistical association between CDK9 staining and
clinical features of patients with HB

Cdk9 staining

Low High p

Clinical features

Age> 8 y — — —

Yes 0 4 0.003

No 34 8 —

Sex

Female 16 8 0.321

Male 18 4 —

Multifocality

Yes 27 13 0.129

No 1 3 —

Clinical classification CHIC-HS

VL-L 1 0 0.009

I 29 6 —

H 3 6 —

AFP plasma levels

N
Mean + SD

34
595,248 ± 965

12
317,672 ± 315

0.149a

Metastasis

Yes 3 4 0.069

No 30 8 —

HB pathological features

Histology

Epithelial 15 4 0.735

Mixed 19 8 —

Main epithelial component

Nonfetal 2 6 0.001

Fetal 32 5 —

ap-values were calculated using t test.
Note: CDK9 expression cutoff was set at 40.55 (Third quartile tumor values). p-
values were calculated using Fisher exact test.
The nonfetal main epithelial component includes crowded fetal, macro-
trabecular, and embryonal histological subtypes.
Abbreviations: AFP, Alpha-Fetoprotein; CDK9, cyclin-dependent kinase 9;
CHIC-HS, Children’s Hepatic tumors International Collaboration; H, high; HB,
hepatoblastoma; I, intermediate; L, low; VL, very low.
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multiarray average method (R package affy, v1.72.0)[36]

and aligned with the cell line expression profiles of the
Genomics of Drug Sensitivity in Cancer data set. We then
applied DrugSense to these processed profiles compris-
ing 25 HB samples to predict the potency of each drug in
each sample. Drugs were ranked by G-score in ascending
order according to their predicted potency, and individual
rankings related to either the C1 or the C2 samples were
aggregated using the RankAggreg function.[37]

Gene ontology enrichment analysis of
alvocidib and dinaciclib biomarkers

The 177 biomarkers of sensitivity in common between
alvocidib and dinaciclib were analyzed by means of Gene
Ontology Enrichment Analysis using as gene sets either the
C5 Gene Sets, or the Hallmark Gene Sets downloaded
from the MSigDB3.0. Gene Ontology Enrichment Analysis
was performed with the clusterProfiler package[38] in R
statistical environment. The threshold applied for statistical
significance was False Discovery Rate <0.05.

Cell culture

Seven PDX cell lines (PDX214, PDX243, PDX282,[39]

PDX295, PDX303, PDX344, and PDX346) were kindly
donated by Stefano Cairo (XenTech, Evry, France). Two
dermal fibroblast cell lines adult HDFa and neonatal HDFn
(The American Type Culture Collection) were also
included as noncancerous controls.

Viability assay

MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazo-
lium bromide] (Sigma-Aldrich, St. Louis, MO) viability
assay was performed to determine drug responses of
the cells. A total of 5× 104 cells/well were seeded in a
96-well plate 24 hours prior to drug exposure.

Apoptosis assay

Apoptotic cell count was determined bymeans of CellEvent
Caspase-3/7 Green Detection Reagent (Thermo Fisher)
according to the manufacturer’s instructions. A total of
2×105 cells/well were seeded in a 24-well plate 24 hours
prior to drug exposure and measured following 24 hours
dinaciclib (0.1 µM) or alvocidib (0.1 µM) exposure.

Proliferation assay

Click-iT EdU Cell Proliferation Kit (Thermo Fisher) was
applied according to the manufacturer’s instructions for the

detection of proliferating cell portions. A total of 2×105 cells/
well seeded in a 24-well plate. Next day, the cells were
labeled with 100 µM ethynyl deoxyuridine and exposed to
dinaciclib (0.1 µM) or alvocidib (0.1 µM) for 24 hours.

