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Pan-Cancer Single-Cell and Spatial-Resolved Profiling
Reveals the Immunosuppressive Role of APOE+
Macrophages in Immune Checkpoint Inhibitor Therapy

Chuan Liu, Jindong Xie, Bo Lin, Weihong Tian, Yifan Wu, Shan Xin, Libing Hong, Xin Li,
Lulu Liu, Yuzhi Jin, Hailin Tang, Xinpei Deng, Yutian Zou, Shaoquan Zheng, Weijia Fang,
Jinlin Cheng,* Xiaomeng Dai,* Xuanwen Bao,* and Peng Zhao*

The heterogeneity of macrophages influences the response to immune
checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of
APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-
seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are
Integrated to construct an M.Sig model for predicting ICI response based on the
distinct molecular signatures of macrophage and machine learning algorithms.
Comprehensive single-cell analysis as well as in vivo and in vitro experiments
are applied to explore the potential mechanisms of the APOE+ macrophage in
affecting ICI response. The M.Sig model shows clear advantages in predicting
the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion
of APOE+ macrophages is higher in ICI non-responders of triple-negative breast
cancer compared with responders, and the interaction and longer distance
between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI
response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-
bearing mice model, the APOE inhibitor combined with ICI treatment shows
the best efficacy. The M.Sig model using real-world immunotherapy data
accurately predicts the ICI response of pan-cancer, which may be associated
with the interaction between APOE+ macrophages and CD8+ Tex cells.
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1. Introduction

Immune checkpoint inhibitors (ICIs) are
increasingly becoming a mainstay of can-
cer treatment strategies. Prior research has
demonstrated the efficacy in treating a va-
riety of cancers, including lung cancer,
melanoma,[1] and gastrointestinal cancer.[2]

However, in addition to the occurrence
of some clinical side effects,[3] the lim-
ited response rate is a significant hurdle
that impedes widespread clinical applica-
tion of immunotherapy. This has encour-
aged the development of biomarker stud-
ies to predict response to immunotherapy,
with optimization of treatment combina-
tions to combat immunological resistance.
Traditional biomarker studies largely fo-
cus on whole-exome sequencing (WES) or
RNA sequencing (RNA-seq) of tumor tis-
sues, and these approaches only reflect the
average genetic profile of tumors,[4] such
as expression of programmed cell death-
ligand 1 (PD-L1),[5] microsatellite instabil-
ity (MSI)[6] and the tumor mutation burden
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(TMB).[5] With the advent of single-cell RNA sequencing (scRNA-
seq), there are a variety of techniques for analyzing gene expres-
sion at the cellular level, facilitating the identification of more
sensitive markers.

The tumor microenvironment (TME) contains CD4+ T cells
and CD8+ T cells, which predominantly act as effector cells
in ICI therapy. Their degree of infiltration can be used as a
reliable predictor for response to ICIs.[7] However, the major-
ity of patients have an immune-exclusion phenotype, and ac-
cording to recent research, myeloid infiltration (macrophages,
monocytes, and granulocytes) plays a key mediator function in
this phenomenon.[8] Among these cells, a series of subpop-
ulations of macrophages separated by scRNA-seq have been
found to exert different immune functions, such as SPP1+

macrophages,[9] APOE+ macrophages,[10] and tissue-resident
macrophages (TRMs).[11] Most subsets can be reprogrammed
to up-regulate immune checkpoints and various inflammatory
chemokines, thereby inhibiting antitumor immunity, such as
FABP4+ macrophages,[12] MRC1+ CCL18+ macrophages[13] and
IL4I1+ CD274+ IDO1+ macrophages.[14] Nevertheless, some
macrophage subsets, such as CD68+ macrophages, have a pro-
tective role in the prognosis of cancer patients.[15] The main
reasons for this heterogeneity are transcriptomic diversity and
the distinct pathway activities.[16] In addition, transcriptomic
analysis suggested that there may be an interaction between
macrophages and T cells.[17] Li et al. found that CD8+ T
cells in tumors would be presented with antigens by tumor-
associated macrophages (TAMs) expressing IRF8 to promote T
cell depletion.[18] Previous studies have mainly explored the re-
lationship between macrophage-related genes, the TME and im-
munotherapy effects,[19] whereas few have combined pan-cancer
scRNA-seq with machine learning algorithms to explore the cor-
relation between macrophage subpopulations and T cells that ef-
fecting immunotherapy response.

In this study, integrative scRNA-seq and bulk transcriptome
data were utilized to build an M.Sig model using eight machine
learning algorithms, and the model showed efficacy in predicting
response to ICI-based immunotherapy of pan-cancer. In triple
negative breast cancer (TNBC), the potential mechanism affect-
ing the efficacy of immunotherapy is the interaction between
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APOE+ macrophages and CD8+ exhausted T (Tex) cells, which
was verified by in vivo experiments and multiplex immunohisto-
chemistry (mIHC) staining.

