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V I R O L O G Y

Structure and dynamics of enterovirus 
genotype networks
Nathânia Dábilla† and Patrick T. Dolan*†

Like all biological populations, viral populations exist as networks of genotypes connected through mutation. 
Mapping the topology of these networks and quantifying population dynamics across them is crucial to under-
standing how populations adapt to changes in their selective environment. The influence of mutational networks 
is especially profound in viral populations that rapidly explore their mutational neighborhoods via high mutation 
rates. Using a single-cell sequencing method, scRNA-seq–enabled acquisition of mRNA and consensus haplotypes 
linking individual genotypes and host transcriptomes (SEARCHLIGHT), we captured and assembled viral haplo-
types from hundreds of individual infected cells, revealing the complexity of viral population structures. We ob-
tained these genotypes in parallel with host cell transcriptome information, enabling us to link host cell 
transcriptional phenotypes to the genetic structures underlying virus adaptation. Our examination of these struc-
tures reveals the common evolutionary dynamics of enterovirus populations and illustrates how viral populations 
reach through mutational “tunnels” to span evolutionary landscapes and maintain connection with multiple 
adaptive genotypes simultaneously.

INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) methods enable monitor-
ing of transcriptional dynamics (1, 2), virus infection (3), and the 
heterogeneity of viral and host cell populations (1, 4–7). In  vitro, 
combined capture of viral and host transcripts with scRNA-seq has 
allowed us to correlate virus transcript abundance with host re-
sponses (4). In vivo, these methods have identified host cell tropism 
(8) and molecular signatures associated with severe disease (3).

Because of limitations in the processivity of the reverse tran-
scriptase used in library generation, studies of viral genotypes using 
scRNA-seq platforms have largely been limited to influenza A virus 
(IAV), with a genome consisting of small segments (up to 2300 bases 
in length) (9) and amenable to amplification directly from cDNA 
pools or fragments of viral genomes (10). Characterization of het-
erogeneity in IAV populations has demonstrated that stochastic 
fluctuations in segment copy number influence innate immune re-
sponses (5, 11). Attempts to capture viral genotypes from longer vi-
ral genomes have been limited (6, 10). In all cases, viral population 
structure and mutational spectra have not been thoroughly ex-
plored. Capturing viral genotypes would unlock investigations of 
virus population structure and dynamics, notably, in ways that con-
nect viral genotype with host cell type and transcriptional state.

To adapt existing single-cell pipelines to the generalized capture 
of viral genotype information, we developed scRNA-seq–enabled 
acquisition of mRNA and consensus haplotypes linking individual 
genotypes and host transcriptomes (SEARCHLIGHT), wherein cus-
tom, virus-specific reverse transcription (RT) primers tiled at regular 
intervals across the viral genome are used to generate cDNA tran-
scripts. Including these primers during microfluidic droplet genera-
tion enables the reconstruction of the consensus viral genotypes 
present within each cell. Combining this modification with high-
accuracy long-read sequencing, we reconstruct viral genotypes from 

hundreds of individual infected cells in parallel to matched host cell 
transcriptomes.

Here, we examine the structure of enterovirus (EV) populations 
derived from long-term passage and an in vitro–transcribed RNA 
molecular clone, demonstrating the marked difference between the 
genetic structures of the populations from these two origins. We 
then examine the dynamics of adapting EV-A71 populations during 
in  vitro passage to understand how experimental populations ex-
plore the genotypic network. Even in this simple model of viral in-
fection and evolution, SEARCHLIGHT reveals complex linkage 
interactions between low-frequency variants in the viral population 
and highlights the multiple paths the virus explores while adapting 
to selective pressures.

RESULTS
Capturing viral genotypes from individual infected cells
Microfluidic single-cell sequencing methods partition cells into 
droplets for RT of mRNA, usually by primers that bind transcript 3′ 
polyadenylate tails. These primers also capture polyadenylated viral 
genomes and transcripts, but sequencing library generation and 
limitations in read length result in small fragments of the viral se-
quence being captured in downstream short-read sequencing 
(Fig. 1A). This is sufficient to identify cells with viral RNA content 
and monitor the transcriptional state of virus-infected and bystand-
er cell populations but not to recover the viral genotype from in-
fected cells.

