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Introduction

The global prevalence of preterm birth (PTB) has remained mostly unchanged in the decade 

between 2010 (at 9.8%) and 2020 (at 9.9%), with approximately 13.4 million infants being 

born too early in 2020.1 The rates remained the highest in South Asia and Sub-Saharan 

Africa where survival, especially for those born extremely preterm, is the lowest.1 In the 

United States, the rates have also varied but only modestly: from 10.6% in 1990 to its peak 

of 12.8% in 2006 and back to 10.4% in 2022, resulting in 380,548 infants being born too 

early in 2020.2,3

Prematurity is an important risk factor for neonatal mortality and adverse infant 

outcomes such as sepsis, necrotizing enterocolitis, jaundice (hyperbilirubinemia), and 

neurodevelopmental delay. This persistent threat to a healthy pregnancy could be greatly 

reduced by the development of prediction tools that can identify – early in pregnancy and 

with high accuracy – women who are at risk. Once identified, these women could for 

example be offered a treatment, such as low-dose aspirin known to reduce the risk,4 and 

be closely followed until the delivery. In low-income settings, where efficient resource 

utilization is particularly critical, prediction tools could become crucial to save lives, 

allowing women at risk to be more efficiently triaged and monitored. Furthermore, identified 

biomarkers could lead to a better understanding of the biological pathways that are critical in 

the etiology of PTB, thereby guiding and improving prenatal care pathways.
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Why the proteome?

The complexity of PTB, both spontaneous and medically induced, and its various etiologies 

and associated risk factors pose a challenge to developing prediction tools and unveiling 

the etiologies of PTB.5 High-throughput measurements covering the genome, transcriptome, 

proteome, metabolome, lipidome, or microbiome have enabled the collection of detailed 

omics measurements that reflect biological processes in human physiology and capture 

molecular differences caused by diseases. Various omics approaches have captured the 

dynamics of pregnancy6,7 and its adverse outcomes, including PTB,8 preeclampsia (PE),9,10 

and onset of labor.11

The genome is the fundamental code of DNA that determines an organism’s capacity 

for expressing myriad of proteins, many of which are further modified after they have 

been translated from mRNA. These modifications include phosphorylation, glycosylation, 

ubiquitination, methylation, acetylation, oxidation, and nitrosylation. Protein translation is 

cell-, time-, and condition-dependent, and post-translational modifications affect protein 

structure and function. While relevant, these processes are not the focus of this review.

The transcriptome reflects the active expression of genes. However, the biological 

consequences of gene expression are probably better understood when evaluating proteins, 

as not all transcripts result in protein synthesis, and post-translational alterations of proteins 

(alternative splicing which allows a single gene to code for multiple proteins) and abundance 

can be directly measured. Moreover, transcripts are more transient in the circulation, and 

their measurements can be more technically challenging.

The metabolome encompasses the complete set of small molecules in a biological system 

(including substrates, intermediates, and products of cellular metabolism more generally), 

and constitutes a more complex array of molecules than the proteome. Metabolites can serve 

as biomarkers and help identify pathways that are contributing to a particular phenotype 

as they are directly linked to cellular function. However, the complexities and the dynamic 

nature of the metabolome pose challenges requiring highly standardized collection and 

processing protocols to ensure reproducibility.

This review focuses on the discovery of proteomics signatures in plasma, sera, urine, or 

cervicovaginal fluid that might be useful for diagnosing or predicting various adverse 

pregnancy outcomes, such as spontaneous PTB or PE. The latter is a significant cause 

of PTB because early delivery may be indicated to protect the mother and/or the baby. 

The proteome of amniotic fluid has been studied for the same purpose, but now access to 

this source is limited, as amniocentesis has become less common due to the introduction 

of noninvasive pregnancy tests (NIPT). Thus, the proteome of amniotic fluid will not 

be discussed in detail. Importantly, there is ample evince to suggest that the proteome 

represented in plasma, sera, and urine contains diagnostic and predictive information 

regarding the risk for PTB and PE. Moreover, combining proteomics approaches with 

other omics, some of them involving single cell proteomics measures (e.g., single cell mass 

cytometry by time-of-flight mass spectrometry or CyTOF) does improve its diagnostic and 

predictive value. The analysis of the proteome can also provide insight into the pathogenesis 

of PTB and PE, thereby revealing possible targets for intervention.
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The proteome reflects both genetic and environmental influences on a biological system 

and contains information that allows predicting pregnancy outcomes12 including PTB8 with 

typically better accuracy than other omics. However, the predictive power of proteomics 

signatures can be enhanced when integrated with other omics datasets (Fig. 1).8,10 

Numerous protein biomarker candidates have been reported for PTB.8,13–30 These findings 

are encouraging and provide the basis for continued efforts aiming at the development of 

clinically useful tests for the early prediction of PTB and PE using a broadly-available 

assays. Such efforts will need to address major challenges including the prospective 

validation of identified protein biomarker candidates and the demonstration of their 

robustness across diverse populations.