2. Results

2.1. Immune Landscape in Multiple Cancers with ICI Treatments

Five scRNA-seq cohorts were used to explore the relationship be-
tween immune cell subsets and immunotherapy response, in
which melanoma was the most prevalent (n = 35), followed by
basal cell carcinoma (BCC) (n = 10) and TNBC (n = 9) (Figure
S1a, Supporting Information). In terms of ICI response, there
were significantly fewer responders than non-responders, except
for renal cell carcinoma (RCC) (Figure S1c, Supporting Informa-
tion). To identify distinct types of cell clusters, we first used uni-
form manifold approximation and projection (UMAP) to lower
the dimension and cluster the cells of five scRNA-seq cohorts
with ICI treatment involving four kinds of cancer (Figure 1a). In
general, nine cell types were recognized. Expression of CD8A,
CD8B, and GZMK was considerably higher in CD8+ T cells,
and FOXP3, TNFRSF4, and TNFRSF18 were more highly ex-
pressed in regulatory T cells (Tregs). Additionally, macrophages
were marked by APOE, APOC1, C1QC, and C1QB expression
(Figure 1b). Of these cells, TNBC, BCC, and melanoma com-
prised the largest proportion; only B cells, CD4+ T cells, CD8+

T cells, Tregs, and macrophages were shared by the five cohorts
(Figure 1c), showing that they are typically present in tumor tis-
sues. And TNBC had the highest concentration of macrophages,
followed by BCC (Figure S1b, Supporting Information). To com-
prehend the heterogeneity of the TME between responders and
non-responders, we analyzed the ratio of cell types. As depicted
in Figure 1d,e, the proportion of macrophages was significantly
lower but the proportion of B cells higher in responders, indicat-
ing that these cell types may influence ICI response in patients.

Then we conducted differential gene analysis at the level
of cell type between responders and non-responders. It shows
that there are most differentially expressed genes (DEGs) in
macrophages, regardless of whether the patients were respon-
ders or non-responders, confirming their crucial involvement
in immunotherapy (Figure S1d,e, Supporting Information).
To gain a deeper understanding of the effect macrophages
have on immunotherapy, we further reduced the dimensions
of macrophages with T-distributed stochastic neighbor em-
bedding (tSNE). Figure 1f shows that macrophages could be
subdivided into different clusters, and responders and non-
responders are also clearly separated, demonstrating the ex-
istence of macrophage subset characteristics that influence
immunotherapy. Trajectory analysis showed that macrophages
can differentiate into two groups of subtypes as the tumor
progresses, as responders and non-responders can be iden-
tified within these two groups, suggesting that macrophages
can differentiate between non-responders and responders
(Figure 1g).

To explore the distinction between responders and non-
responders, we evaluated expression profiles in macrophages
and discovered that various genes, including CCL2, APOE, and
TIMP1, had different expression levels (Figure S1f, Supporting
Information). Previous research has supported the role of these
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genes as cancer prognosis-related molecules or tumor immune
regulators.[20] Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment analyses
were conducted on DEGs of macrophages. The differential
genes were enriched in a number of immune-related path-
ways, such as the TH17 signaling pathway, TNF signaling
pathway, and antigen processing and presentation (Figure 1h).
Similarly, they are mostly involved in the generation and regu-
lation of cytokines, as well as the adhesion and proliferation of
leukocytes, according to biological process of GO enrichment
(Figure 1i).

2.2. The scRNA-seq-Inspired M.Sig Model Predicts ICI Response
and Prognosis

The aforementioned results indicated that macrophages alter the
immune response, and the DEGs in Figure S1f (Supporting In-
formation) were further examined. We obtained eleven ICI co-
horts including various solid tumors, and gathered correspond-
ing RNA-seq data and clinical data to better investigate the pre-
dictive ability of these DEGs. In total, eight machine learning al-
gorithms were used to optimize the model with the greatest sig-
nificance, which was compared with the immune-related signa-
ture from previous studies (Figure 2a). The eleven datasets con-
tained nine solid tumor types, with bladder cancer (BLCA) ac-
counting for the most cases (n = 359), followed by melanoma
(n = 99) and breast cancer (BRCA) (N = 71) (Figure S2a, Sup-
porting Information). However, for most malignancies, respon-
ders did not exceed 50%, suggesting the limit of immunother-
apy efficacy (Figure S2b, Supporting Information). First, the eight
machine learning algorithms were utilized to train models, and
then repeated cross-validation (CV) was used to refine the param-
eters of each model. We harvested eight models after training.
Among the respective area under the curves (AUCs), the AUC of
0.72 for support vector machine (svm) model was the greatest,
which was chosen as the model (Figure 2b). When using the val-
idation set to verify each model, we found that the AUC of the
svm model remained the highest, at 0.74 (Figure 2c), indicating
that the model we developed was stable and effective. The AUC
was then computed utilizing feature ranking, and the AUC val-
ues of both the training set and the verification set were compa-
rable to those before when 35 features were included (Figure S2c,
Supporting Information), such as CXCL10, MAP1A, and CCL8,
which was defined as M.Sig model (Figure S2d, Supporting
Information).

Predicting the effect of immunotherapy is conducive to im-
proving the accuracy of treatment. As a result, prior research has
also generated a series of prediction models. We compiled and
compared thirteen immune-related signatures with the M.Sig
model. In both training and verification sets, the AUC of the
M.Sig model was greater than the others (Figure 2d). Then, we
compared the AUC of each signature at the level of an individ-

ual dataset and found that most signatures were only effective
for one or two cohorts (Figure 2e). In GSE120644, for instance,
the AUCs of both NLRP3.Sig and Cytotoxic.Sig surpassed 0.8,
whereas in other datasets it was lower, at approximately 0.6. In
contrast, the M.Sig model performed well in most cohorts. In
addition, the AUC exceed 0.75 for malignant pleural mesothe-
lioma (MPM), stomach adenocarcinoma (STAD), skin cutaneous
melanoma (SKCM), and BRCA (Figure 2f), even though AUCs
could not be calculated in the test set of some cancers due to the
small number of patients (non-small cell lung cancer [NSCLC],
urothelial carcinoma [UC] and RCC). This highlights the model’s
ability to forecast ICI effectiveness across cancers. On the basis
of building the machine learning model, the expression of non-
responder up-regulated genes in the M.Sig model was subtracted
from that of down-regulated genes to derive M.Sig.Score. In the
training set, the score for non-responders was greater than that
for responders (P < 0. 0001) (Figure 2g), and the overall survival
(OS) and progression-free survival (PFS) of patients in the low-
score group were better than those in the high score group (all P
< 0.0001) (Figure 2h,i). This was the same as the result for the
verification set (Figure S2e-g, Supporting Information), demon-
strating that M.Sig.Score is related to nonresponse to ICIs and
poor prognosis. Taken together, we developed an M.Sig model to
predict ICI response, and the effect was better than that of other
recognized models.