The template-switch oligonucleotide (TSO) conjugated to the Gel 
Beads in the 10x Genomics 5′ scRNA-seq protocol (Fig. 1B) captures 
and barcodes transcripts generated during cDNA synthesis, address-
ing each read to an individual source cell and transcript by a “cell bar-
code” and “unique molecular identifier” (UMI), respectively. We add 
virus-specific primers tiled at regular 2-kb intervals across the viral 
RNA genome alongside poly-dT primers during in-droplet RT. Taking 
advantage of the TSO, RT generates barcoded cDNA transcripts (of 
~2 kb) covering the entire viral genome, which are subsequently am-
plified for long-read sequencing. Short-read and long-read library 
preparation from the same barcoded scRNA-seq cDNA pools allows 
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us to reconstruct the consensus genotype from each cell (Fig. 1C) and 
map them directly onto the transcriptome and viral RNA count infor-
mation from matched infected cells (fig. S1).

From a single-cell experiment capturing 8000 cells, with ~30% 
(2400) infected cells, we recover nearly full-length sequences from 
about 300 to 400 cells per sample (Fig. 1D and fig. S2) or roughly 10 
to 15% of the infected cells. For each sample, we limited our analysis 
to cells from which we recovered the full coding sequence of each 
virus genome at sufficient depth per site (10-fold) (Fig.  1D and 
fig. S2). The consensus viral sequence in each cell was determined 
on the basis of coverage varying from 10- to 1000-fold with a mean 

Q score above 50 (10−5 errors per base) and a median greater than 
42. Revealing linkage relationships across the whole sequence, 
SEARCHLIGHT transforms our view of the viral population from a 
conventional “bulk” view of viral populations, where individual al-
leles are viewed as independent low-frequency variants, to a fully 
“phased” view, where each cell provides one sequence in a sequence 
alignment (Fig. 1E).

Articulating the structure of viral populations
We experimentally validated our approach by comparing the se-
quence and structure of enterovirus populations from distinct 

Fig. 1. Traditional single-cell sequencing and the development of SEARCHLIGHT. (A) Conventional method: cDNAs generated in each droplet are processed into 
short-read libraries, typically capturing 90 to 200 nucleotides (nt) of viral sequence in each read, primarily from the 3′ end of a polyadenylated transcript. (B) The gel bead 
captured along with individual cells barcodes newly synthesized cDNA via the template-switch sequence encoded in the oligonucleotides conjugated to each bead, 
marking the cDNA with the cell barcode and unique molecular identifier (UMI). (C) SEARCHLIGHT method: Barcoded cDNAs from tiled, virus-specific primers are used to 
generate long-read sequencing libraries that cover the entire viral genome, yielding ~2 kb of viral sequence per read. (D) Histogram of the proportion of viral genome 
captured in each cell during SEARCHLIGHT sequencing of EV-D68–infected RD cells. Fill color represents the average depth of coverage across the viral genome in each 
cell. The inset shows the cells from which consensus haplotypes were recovered for subsequent analysis. (E) The bulk view of population diversity (left) and the phased 
haplotype alignment (right). In the haplotype alignment, each haplotype derived from an individual cell is shown as a single row, with differences from the modal geno-
type shown as points. Color indicates non-synonymous or synonymous mutations. Viral proteins are labeled and denoted by alternate shading.
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origins, either from long-term passage (from the repository stocks) 
or from in  vitro–transcribed RNA from plasmids encoding full-
length viral cDNA. We optimized primer sets to perform SEARCH-
LIGHT on three EV strains: EV-A71 (strain Tainan/4643), 
Coxsackievirus B3 (strain Nancy), and EV-D68 (strain MO/14-
18947), belonging to three distinct EV species (A, B, and D) (ta-
ble S1). We infected cultured, muscle-derived rhabdomyosarcoma 
(RD) cells with each viral stock at a multiplicity of infection (MOI) 
of 0.3 (~2.4 × 106 cells with 8 × 105 infectious units of virus [deter-
mined by 50% tissue culture infectious dose (TCID50) assay]. After 
microfluidic single-cell capture targeting 8000 cells, library genera-
tion, and sequencing, we recovered consensus genotypes from 289, 
255, and 404 individual cells infected with EV-A71, EV-D68, and 
CV-B3, respectively. We used these data to construct alignments for 
each virus population (Fig. 2, A to C, and fig. S3).

A large proportion of the cells carried the modal genotype, the 
most common genotype in the population. In quasi-species litera-
ture, this most common genotype is often referred to as the master 
genotype (12–14). We propose modal genotype as a more accurate 
and inclusive term. This genotype is distinct from the consensus se-
quence that represents an aggregate of the most common nucleo-
tides at each position. The movement of the consensus relative to the 
modal genotype is a key feature of viral quasi-species; the consensus 
sequence may not change, although the underlying genotypes may 
be highly dynamic. In some circumstances, the “consensus geno-
type” may not exist but is an aggregate of cocirculating genotypes.