Methods for Proteome Analysis

Analytical methods to assess the proteome are classified as ‘targeted’ and ‘untargeted’. 
The primary objective of targeted approaches is to identify biomarker candidates in a 

predetermined set of proteins; whereas, untargeted approaches aim to identify proteins 

without predefining specific targets.31 The major analytical platforms for targeted 

approaches either use antibodies or aptamers.32,33 The scope of targeted approaches has 

dramatically changed during the last decade as current assays can be highly multiplexed, 

allowing for the simultaneous analysis of over 10,000 proteins in a given specimen. As such, 

targeted approaches, originally not suitable for relevant discovery work, are now commonly 

used to derive health-relevant biosignatures. Compared with untargeted approaches, they 

currently also provide higher sensitivity for the detection of low abundance proteins, 

particularly in sera and plasma. However, untargeted approaches have limitations. They 

may provide biased results as antibodies or aptamers against relevant proteins may not 

be included in the assay.34 Additionally, different antibody- or aptamer-based assays may 

provide incongruent results as the specificity and binding sites of used antibodies and 

aptamers can vary.35 As such, validation of targeted proteomic results by an alternative assay 

is critically important when developing a predictive or diagnostic tool, or inferring relevant 

biology.

Untargeted approaches are anchored in mass spectrometry (MS), which measures the mass-

to-charge ratio (m/z) of ionized analytes, thereby detecting the number of ions at each m/z 

value and mapping it to the mass spectrum.36 MS methods include surface enhanced laser 

desorption ionization (SELDI), matrix assisted laser desorption ionization (MALDI) coupled 

with time-of-flight (TOF), and gas chromatography MS (GC-MS) or liquid chromatography 

MS (LC-MS).37 Untargeted approaches overcome some of the limitations inherent to 

targeted approaches. A major advantage is their ability to identify proteins that were not 

initially thought of in an experimental context. In other words, untargeted approaches 

can protect against preconceived notions. They can also identify proteins that would be 

missed by antibodies or aptamers designed for their detection due to the posttranslational 

modifications of these proteins. As indicated earlier, a major limitation of untargeted 

approaches is the detection of low abundance proteins as their representation on the mass 
spectrum may be masked by high abundance proteins.
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Considering the advantages and disadvantages of targeted and untargeted approaches, they 

should be considered complementary methods. The selection of either or both approaches 

critically depends on a particular study design and rationale.

Biological Compartments

The search for proteomics signatures predictive or diagnostic of PTB spans the analyses 

of specimens from different sources including tissue (e.g., placenta), plasma, sera, urine, 

cervicovaginal fluid, amniotic fluid, and exosomes. The choice of the specimen source 

is ideally driven by a particular study question. However, access to tissue and the 

feasibility of sample collection often dictates the source. It is therefore not surprising 

that most investigation heavily rely on the collection of blood specimens. For blood 

specimens, proteomic analyses can either be performed in sera or plasma, which are 

processed differently. The question then arises whether the diagnostic or predictive power 

of proteomics signatures varies when derived in sera or plasma. Addressing this question 

requires the direct comparison of the predictive power of sera- and plasma-derived 

biosignatures using simultaneously collected samples. Such a study was recently performed 

using samples from 73 pregnant women and assaying over a thousand proteins to derive 

a signature predicting gestational age at the time of sampling.38 The results demonstrated 

a significantly higher predictive power for a plasma-derived signature compared to a serum-

derived signature. A likely explanation for this difference is that serum is subjected to the 

degradation of proteins while processed.