2.3. Molecular Characteristics of the M.Sig Model in Pan-Cancer
from TCGA

We collected data for thirty kinds of solid tumors from the
database The Cancer Genome Atlas (TCGA) and used these data
to confirm our findings. First, we performed a comprehensive
analysis of the M.Sig model and 75 immune-related genes and
found that the model was generally inversely linked to the ex-
pression level of immune-related genes (Figure S3a, Support-
ing Information). Then, we assessed the status of immune cell
infiltration to further describe the TME. Compared to mono-
cytes and myeloid cells, cancers with high M.Sig.Score showed
fewer cytotoxic immune cells, including CD8+ T cells and cy-
totoxic lymphocytes (Figure S3b, Supporting Information). In
conclusion, these findings reveal a negative correlation between
the M.Sig model and antitumor immunity. As the TMB and
MSI status are significant immunotherapy biomarkers, we ex-
amined their interactions with the M.Sig model. As illustrated
in Figure S3c (Supporting Information), we observed a negative
association between the M.Sig model and TMB (R = −0.6, P <

0.001). Similarly, MSI-High (MSI-H) shows a lower M.Sig.Score
than MSI-Low (MSI-L) and microsatellite stable (MSS) (P <

0.001) (Figure S3d, Supporting Information). The negative con-
nection between the M.Sig model and TMB and MSI-H further
demonstrate that the M.Sig model may predict the therapeutic
effect.

Figure 1. Immune cell landscape of ICI-treated pan-cancers. a) Color-coded UMAP plot of cell types in five cohorts with ICI treatment. b) Feature genes
of each cell type. c) The proportion of cohorts in each cell type. d) The distribution of ICI responders and non-responders in all cells. e) The proportion of
each cell type between responders and non-responders. f) The distribution of ICI responders and non-responders in macrophages. g) Trajectory analysis
of ICI responders and non-responders. h) KEGG analysis of DEGs between ICI responders and non-responders. i) Biological Process of GO enrichment
of DEGs between immunotherapy responders and non-responders. ICI: immune checkpoint inhibitor; UMAP: uniform manifold approximation and
projection; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differential expressed genes; GO: Gene Ontology.
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2.4. The Proportion of APOE+ Macrophages was Higher in
ICI-Treated TNBC Non-Responders

After the construction of the M.Sig model, it was necessary to
further understand its biological significance based on scRNA-
seq. Using tSNE, we observed that macrophages could be
classified into eleven subgroups, and the proportion of these
cells was significantly different between responders and non-
responders (Figure 3a). For instance, the proportions of APOE+

macrophages, CTSB+ macrophages, and FOLR2+ macrophages
were much higher in non-responders, whereas the propor-
tions of S100A9+ macrophages, SPP1+ macrophages, and TFPI+

macrophages were lower, indicating that these cells may play
a crucial role in the TME. The proportion of most cell types
was high in TNBC, such as APOE+ macrophage and CTSD+

macrophage (Figure S4a, Supporting Information). Besides,
we discovered the largest number and percentage of APOE+

macrophages, FOLR2+ macrophages, and CTSD+ macrophages
among non-responders (Figure 3b; Figure S4b, Supporting In-
formation). To further understand the relationship between the
presence of each subgroup and immune function, we com-
pared immune evasion and immune checkpoint genes, immune-
related pathways and transcription factor (TF) activities of each
subcluster. Among immune-related genes, LAG3, PPARG, and
CD274 showed a low expression ratio across all categories.
Specifically, VSIG4 and CSF1R levels were elevated in FOLR2+

macrophages (Figure S4d, Supporting Information). Previous
research has shown that macrophage-related pathways, includ-
ing antigen presentation, M1 regulation, and proteasome, are
associated with macrophage activity, illustrating distinctions be-
tween distinct subgroups (Figure S4e, Supporting Information).
In FOLR2+ macrophages and CTSB+ macrophages, the M1 cul-
tured, proteasome, IFN-𝛾 response, and IFY-stimmd MDM func-
tion were diminished compared to those of other macrophages
(Figure S4e, Supporting Information). The TF activities of SPP1+

macrophages and CTSB+ macrophages were also considerably
different (Figure S4c, Supporting Information). TBX21, for in-
stance, can mediate T-cell activity and stimulate antitumor
immunity,[21] and its expression in CTSB+ macrophages and
SPP1+ macrophages was much lower than that in other subtypes.
In contrast, CCL5+ macrophages and TFPI+ macrophages ex-
hibited a considerably greater level of expression. Intriguingly,
M.Sig.Score of these three subgroups were also among the top
three (P< 0.0001) (Figure 3c). These findings indicated that a rise
in the number of these three types of cells is not favorable for ICI
therapy efficacy. Expression of the 35 genes in the M.Sig model
was then examined (Figure S4f, Supporting Information), and
the expression levels of CFI and CCL8 were significantly greater
in these three subpopulations than in others.

In these cancer types, TNBC and SKCM contain all the
macrophage subsets above, so we compared the proportion
of macrophage subsets of responders and non-responders in

TNBC and SKCM. The results showed that FLOR2+ macrophage
proportion was higher in responders of SKCM, while this of
S100A9+ macrophages was lower, which was inconsistent with
the results of all cancer and TNBC, suggesting heterogeneity
of cancers (Figure 3d). Then, we compared M.Sig.Score of all
macrophages and top two subsets (FLOR2+ macrophages and
APOE+ macrophages) that may have a negative impact on im-
munotherapy in TNBC and SKCM. In all macrophages and
APOE+ macrophages of TNBC patients, M.Sig.Score are higher
in non-responders, but the result is opposite in SKCM with no
significant difference (Figure 3e-j). Therefore, we speculate that
APOE+ macrophage is an important factor in the failure of ICI
therapy in TNBC patients.