The frequency of the modal sequence is variable between samples 
(ranging from 30.8 and 53.0% for EV-A71 and EV-D68, respectively, 
to 65.8% for the CV-B3 population). This larger proportion of the 
modal genotype in the CV-B3 population and the number of single, 
unlinked single-nucleotide variations (SNVs) reflects its origins, be-
ing derived from a molecular clone plasmid. This population is taking 
its mutational “first steps” in the selective landscape. The EV-A71 and 
EV-D68 populations showed greater diversity, with more mutations 
per genome relative to the modal genotype. Notably, bulk RNA-seq 
would reveal little diversity in any of our sequenced populations, 
based on the common limit of detection of 1 to 10% in frequency de-
termined by the error rate associated with library preparation. How-
ever, the partitioning of individual infected cells, followed by 
high-depth, high-accuracy sequencing of the barcoded cDNA, allows 
us to identify genotypes at lower frequencies, even when present as 
the consensus genotype in only a single cell. This establishes a limit of 
detection that is determined, instead, by the number of cells collected 
in the assay and provides a comprehensive census of the genotype di-
versity and structural complexity of the populations.

Observing single-cell haplotypes in each of these populations en-
ables us to construct a genotypic network describing the mutations 
(edges) linking individual genotypes (nodes) within the populations 
(Fig. 2, D to F). This representation of the population as a network 
highlights the structure of subpopulations connected by SNVs to 
the modal genotype (Fig. 2, D to F). EV-A71 and EV-D68 popula-
tions show much more complex network topologies compared to 
the CV-B3 population, consistent with the origins of these isolates 
from long-term passaged repository stocks. Long-term passage has 
allowed the viral populations to diversify along multiple mutational 
paths, spanning up to 9 mutations away from the modal sequence 
(shown in gray). In contrast, the CV-B3 population exhibits a simple 
hub-and-spoke topology with many genotypes surrounding the 
modal sequence linked by single mutations.

This result demonstrates the substantial differences between long-
term repository-derived populations and those generated from in-
fectious molecular clones. It also highlights the potential hazard 
associated with using diverse stock populations, especially if one is 
deriving clonal isolates from stock populations, where each purified 
isolate may differ significantly from the sequence consensus obtained 
through next-generation sequencing.

Optimizing cell engagement through multiple distinct 
mutational paths
The topology of the EV-A71 genotypic network immediately reveals 
multiple mutational paths that link substitutions together. Although 
minor non-synonymous variants T210M (VP2.141), N847D 
(VP1.282), and S848F (VP1.283) would be apparent from bulk se-
quencing of this stock population (fig. S3A), the single-cell haplotypes 
recovered by SEARCHLIGHT reveal a complex linkage relationship 
between these and other minor variants in the population (Fig. 2A). 
Placing these mutations on the structure of the EV-A71 capsomer re-
veals that these sites—210, 847, and 848—although distant in se-
quence, lie close to one another on the viral capsid surface, at the 
perimeter the binding interface with the viral receptor, scavenger re-
ceptor B2 (15). This might suggest that these mutations tune host cell 
engagement or capsid uncoating kinetics (Fig. 2G). Two other non-
synonymous substitutions accumulate separately, P811A (VP1.246) 
and I814V (VP1.249), both located near the fivefold axis.

Finding common constraints among EVs
The non-synonymous diversity in EV-D68 was similarly focused on 
the capsid proteins in the P1 region (Fig. 2, B and H). Notably, sev-
eral of the mutations in the capsid were similar in location to those 
identified in the EVA-71 population (Fig.  2, underlined labels). 
These included H204Y and T208A in VP2 and K834R and Q835E in 
VP1. Given that these viruses use distinct repertoires of cellular at-
tachment factors and receptors, it was somewhat unexpected to see 
parallel evolutionary patterns in the capsid. However, mapping 
these substitutions on the structure of the EV-D68 capsid (16) re-
vealed that they either directly overlap with (T208A, VP2.T139) or 
are located nearby to escape variants identified in a study of neutral-
izing antigenic sites (K834R and Q835E, near the antigenic site at 
VP1.285). The T208 site in VP2 represents a shared antigenic site 
between the EV-D68 capsid and those of EV-A71 (at T210) and 
CV-A10 (17).

Monitoring the emergence of a new modal 
genotype in EV-A71
To understand how the evolutionary dynamics play out across geno-
type networks in a simple model of evolution, we performed in vitro 
passage of the EV-A71 population in RD cells. Using virus stocks 
produced from passage 1, passage 3, and passage 5, we conducted a 
SEARCHLIGHT experiment targeting 5000 cells each with ~30% 
infected (MOI  =  0.3). We captured nearly full-length sequences 
from between 220 and 500 cells (fig. S2). The coverage of the viral 
genome in each cell varied from 10× to 1000×, with Q score of mean 
above 40 (median > 35). From that, we could trace the fate of hun-
dreds of genotypes (Fig. 3).