Statistical Analyses

Statistical and computational analyses of proteomic data sets include both classical statistics 

methods and machine learning approaches. Hypothesis-driven analyses testing associations 

between a few proteins and PTB can be addressed with classical hypothesis testing,39 along 

with an adjustment for multiple comparisons to control for false discovery.40 In contrast, 

finding the most predictive biomarkers among thousands of proteins requires the use of 

machine-learning methods. Most suitable for the analysis of these high-dimensional data 

sets, characterized by numerous measurements (features) and typically a smaller number of 

samples, are sparsity-promoting regression methods that select a small subset of the most 

informative features from all features. In principle, such analysis requires evaluating the 

predictive power of all possible feature subsets. However, in the case of high-dimensional 

data, the number of generated subsets is too large to allow for such evaluation. This 

challenge is addressed by introducing penalization schemes that remove features with 

poor predictive power, thereby selectively considering features with the highest predictive 

power.41 Another challenge in a clinical setting is that computational algorithms for feature 

selection have to be trained in data sets obtained in relatively small cohorts. A consequence 

of a limited cohort size is that small perturbations in the data set can yield different 

model features. The limited reliability of feature selection is a well-recognized problem 

of stability in high-dimensional statistical inference.42,43 In other words, there remains 

significant uncertainty regarding the choice of model features, if such models are derived in 

small cohorts. Advanced algorithms specifically addressing this problem include Stability 

selection44, Knockoffs-based 45–46, bootstrap-enhanced Lasso (Bolasso),47 and Stabl.48 
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These novel approaches result in a sparse and reliable set of biomarkers. The stability 

selection method improves model robustness by using bootstrapping and selecting features 

that are chosen with the highest frequency, whereas the approach by Barber and Candès45 

and Candès et al.46 introduces artificial features to separate random feature selection from 

the selection of truly informative features (i.e., knockoffs). Stabl is the latest implementation 

of such an algorithm that integrates both approaches. Specifically, Stabl determines a feature 

frequency selection threshold based on data, by adding random features to the data set 

and allowing separating noise from signal. Truly informative features are selected more 

frequently during bootstrapping then the added random features. By using this approach, 

Stabl creates a sparse set of highly reliable features. The above approaches provide a high-

impact advancement, as the cohort sizes of many clinical studies are too small to allow for 

meaningful analyses with deep-learning (DL) algorithms. However, when large datasets are 

available, complex patterns could potentially be discovered by DL algorithms, resulting in 

prediction with higher accuracy. A few studies have used DL for the discovery of predictive 

biosignatures in proteomics49 and a multiomics data set.50

Clinical Studies

Numerous studies have examined the association between proteins in different biological 

compartments, most commonly sera or plasma, and PTB as well as PE resulting in PTB. 

These studies reported an array of proteins. Sentinel results are reviewed in this section and 

are listed in Table 1. A comprehensive list of omics biomarkers, including the proteome, has 

been published in a recent systematic review.51

The strong association between intrauterine infection and PTB suggests that the resulting 

inflammatory response is a main driver of PTB.52 A hallmark of inflammation is the 

increase of cytokines including interleukin (IL)-1, IL-6, IL-8 and C-reactive protein 

(CRP).53,54 Associations between different pro-inflammatory cytokines with PTB have been 

observed in multiple studies. For example, associations between IL-6 and PTB were shown 

in different biological compartments including amniotic fluid,24 cervical fluid16,22 and 

sera.18,28 Consistent with these reports is a recently published proteomics profile derived 

with aid of a machine-learning analysis and considering 1,125 simultaneously measured 

plasma proteins. This profile included IL-6.29 Further evidence highlighting the importance 

of inflammation in PTB are increased levels of C-reactive protein in amniotic fluid15 and 

plasma28, and increased levels of IL-1β and IL-8, next to IL-6, in cervical fluid.22

A remarkably large study including 248 women with spontaneous PTB pregnancies 

examined the ratio of insulin-like growth factor-binding protein 4 (IBP4) and sex hormone-

binding globulin (SHBG) in serum.27 The cohort was split into discovery, verification, and 

validation sub-cohorts. In the validation cohort, the IBP4/SHBG ratio predicted spontaneous 

PTB with modest accuracy (area under the curve [AUC]=0.67) when measured between 19 

and 21 weeks of gestation, and with an increased accuracy (AUC=0.75) after stratification 

by the body-mass-index (BMI). These findings were subsequently validated with an 

AUC=0.67 considering the ratio, and an AUC=0.71 after BMI stratification.23 A subsequent 

study in a cohort of 300 women from Bangladesh, Pakistan, and Tanzania validated this 

biomarker with lower accuracy (AUC=0.64), which could be increased (AUC=0.79) by 
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adding endoglin, prolactin, and tetranectin to the prediction model.20 These studies resulted 

in the development of a commercially available test for predicting the risk of PTB based on 

the IBP4/SHBG ratio.