2.5. APOE+ Macrophages Interact with CD8+ Tex Cells to Affect
ICI Response in TNBC

In order to further determine the mechanism of APOE+

macrophages influencing the efficacy of immunotherapy in
TNBC patients, we explored interactions among the nine cell
types by investigating distinct intercellular communication in
TNBC. It was demonstrated that macrophages and CD8+ T cells
engage in most cellular communication (Figure 4a). In respon-
ders and non-responders, CD8+ T cells exhibited increased in-
coming communication intensity, whereas macrophages exhib-
ited increased outgoing communication intensity (Figure S5a,
Supporting Information). We performed dimensionality reduc-
tion clustering on T cells and identified a total of eleven subtypes
(Figure S5b, Supporting Information). Then, cellular communi-
cation analysis was conducted between CD8+ T cells and APOE+

macrophages. APOE+ macrophages and CD8+ Tex cells engage
in most cellular communication (Figure 4b), and CD8+ Tex cells
exhibited increased incoming communication intensity, whereas
APOE+ macrophages exhibited increased outgoing communica-
tion intensity (Figure 4c). Additionally, the interaction of MIF-
(CD74+CXCR4) on APOE+ macrophages was strong (Figure 4d),
which may influence ICI efficacy via immunosuppressive inter-
action with CD8+ Tex cells and CD8+ progenitor exhausted T
(Tpex) cells. In CD8+ Tex cells, there are some DEGs between
responders and non-responders (Figure S5c, Supporting Infor-
mation), such as GZMK and MGP.

To confirm the role of CD8+ Tex cells in ICI response, uniform
Manifold Approximation and Projection (UMAP) was used to
display the distribution of them in TNBC, and calculated the
corresponding Exhausted.score (Figure 4e,f). Compared to non-
responders, responders had a lower Exhausted.score in CD8+

Tex cells (Figure 4g). Then, we also showed the Exhausted.score
of CD8+ Tpex cells between responders and non-responders,
which was higher in non-responders (Figure S5d-f, Support-
ing Information). These results indicated that an increase of
CD8+ Tex cells leads to poorer immunotherapy efficacy, while
CD8+ Tpex cells is the opposite. Based on the above results, we

Figure 2. Construction of the M.Sig model to predict ICI response and prognosis. a) Workflow of the construction and validation of the M.sig model.
b) The AUC of eight machine learning algorithms in the training set. c) Eight AUC values of the training set and the test set of eight machine learning
algorithms. d) Comparison of the AUCs among the M.Sig model and other thirteen immune signatures in the training set and the test set. e) Comparison
of the AUCs in each cohort. f) The AUCs of the M.Sig model in each cancer type. g) Different M.Sig.Score between ICI responders and non-responders
in the training set. h,i) OS and PFS of high or low M.Sig.Score in the training set. ICI: immune checkpoint inhibitor; AUC: area under the curve; OS:
overall survival; PFS: progression-free survival.
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Figure 3. Different M.Sig.Score in macrophage subpopulations between responders and non-responders. a) Colour-coded tSNE plot of eleven
macrophage subgroups and the proportion of subgroups in ICI responders and non-responders. b) The proportions of each macrophage subgroup
in ICI responders and non-responders. c) M.Sig.Score of each macrophage subset. d) The proportion of each macrophage subgroup in ICI respon-
ders and non-responders of TNBC and SKCM. e–j) The M.Sig.Score of macrophage subsets between ICI responders and non-responders of TNBC and
SKCM. tSNE: t-distributed stochastic neighbor embedding; ICI: immune checkpoint inhibitor; TNBC: triple negative breast cancer; SKCM: skin cutaneous
melanoma.

speculate that the response to ICIs is related to the interaction of
APOE+ macrophages with CD8+ Tex. The transcriptional data of
TNBC was obtained from TCGA and Gene Expression Omnibus
(GEO), we calculated the corresponding Exhausted.score and
APOE.score, and found that there was a significant positive
correlation between them (Figure 4h). Then we divided TNBC

patients from the TCGA database into two groups based on the
APOE.score, and patients with high APOE.score have signifi-
cantly shorter OS (P = 0.048) (Figure S5g, Supporting Informa-
tion). After incorporating the Exhausted score as the grouping
criterion, patients with a high APOE score and high Exhausted
score had the worst prognosis (P = 0.003) (Figure 4i), indicating
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Figure 4. The interaction between APOE+ macrophage and CD8+ Tex cells affects ICI response in TNBC. a) Cell-cell interactions among immune cell
types. b) Cell–cell interactions among APOE+ macrophages and different CD8+ T cells. c) The relationship between differential outgoing interactions
and incoming interaction strength for CD8+ T cells and APOE+ macrophages. d) Immune-related ligands and receptors for signal communication
between APOE+ macrophages and distinct CD8+ T cell subsets. e) Color-coded UMAP plot of responders and non-responders in CD8+ Tex cells. f)
Exhausted score of CD8+ Tex cells in UMAP. g) The Exhausted.score of CD8+ Tex cells between ICI responders and non-responders. h) Correlation of
Exhausted.score with APOE.score in TNBC from GEO and TCGA cohorts. i) OS analysis of distinct Exhausted.score and APOE.score in TNBC from
TCGA cohort. ICI: immune checkpoint inhibitor; UMAP: uniform Manifold Approximation and Projection; TNBC: triple negative breast cancer; GEO:
Gene Expression Omnibus; TCGA: The Cancer Genome Atlas; OS: overall survival.
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that APOE+ macrophages may interact with CD8+ Tex cells to
affect the efficacy of ICIs and the prognosis of TNBC patients.