Western blot analysis

Whole cell lysates were extracted from 3 × 107 cells grown
in 100mm cell culture petri dishes for 24 hours. Cell pellets
were incubated in cell lysis buffer. 20 µg whole cell lysates
were separated by means of SDS-gel electrophoresis,
using Novex WedgeWell 8% pre-cast tris-glycine gels
(Thermo Fisher). The membrane was incubated overnight
at 4 °C in anti-CDK9 antibody (Sigma-Aldrich, #HPA00
6738) diluted 1:1000. Anti-beta-actin in a 1:10,000 dilution
(Cell Signaling Technologies, Danver, MA, #4967S)
served as a loading control. Following the incubation with
a secondary goat-anti-rabbit HRP antibody (Dako Den-
mark, Glostrup, Denmark, # P0448) in a 1:5000 dilution,
proteins were detected by the ChemiDoc XRS+ imaging
system (Bio-Rad).

Spheroid formation

Cells were seeded at a density of 1000 cells/well into
ultra-low attachment round-bottom 96-well plates (Corn-
ing, Corning, NY). After 5 days of incubation, estab-
lished spheroids were exposed to dinaciclib (0.1 µM),
alvocidib (0.1 µM), or DMSO control in medium.
Spheroid images were captured at the indicated time-
points with the EVOS M7000 imaging system (Thermo
Fisher). Spheroid volumes (V) were calculated by [V
(µm3)= (length (µm) × width (µm)2)/2] formula.[40]

In vivo study

Animal studies were carried out by XenTech according
to studies.[39,41] PDX282 tumors were implanted into
Athymic nude-Foxn1nu mice. Mice with subcutaneously
growing tumors between 75 and 288 mm3 were
allocated to each treatment arm as 7 mice/group. Mice
were treated with vehicle, alvocidib (5 mg/kg), or
dinaciclib (20 mg/kg) by i.p. injection for 5 subsequent
days per week. Tumor volume was evaluated by
measuring tumor diameters with a caliper, 2 or 3 times
a week during latency and treatment period.

Patients and samples

The study included a total of 58 tumor and nontumor
samples from 46 patients with HB (Supplemental
Table S2, http://links.lww.com/HEP/I17). All samples
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were collected in accordance with European and
Spanish law and institutional ethical guidelines.
Informed consent was obtained in accordance with
European Union guidelines for biomedical research.
The study conformed to the ethical guidelines of
the 1975 Declaration of Helsinki. HB diagnosis
was defined by expert pathologists. Patients in-
cluded in the study were enrolled in the SIOPEL-3
clinical trial. Human Ethics Committee of the Hospital
Universitari Germans Trias i Pujol, references: PI17-
079 and PI-18-203.

Immunohistochemistry

Four-micrometer-thick tissue sections from paraffin blocks
were baked for 20 minutes at 65 °C. Sections were then
incubated with primary antibody, CDK9 (Sigma-Aldrich
catalog number HPA006738), 1/300, overnight, at 4 °C, in
a humid chamber. Later, rabbit linker (Agilent) and HRP
polymer conjugated secondary antibody (Visualization
reagent, Agilent) were applied for 15 minutes and 1 hour,
respectively, at room temperature in a humid chamber.
Percentage of tumor-stained area was calculated by
examination of 3–6 random high-power fields (×40) and
quantified with specific thresholds using ImageJ software
v.45.s (National Institutes of Health).

NanoString nCounter

To classify tumors according to the C1/C2 classification,
38 out of our 46 HBs (for 8 tumors, no additional tissue
was available) were profiled using the NanoString
nCounter Technology with a manually curated list of
18 genes, including HB markers and genes of key
signaling pathways (Supplemental Table S3, http://
links.lww.com/HEP/I17).

Statistical analysis

To study the association between CDK9 immunostain-
ing with clinical and pathological features, Fisher tests
and Student t tests were used according to conve-
nience. The Kaplan-Meier method was used to com-
pare the impact on patient event-free survival or overall
survival of the differential tumor expression of CDK9,
calculating survival curves and log-rank tests. Statistical
analysis was performed with GraphPad Prism 7 for
Windows (La Jolla, CA) and the IBM SPSS statistics for
Windows, version 15 (Chicago, IL).
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