Studies using an untargeted approach identified a number of proteins in sera13,18,25 and 

plasma that were significantly associated with PTB.8,21,29 For example, a study reporting a 

readout of 628 proteins in serum of 20 women using two-dimensional gel electrophoresis 

(2DE) and MS identified 30 proteins involved in immunological, developmental, and 

metabolic processes.13 Another study, using a targeted approach to measure 1,012 proteins 

in plasma from 81 women8 built a multivariate model to predict the risk of PTB. However, 

the model had moderate predictive power as evidenced by an AUC=0.75.

Comparisons among studies8,13,18,21,25,29 examining and reporting a wide array of protein 

candidates reveals limited overlap with some exceptions, one being IL-6. While divergent 

findings may partially be due to methodological differences, inconsistent findings likely 

reflect the heterogeneity of the studied cohorts and pathophysiologies underlaying PTB. 

This view is supported by a recent investigation measuring over 1,000 plasma proteins 

with the same analytical platform to predict the risk of PE in two demographically 

distinct cohorts of pregnant women.14 Multivariate models derived separately in each cohort 

predicted the risk of PE with good accuracy in the respective cohort. However, either 

model failed to predict the risk of PE in the alternative cohort, emphasizing the need 

to study large and diverse cohorts to develop generalizable prediction models. While the 

proteins associated with PTB vary across studies,8,13,18,21,25,29 pathway analysis points to 

important biology that likely drives the development of PTB including pathways relevant to 

inflammation8,25,29 and angiogenesis.13,18

From an interventional perspective the established association between IL-1 and PTB is 

interesting, as it may offer a therapeutic approach by targeting IL-1. While several IL-1 

antagonists have been approved for clinical use, none have been approved for the prevention 

of PTB.55 One hindrance is that IL-1 antagonists have failed to prevent PTB in animal 

models.56 Furthermore, there is a relevant risk that straight antagonism at the IL-receptor to 

decrease IL-1 binding, which has a role during labor, may interfere with normal delivery.55 

These obstacles may be overcome by further examining an IL-1R allosteric modulator, 

which has proven effective in mice.57 However, from a drug development perspective, a 

significant challenge is the difficulty in conducting randomized clinical trials to evaluate 

therapeutic candidates, as the incidence of PTB is about 10%. Developing a reliable test for 

the early prediction of PTB would allow for an enriched trial design, greatly enhancing the 

feasibility of conducting interventional clinical studies.

Preeclampsia

While the pathophysiology of PE is not fully understood, placental ischemia likely plays 

a causal role.58 Ischemia changes the level of circulating angiogenic and antiangiogenic 

factors, including decreases of angiogenic factors such as vascular endothelial growth 

factor (VEGF) and placental growth factor (PlGF), and increases of antiangiogenic factors 

such as soluble VEGF receptor-1 (sVEGFR-1) or sFlt-1 and soluble endoglin (sEng).59 

Investigations focusing on biomarker discovery to predict PE indeed revealed changes 
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in circulating angiogenic factors60 with multiple studies showing increased sFlt-1 and 

decreased of PIGF levels.61 However, neither of these biomarkers had shown sufficient 

predictive power when examined alone.62,63 Importantly, examining the sFlt-1/PIGF ratio 

increased the prediction accuracy and is now used in clinical practice.64–66 The use of the 

sFlt-1/PIGF ratio is recommended by the current National Institute for Health and Care 

Excellence (NICE) guidelines.67 They specifically suggest that a ratio >38 is indicative for 

the short-term PE risk during the 24–366/7 weeks gestational period. The sFlt-1/PIGF ratio 

can be used in conjunction with clinical factors and uterine artery Doppler results to increase 

accuracy.64 However, determining the sFlt-1/PIGF ratio is particularly useful in pregnancy 

after the 24th week, while clinical features suggestive of PE may already have manifested.68 

As such, the sFlt-1/PIGF ratio can viewed as diagnostic rather than a predictive tool. The 

search for proteomics signatures that can help predict PE early during pregnancy rather than 

diagnose it later during pregnancy remains a high-yield objective.10 Table 2 summarized the 

results of untargeted studies, which predominantly revealed angiogenic and inflammatory 

proteins associated with PE early and late in pregnancy.69,70

Increased levels of leptin in early and mid-pregnancy have been observed in pregnant 

women developing clinically overt PE later in pregnancy, if adjusted for maternal 

BMI.10,71,72 Associations of PE with other potential biomarkers include plasma protein-A 