2.6. The Distance Between APOE+ Macrophages and CD8+ Tex
Cells was Verified by Clinical TNBC Samples

Clinical TNBC samples of ICI-responders and treatment naïve
patients were selected for mIHC staining. Compared with
treatment naïve (TN) patients, the distances between APOE+

macrophages and CD8+ Tex cells were longer in responders,
while shorter between APOE+ macrophages and CD8+ cytotoxic
T cells (Figure 5a,b). To further specify these results, we con-
ducted additional spatial analyses on the mIHC images, measur-
ing the nearest distance between CD8+ Tex cells and CD8+ cyto-
toxic T cells to APOE+ macrophages. Among the responders, the
majority of CD8+ Tex cells were situated more than 200 μm away
from APOE+ macrophages (Figure 5c), whereas in TN patients,
the number of CD8+ Tex cells was greater and their proximity
was closer (Figure 5d). However, when measuring the distance
between CD8+ cytotoxic T cells and APOE+ macrophages, the
findings were reversed (Figure 5e,f), indicating that the interac-
tion between CD8+ Tex cells and APOE+ macrophages is one of
the factors contributing to the failure of ICI therapy.

2.7. APOE Inhibitors can Enhance the Efficacy of ICI Therapy

To further validate this result, we conducted experiments in mice.
Four groups were established: the control group (G1), COG 133
TFA (anti-APOE) treatment group (G2), anti-programmed cell
death protein 1 (PD1) treatment group (G3), and COG 133 TFA+
anti-PD1 dual treatment group (G4). The experimental schedule
is shown in Figure 6a. Starting from day 8, we conducted in vivo
imaging to observe the changes in tumor size in each group of
mice. As shown in Figure 6b, there are mice deaths both in the
PBS group and the PD-1 group. Compared to the tumor baseline
before treatment, the COG 133 TFA + anti-PD1 dual treatment
group exhibited the highest tumor suppression effect, indicating
a statistically significant difference (Figure 6c). We further dis-
sected the tumors and measured their volume and weight. The
combination of COG 133 TFA and anti-PD1 dual treatment can
produce significant tumor suppression (Figure 6d,e), suggesting
that COG 133 TFA can enhance the efficacy of ICI treatments.
Subsequently, four groups of mouse tumor specimens under-
went Hematoxylin-eosin (H&E), ki67 IHC, and mIHC staining
to investigate tumor proliferation potential and the relationship
between APOE+ macrophages and CD8+ Tex cells. The tumor tis-
sues were identified through H&E staining, as shown in Figure
S6a (Supporting Information). Besides, it was observed that the
ki67 positive rate in the other three groups was lower compared to
the PBS group, with the dual treatment group having the lowest
rate (Figure S6b, Supporting Information). The mIHC was used
to further confirm the distance between APOE+ macrophages
and CD8+ Tex cells (Figure 6f-i). The results showed that in the
dual-treatment group, the number of cells whose distance is no
more than 100 μm is significantly lower than in other groups.
Moreover, the number of cells within 50 μm is highest in the PBS
group, indicating that there is an interaction between APOE+

macrophages and CD8+ Tex cells leading to the failure of im-
munotherapy, while APOE inhibitors can enhance the efficacy
of immunotherapy (Figure 6j-m).

3. Discussion

Recently, ICIs have gradually evolved into first-line and new adju-
vant treatments for most early-stage and advanced cancers. Pre-
vious studies based on scRNA-seq and transcriptomics methods
have suggested a relationship between TAMs and CD8+ Tex cells
in multiple cancers, and CD8+ T cells are preferentially located
in the TAM-rich region in the TME.[22] This finding reveals that
TAMs inhibit antitumor T-cell immunity in solid tumors, which
is related to poor prognosis and anticancer treatment failure.[23]

In this study, we analyzed the expression of genes associated with
macrophages in ICI responders and non-responders, and from
eight machine learning techniques, we chose the svm algorithm
to build an M.sig model that can precisely predict the response
to ICIs in pan-cancer. On this basis, we discovered that APOE+

macrophages, which are closely connected to CD8+ Tex cells, may
be one of the causes of the failure in TNBC immunotherapy.

Previous studies have focused on exploring the relationship
between macrophages and clinical characteristics. Long et al. es-
tablished a macrophage-related signature that can predict prog-
nosis by using breast cancer RNA-seq data, and its correspond-
ing risk score is closely related to the pathological features of
tumors and targeted therapy IC50s.[24] Recently, the Nixon re-
search team obtained a TAM-related gene signature and con-
firmed that it may be related to cytotoxic T lymphocyte (CTL) de-
pletion in a variety of malignant tumors but did not explain its
role in immunotherapy.[18] In addition, many researchers have
found that macrophage-related genes or gene signatures have an
impact on TME and immunotherapy.[25] In recent years, apply-
ing machine learning in medicine for prediction has gradually
become a trend, including survival, metastasis, and treatment ef-
fects, with good results.[26] However, this approach has not been
applied to macrophages, especially for predicting response to im-
munotherapy. In this study, we built an ICI response prediction
model using various machine learning algorithms and compre-
hensive scRNA-seq and bulk transcriptome data, improving the
accuracy of prediction and demonstrating innovation.

Compared with other gene signatures that predict the efficacy
of immunotherapy, the AUC of the M.Sig model was higher in
both the total cohort and separate cohorts, indicating that the
model established has wide applicability among cancer types.
Most of the M.Sig model genes are not included in the above
13 immune gene signatures.[25,27] MRC1 is considered a marker
of M2 macrophages, and lapatinib (tyrosine kinase inhibitor)
can downregulate its expression, thereby eliminating the inva-
sion and migration of cancer cells mediated by M2 polarized
macrophages.[28] To explore the potential mechanism by which
the M.Sig model can predict immunotherapeutic response,
we divided macrophages into eleven subgroups and compared
differences between them and their relationship with the M.Sig
model. Among them, SPP1+ macrophages are a common subset
that participates in tumor angiogenesis through interaction with
SPP1-CD44 of adjacent cancer-associated fibroblasts (CAFs);
these cells are related to the epithelial-mesenchymal trans-
formation (EMT) and poor prognosis of cancer patients.[29]
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Additionally, APOE+ macrophages, CTSB+ macrophages,
FOLR2+ macrophages, and S100A9+ macrophages accounted
for the largest proportion of non-responders, with the first
three having the highest M.Sig.Score. This indicates that these
macrophages may have the greatest suppressive impact on
immunotherapy. It has been verified in a previous study on hep-
atocellular carcinoma,[30] revealing that FOLR2+ macrophages
express high levels of immunomodulatory chemokines (such as
CXCL12 and CXCL16) and are located around the blood vessels
of tumor immune privileged sites; thus, they play a major role in
immunosuppressive interactions. Recently, Cao et al. found that
CTSB in macrophages and the TME mature under the mediation
of O-GlcNAc transfer (OGT), promoting cancer metastasis and
chemotherapy resistance, which is related to poor prognosis and
consistent with the conclusions of this study.[31]

We analyzed the corresponding M.Sig.Score in order to fur-
ther understand the function of macrophage subsets, and the re-
sults revealed that in TNBC, the difference in score of APOE+

macrophages between responders and non-responders was par-
ticularly notable. Therefore, it is hypothesized that APOE+

macrophages may play a significant role in the immunotherapy’s
failure. Numerous studies have demonstrated that macrophage
subsets can influence T cell activity and the immune microen-
vironment’s ability to fight tumors. Additionally, our findings
demonstrated the connection between APOE+ macrophages and
CD8+ Tex cells and supported it with in vivo mice models and
mIHC. Although Tang et al.[32] have confirmed that APOE in-
hibitors combined with ICIs have anti-tumor effects, our study
further demonstrated that the combination can decrease M2 and
CD8+ Tex cells in TNBC, which may be a crucial mechanism
for enhancing the response of ICIs. Extracellular vesicles (EV)
produced by APOE-deficient animals can enhance the gene ex-
pression of inflammatory cytokines and M1 macrophage mark-
ers, while decreasing the gene expression of M2 macrophage
markers, stimulating the growth of CD4+ T cells and triggering
the production of IFN-𝛾 in T cells.[33] It has been previously re-
ported that the spatial distance between immune cells in the tu-
mor microenvironment affects patient biological events. Biagio
et al. found that the distance between tumor cells and CD8+ PD-
1+ T cells in non-small cell lung cancer tissue increased after
immunotherapy.[34] Moreover, the distance between CD8+ Treg
and tumor cells in lung cancer tissue is related to the progno-
sis of patients, specifically, the longer the distance, the better the
prognosis of patients.[35] In a study of TNBC, the patient’s patho-
logical complete response (pCR) is associated with the reduction
of distance between tumor cells and CD3+ cells, as well as CD3+

CD8+ cells.[36] These findings show the potential validity of our
hypotheses and provide a theoretical framework for improving
the efficacy of ICI-based immunotherapy in the future.

However, this study has some limitations. First, the scRNA-seq
data used to construct the M.Sig model contained only five cancer
types, resulting in a certain bias. The role of this model needs to

be further verified in more kinds of cancers. Second, the results
of this study were based on large-scale public data from the real
world, and biological interpretation requires further experiments
in vitro to determine the credibility of the conclusions.

4. Conclusion

In this study, we for the first time used large-scale pan-cancer
scRNA-seq and bulk RNA-seq data from immunotherapy cohorts
to develop an M.Sig model for ICI response prediction and strat-
ification of prognosis with machine learning algorithms. In ad-
dition, we preliminarily explained the potential mechanism in
TNBC by which the M.Sig model can predict the effect of ICI
therapy, namely, by APOE+ macrophages interacting with CD8+

Tex cells. Our study provides guidance and ideas for resolving the
heterogeneity of ICI response.

5. Experimental Section
ICI scRNA-seq Cohorts: Six immunotherapy cohorts were collected

with both ICI response and scRNA-seq data to investigate the relation-
ship between macrophages and ICI efficacy. The data for these cohorts
were available through GEO, Single Cell Portal (SCP), and Sequence Read
Archive (SRA), as follows: SKCM_GSE120575,[37] SKCM_GSE115978,[27k]

RCC_SCP1288,[23b] TNBC_GSE169246,[38] and BCC_GSE123813.[39] Pa-
tients with partial response (PR) or complete response (CR) were clas-
sified as responders; those with progressive disease (PD) or stable dis-
ease (SD) were classified as non-responders. The “Seurat” R package[40]

was utilized to analyze the cohorts. All cell annotation was accomplished,
and macrophage data were extracted from each cohort. The data using the
algorithm for canonical correlation analysis (CCA) was incorporated. Us-
ing the “FindMarkers” program and the criteria log2FC>0 and adjusted p
value 0.05, variously expressed genes were identified, and differential gene
analysis between responders and non-responders was performed. Then,
the “monocle3” R package[41] was used to examine the cell development
trajectory to display the responder and non-responder distribution.