(PAPP-A)73 and uric acid.6 However, the predictive power of reported isolated proteins is 

poor. Instead, integrating these proteins in composite signatures can significantly improve 

predictive accuracy.74,75 Specifically, first trimester screening information including 

maternal clinical factors, the uterine artery pulsatility index, the mean arterial pressure 

(MAP), and the maternal serum proteins PAPP-A and PIGF resulted in a 95% detection rate 

with a 10% false-positive rate.74 A large subsequent study including over 35,000 women 

as a training cohort, and over 25,000 women as a validation cohort confirmed the utility 

of the composite signature approach. First trimester screening of maternal factors, MAP, 

uterine artery pulsatility index, and PIGF resulted in an AUC>95% for early-onset PE and 

>80% for PE in general.75 While yielding high accuracy, these composite signatures require 

tests that are not conducted during routine prenatal care. As such, proteomic signatures 

composed of multiple proteins and derived by interrogating a large array of proteins with 

machine-learning methods do have the potential to advance the development of sufficiently 

accurate prediction models that may not require results of demanding clinical tests.10

Future Directions

Significant research efforts aiming to develop tests that predict preterm birth and PE before 

they become clinically manifest and point to underlaying mechanisms have identified 

an array of biomarker candidates including genes, proteins, and metabolites. Yet, the 

development of predictive tools that are sufficiently accurate to be of clinical utility has 

been hindered by limited predictive power, missing or incomplete validation, restricted 

generalizability, and constrained clinical use as pointed out for the sFlt-1/PIGF ratio. The 

development of highly multiplexed and sensitive platforms allowing for the simultaneous 

analysis of over 10,000 proteins holds the promise that predictive tests with higher accuracy 

will be developed in the future. Importantly, the derivation of predictive proteomics 

signatures will rely on advanced computational algorithms that adequately address the 
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highly intercorrelated and redundant nature of the proteome. As important is the derivation 

of such signatures in large and diverse populations using designs that allow for cross and 

independent validation. It is conceivable that these investigations will reveal that accurate 

proteomic signatures vary for different demographic groups, sub-groups of PTB and PE 

with different or only partially congruent underlying pathophysiology, and a particular 

clinical context including gestational age at the time of specimen sampling. Large scale 

proteomics studies in diverse populations will also shed more light on the biology and 

pathways driving PTB and PE, which are incompletely understood. Such knowledge will 

facilitate the development of preventive and therapeutic interventions.

A highly promising approach to derive predictive tests of sufficient accuracy is the 

combination of proteomics with other omics, i.e., the conduct of multiomics studies. 

The integration of information from various biological layers, including the genome, 

transcriptome, proteome, and immunome in mid-sized study cohorts has already revealed 

that multiomics models improve predictive power.8 They also provide a more complete 

view of the biological process underlying PTB and PE, and as such, may be a powerful 

approach to improve disease diagnostics,76 predictive accuracy,8 and the understanding of 

interrelationships between different omics, thereby pointing to important pathophysiologic 

drivers of PTB and PE.10 Various advanced computational methods exist for the integration 

of omics datasets, generally classified as early-, late-, or hybrid- fusions.77 Early fusion 

approaches concatenate and use features from all omic sources to train and validate a 

predictive model. Late fusion approaches first build predictive models for each omics 

dataset, and then combine these predictions to build an integrated model. As noted 

previously, including the proteome in an integrative approach can greatly enhance the 

accuracy of an integrated model, as it offers superior accuracy on its one when compared 

with other omics.8,10 A common approach when deriving integrated models is to assign 

more weight to the omics dataset that are particularly informative.78 As such the proteome, 

likely being quite informative, will weigh heavily on the accuracy of the final model. 

Inclusion of the proteome should therefore be strongly considered when engaging in a 

multiomics approach.

One important limitation of multiomics models is that some relevant multiomics data may 

be difficult to obtain in a clinical setting. Multiomics biosignatures may therefore not 

directly translate into a simple predictive test. They may require substitution of parameters 

that cannot readily be measured, and such substitution will require the simultaneous 

consideration of all available biological, demographic, and clinical data. The promise of 

this approach resides in the inherently redundant nature of these datasets.