ICI RNA-seq Cohorts: Besides the scRNA-seq cohorts, transcrip-
tome data and clinical information for samples from 11 ICI RNA-
seq cohorts, including two BLCA cohorts (Imvigor210,[42] GSE111636),
two SKCM cohorts (GSE78220,[27j] PRJEB23709[43]), one STAD cohort
(PRJEB25780),[44] one glioblastoma (GBM) cohort (PRJNA482620),[45]

one UC cohort (Zenodo546110),[46] one NSCLC cohort (GSE126044),[47]

one BRCA cohort (GSE173839),[48] one RCC cohort (GSE67501),[49] and
one MPM cohort (GSE99070)[50] were systematically collected. The “clus-
terProfiler” R package was applied to convert ensemble IDs to gene
symbols,[51] and the data mentioned above were integrated with the
“sva” R package.[52] Probes were mapped using the “AnnoProbe” R pack-
age (https://github.com/jmzeng1314/AnnoProbe), and the “limma” R
package[53] was used to calculate the average values of multiple probes
if necessary.

Establishment of M.Sig Model and M.Sig.Score: The integrated ICI
RNA‑Seq dataset was randomly divided into training and validation co-
horts at a ratio of 8:2. Model training and validation with the “mlr3” R
package[54] with the differential genes above were accomplished. Eight
machine learning algorithms, including svm, randomForest, k-nearest
neighbors (knn), naïve bayes (nb), cross-validation glmnet (cv_glmnet),

Figure 5. Spatial mIHC staining distinguishes the distance between APOE+ macrophages and CD8+ Tex cells and CD8+ cytotoxic T cells in human
TNBC tissues. a,b) The mIHC images of indicated APOE+ macrophages (orange arrows), CD8+ Tex cells (blue arrows), and CD8+ cytotoxic T cells
(red arrows) in ICI responder (left) or TN (right) TNBC tumor sections. c,d) The distances and their measurement between APOE+ macrophages and
CD8+ Tex cells in ICI responder and TN patients. e,f) The distances and its measurement between APOE+ macrophages and CD8+ cytotoxic T cells in
ICI responder and TN patients. mIHC: multiplex immunohistochemistry; ICI: immune checkpoint inhibitor; TN: treatment naïve; TNBC: triple negative
breast cancer.
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Figure 6. APOE inhibitors can enhance the efficacy of ICI therapy. a) In vivo experimental procedure in mice. b) Results of live imaging of G1–G4 mice.
c) Comparison of fluorescence intensity in live imaging of G1–G4 mice. d) Changes in tumor volume of G1–G4 mice after treatment. e) Comparison
of tumor weight in G1–G4 mice after four times treatment. f–i) Spatial mIHC staining of G1–G4 mice breast cancer sections (DAPI, F4/80, APOE,
CD8, and PD1). j–m) The distance of APOE+ macrophages and CD8+ Tex cells in G1-G4 mice. ICI: immune checkpoint inhibitor; mIHC: multiplex
immunohistochemistry.
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decisionTree, extreme gradient boosting (xgBoost), and logistic regression
(lr), were used for the training cohort. Each method was evaluated using
tenfold CV, and the effectiveness of the models were determined by calcu-
lating the AUC. To meet the criteria of a better AUC value and fewer vari-
ables, the “mlr_filters” function with the parameter “jmim” was used to
calculate importance scores for each gene and reduced the features from
lowest to highest priority ratings.

To further assess the effectiveness of the M.Sig model, thirteen ICI
response signatures were gathered (IMS.Sig,[27a] ImmmunCells.Sig,[25c]

INFG.Sig,[27b] T.cell.infamed.Sig,[27b] PDL1.Sig,[27c] TcellExc.Sig,[27k]

CRMA.Sig,[27d] NLRP3.Sig,[27e] Cytotoxic.Sig,[27f] TRS.Sig,[27g]

LRRC15.CAF.Sig,[27h] IMPRES.Sig,[27i] and IPRES.Sig[27j]). Codes and
algorithms for these signatures were derived from the original studies.

This study examined various levels of expression for each gene of the
M.Sig model in the ICI RNA-Seq data according to patient response. Using
the Single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm, it
screened up-regulated and down-regulated genes in non-responders and
calculated M.Sig.Score using the following formula:

M.Sig.Score = ssGSEA.Score (up-regulated)

− ssGSEA.Score (down-regulated) (1)

Bulk Transcriptomic Data: Transcriptomic data was downloaded from
the pan-cancer cohort of TCGA from the UCSC Xena data portal (https:
//xenabrowser.net). Classic immunomodulators and TME scores deter-
mined by “MCPcounter” algorithms[55] were obtained from a previously
published article.[56] Additionally, TMB data were acquired to examine
the link between the M.Sig model and the TMB. Then, MSI data from
colon adenocarcinoma (COAD) patients were collected to determine a
distinction between MSI statuses. Data of TNBC patients were down-
loaded from the GEO database, including GSE114269,[57] GSE21653[58]

and GSE173839. All the datasets was used is summarized in Table S1 (Sup-
porting Information).

Functional Enrichment Analysis: Enrichment analysis based on the
KEGG and GO databases was performed using the “clusterProfiler” R
package.[51] The ssGSEA was conducted on each sample with the “GSVA”
R package,[59] which was used to calculate the “Exhausted score” with the
corresponding gene set and “APOE score” with the top20 feature genes
(Table S2, Supporting Information).

Cell–Cell Interaction (CCI) Analysis: The R package “CellChat”[60] iden-
tifies differentially expressed signaling genes and calculates the collective
average expression, then uses the law of mass action to model ligand-
receptor mediated signaling interactions and adopts a random walk-based
network propagation technique. Calculate inter-cell communication prob-
abilities and ultimately determine statistically significant inter-cell com-
munication. So, it applied it to explore cell interactions and determine the
mechanism of communication molecules at the single-cell level.

The R package “SingleCellSignalR”[61] utilizes a manually curated
database and calculates probabilities as a linear function of the product
of ligand and receptor expression. Then it used the package for systematic
analysis of ligand and target gene pairs. The gene expression data of in-
teracting cells was input into SingleCellSignalR and combined with a prior
model that integrates existing knowledge of ligand target signaling path-
ways. Then, predict the ligand receptor interactions that drive changes in
gene expression in cells of interest.

mIHC Staining of TNBC Tissue: Human and mouse TNBC tissues
were fixed with 4% paraformaldehyde before being embedded in paraf-
fin. Tissue sections (4 μm) were baked in an oven at 65 °C for 1 h to im-
prove sample adhesion to the slide. Then, they were dewaxed with fresh
xylene twice for 15 min each and rehydrated with graded alcohol (100%,
95%, 85%, 75%). The samples were then transferred to the proper anti-
gen retrieval (AR) solution after being fixed for 20 min at room tempera-
ture in 10% neutral-buffered formalin (NBF) (Solarbio, #G2161, China).
The slices were then microwaved for 15 min at 20% power after 1 min at
100% power. After being blocked and brought to room temperature, the
slides were incubated with the primary antibody for 10 min. Slides were
washed three times with TBST (Solarbio, #T1082, China) to get rid of any

extra antibodies. Slides were then exposed to Opal Polymer HRP Ms+Rb
(AKOYA Biosciences, #NEL820001KT, USA) for 10 min at room tempera-
ture. Slides were rinsed three times with TBST to remove any remaining
wash buffer before being incubated with Opal Signal Generation. Before
each additional antibody incubation, the steps of microwave treatment,
blocking, primary antibody incubation, and introduction of Opal Polymer
HRP were carried out once again. After all the primary antibodies were
done, the slides were then incubated with DAPI working solution for 5 min
in the dark at room temperature. After that, slides were mounted after be-
ing cleaned with distilled water and TBST. Finally, photographs of those
tissue samples were taken using a confocal microscope (Nikon, Japan) or
a Vectra Polaris Quantitative Pathology Imaging System. Intercellular dis-
tance measurements of mouse tissues were performed with HALO soft-
ware. In the human TNBC samples, ImageJ (version 1.54 g) was used with
Java 8.0 (64-bit) to record the total number of cells and the centroid posi-
tions of each cell. Then, functions from the OpenCV (version 4.7.0) library
were utilized to compare the pixel color values of each cell’s centroid posi-
tion in Python software. For cells expressing common colors, libraries such
as NumPy (version 1.24.4) and Pandas (version 2.1.1) were employed to
calculate distances between cells.

Antibodies used in human tissues include CD68 (1:1000, #ab213363,
Abcam), CD8a (1:400, #66868-1-Ig, Proteintech), PD-1 (1:400, #66220-
1-Ig, Proteintech), APOE (1:100, #66830-1-Ig, Proteintech), and IFN𝛾

(1:100, #15365-1-AP, Proteintech). And in mouse tissues, CD8 (1:200,
#ab217344, Abcam), PD-1 (1:4000, #66220-1-Ig, Proteintech), F4/80
(1:8000, #28463-1-AP, Proteintech), and APOE (1:200, #A0304, Abclonal)
were used.

Mice Model: Female BALB/c mice (6 weeks old, immunocompetent)
were purchased from Zhejiang Center of Laboratory Animals (ZJCLA) and
housed in the ZJCLA. All animal husbandry and experimental procedures,
including animal housing and diet, were performed under the guidelines,
and were approved by the Institutional Animal Care and Use Commit-
tee (IACUC) and ZJCLA (ethical number: ZJCLA-IACUC-20010267). The
4T1 cell line was purchased from FuHeng BioLogy cultured with RPMI
1640 medium (Meilun Biotechnology, #MA0215-2, China) supplemented
by 10% fetal bovine serum (FBS) (Cellmax, #SA211.02, USA) at 37 °C in a
5% CO2 chamber. The firefly luciferase gene, which was added via lentiviral
transduction, was expressed consistently by the 4T1-Luc cell line. For ani-
mal model, fifty microlitres of 2.5 × 105 4T1-Luc cells mixed with Matrigel
(Yeasen, #40185ES10, China) were inoculated into the fourth mammary
fat pad of mice to establish the subcutaneous tumor-bearing model. One
week later, all tumor-bearing mice were divided randomly into four groups
(n = 11). From the 8th day, COG133TFA (𝛼APOE, MCE, #HY-P1050A,
USA) (1 mg kg−1, i.p.) dissolved in PBS (100 μL) were conducted every
3 days for a total of four times. Treatments with anti-PD-1 (5 mg kg−1, i.p.)
were conducted every 4 days for four times. Among these mice, 24 were
used for in vivo imaging experiments with D-Luciferin, Potassium Salt D
(Yeasen, #40902ES03, China) to test drug efficacy, and 20 for tumor vol-
ume and weight measurements. Tumor volumes were calculated accord-
ing to the modified ellipsoidal formula: V = 1/2 (length × width × width).
(Figure 6A). All mice were sacrificed and tumor tissues were collected for
H&E, ki67 IHC and mIHC staining, and the methods of H&E and ki67 IHC
staining were elaborated in our previous study.[62]

Statistical Analysis: All statistical analyses were performed using R
software (version 4.1.0). The Wilcoxon test was employed to analyze dif-
ferences between two groups and the Kruskal–Wallis test to analyze differ-
ences between more than two groups. Survival curves, which are described
by Kaplan–Meier plots, were compared with the log-rank test. Wilcoxon
test was carried out to see the statistical difference between two groups.
Correlation coefficients were calculated as Spearman correlations. P <

0.05 was considered statistically significant. Significant P-values were de-
noted as follows: 0 ≤ ****<0.0001≤***< 0.001 ≤** < 0.01 ≤* < 0.05.
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