In summary, PTB is a complex and diverse clinical syndrome influenced by a combination 

of genetic, biological, and environmental factors. The risk of PTB has been associated with 

maternal characteristics (e.g., BMI),79 comorbidities and medical history (e.g., previous 

PTB, and family history of PTB),80 and the interpregnancy interval.81 Similarly, risks factors 

for PE include a history of PE, chronic hypertension, diabetes, kidney disease, obesity, 

and nulliparity.82 These data are typically available from the electronic health records, an 

important source for improving risk assessment.83 Integration of these clinical data with 

Marić et al. Page 8

Clin Perinatol. Author manuscript; available in PMC 2024 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



omics measurements, while challenging due to data heterogeneity and high-dimensionality, 

will be important to improve the accuracy of predicting and diagnosing PTB and PE.10,84
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Synopsis:

The complexity of preterm birth (PTB), both spontaneous and medically indicated, 

and its various etiologies and associated risk factors pose a significant challenge for 

developing tools to accurately predict risk. This review focuses on the discovery 

of proteomics signatures that might be useful for predicting spontaneous PTB or 

preeclampsia (PE), which often results in PTB. We describe methods for proteomics 

analyses, proteomics biomarker candidates that have so far been identified, obstacles for 

discovering biomarkers that are sufficiently accurate for clinical use, and the derivation 

of composite signatures including clinical parameters to increase predictive power. 

We conclude with an outlook including the derivation of biosignatures with highly 

multiplexed and sensitive proteomics platforms and the integration of proteomics results 

with other omics with aid of advanced computational algorithms. Finally, we point to the 

importance of conducting future biosignature and composite signature studies in large 

and diverse populations to derive accurate, reliable, generalizable, and clinically useful 

prediction tools.
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Key Points:

• Numerous studies have revealed that proteins present in prenatal maternal 

samples are significantly associated with preterm birth (PTB) and 

preeclampsia (PE), thereby providing a compelling rationale for advanced 

proteomics research to derive sufficiently accurate biosignatures to support 

clinical decision-making in women at risk for PTB or PE.

• Current protein biomarker candidates possess insufficient or too restricted 

predictive power as they lack sufficient accuracy, reliability, and 

generalizability across diverse populations.

• The advancement of highly multiplexed and sensitive platforms 

simultaneously assessing a large array of proteins, advanced computational 

methods, and protocols combining proteomics data with other omics and 

clinical datasets, holds considerable promise for uncovering predictive 

biosignatures with sufficient accuracy for their clinical use.
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Best Practices

What is the current practice for preterm birth?

Currently, there is no best practice for the prevention for preterm birth (PTB).

What changes in current practice are likely to improve outcomes?

Further studies are needed to establish a set of robust proteomic biomarkers and develop 

a predictive tool to identify women who would benefit from frequent clinical follow-up 

and medical interventions, including the preemptive treatment with low-dose aspirin, 

which reduces the risk of PTB.

Bibliographic Sources:

1. Magee LA, von Dadelszen P. Aspirin from early pregnancy to reduce preterm 

birth. Lancet Glob Health 2023;11(3):e314–e5.
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Fig. 1. Predictive Modeling of Preterm Birth.
A. This receiver operating characteristic (ROC) curve analysis used each biological 

modality and the integrated approach. The mean area under the ROC curve and 95% 

confidence interval (CI) for each modality were as follows: transcriptomics (area under 

the ROC [AUROC]; 0.73; 95% CI: 0.61, 0.83), metabolomics (AUROC: 0.59; 95% CI: 

0.47, 0.72), proteomics (AUROC: 0.75; 95% CI: 0.64, 0.85), and integrated (AUROC: 

0.83; 95% CI: 0.72, 0.91). B. Circle size is proportional to −log10 (Wilcoxon) p-value 

for discrimination between term pregnancies and preterm births. Top features included 

an inflammatory module (which included interleukin 6 [IL-6]; IL-1 receptor antagonist 

[IL-1RA], a regulatory member of the IL-1 family whose expression is induced IL-1β 
under inflammatory conditions; granulocyte colony-stimulating factor [G-CSF]; retinoic 

acid receptor responder protein 2 [RARRES2]; chemokine ligand 3 [CCL3]; angiopoietin-

like 4 [ANGPTL4]; protein-arginine deiminase type II [PADI2]; and transferrin receptor 

[TfR]) and a metabolomic module (which was enriched for glutamine and glutamate 

metabolism [Fisher test for pathway enrichment analysis p<4.4×10−9] and valine, leucine, 

and isoleucine biosynthesis pathways [p<7.3×10−6]). From Jehan F, Sazawal S, Baqui AH, 

et al. Multiomics characterization of preterm birth in low- and middle-income countries. 

JAMA Netw Open 2020;3(12):e2029655.
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