In five passages, the hierarchy of genotypes in the population 
completely shifts, giving rise to an alternative modal genotype many 
mutational steps away from the initial modal genotype (Fig. 3, A to 
D). This genotype encodes two non-synonymous mutations: S848F 
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(VP1.283), a dominant allele in the original population, and I814V 
(VP1.248). The frequency of the initial modal genotype from the 
first passage declines throughout the passages, from nearly 30% to 
just 1% (fig. S3). Two other genotypes also emerge to high relative 
frequencies, one combining capsid substitutions S848F (VP1.283) 

and H352Y (VP3.29) and another carrying a substitution at nearby 
N847D (VP1.282), with a second in 2B (A1050V). Mutated sites are 
highlighted on the structures in Fig. 2.

Notably, we observed mean mutations per genome of approxi-
mately two (median of 1) (Fig. 3C), which correlates with previous 

Fig. 2. Population dynamics across the EV-A71 genotype network. (A to C) SEARCHLIGHT-derived haplotypes of three populations of EV-A71, EV-D68, and CV-B3. 
Color indicates whether mutations were non-synonymous or synonymous. Viral gene products within the viral polyprotein are labeled and denoted by alternate shading. 
ORF, open reading frame. (D to F) The same SEARCHLIGHT-derived genotypes, shown as genotypic networks. Each node represents a genotype, with size representing the 
relative frequency of the genotype. Edges represent single-nucleotide substitutions linking individual genotypes. The unconnected dots are detected genotypes within 
the sample that are not directly connected through mutation to the modal sequence via other observed genotypes. While the EV-A71 and EV-D68 populations are derived 
from stocks generated by long-term propagation, the CV-B3 population is derived from a molecular clone. (G and H) Structures of a single homooligomeric monomer of 
the (G) EV-A71 and (H) EV-D68 capsid, known as a capsomer. The most frequent mutations found on the recovered haplotypes are highlighted on the structure and col-
ored by subunit. The black triangle and pentagon indicate the three- and fivefold axes, respectively.
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studies conducted in EVs (18–20), corroborating our findings. The 
population accumulates approximately 1 mutation per genome per 
passage relative to the P1 modal genotype, despite no genotypes 
sweeping through the populations over the course of passage.

Linking the transcriptional dynamics of infected cells with 
viral genotype
In parallel to the viral genotypes captured by SEARCHLIGHT, we 
capture cell transcriptomic phenotypes through conventional 
single-cell sequencing, allowing us to examine adaptation in the 
context of host cell heterogeneity. We first clustered cells by their 
transcriptional states to identify cell phenotypes associated with in-
fection and immune responses, identifying characteristic marker 
genes for cells in each cluster. Consistent with other studies using 
infected cultured cells (4, 5, 8, 11, 21), we identified marked diver-
sity in cellular transcriptomes, reflecting subpopulations sampling 
distinct states (Fig. 4A i and fig. S4). Cells were also classified as in-
fected (low or high viral RNA) or bystanders (Fig. 4, Aii and B, and 
fig. S4), based on the number of viral reads relative to the background.

On the basis of these assignments, clusters 2 and 5 were associated 
with innate immune and antiviral markers (table  S2), including 

interferon-stimulated gene 15 (ISG15), ISG20, and Chemokine (C-C 
motif) ligand 5 (CCL5). Cluster 2 expressed a larger repertoire of ISGs, 
with a profile including Interferon-Induced Protein With Tetratrico-
peptide Repeats 3 (IFIT3), IFIT2, and Oligoadenylate synthase like 
(OASL) in the top 20 markers (fig. S5), and a small proportion of cells 
expressing interferon lambda. We noted that a small proportion of the 
cells were expressing antiviral genes in general after infection, consis-
tent with previous studies (5, 11). Notably, this proportion did not 
appreciably increase after infection (Fig. 4C), nor did the level of ex-
pression of antiviral genes per cell (fig. S6A), likely due to effective 
host antagonistic functions deployed by EVs (22).

Five host cell clusters contained infected cells. The antiviral clus-
ters, 2 and 5, showed small numbers of infected cells. These mostly 
exhibited low viral RNA content, potentially representing early in-
fection or infections limited or aborted by innate immune responses.

Clusters 4, 7, and 9 were enriched in highly infected cells, suggest-
ing that these cell states may represent phenotypes occurring late in 
infection. Clusters 4 and 7 exhibited infection-specific behavior, char-
acterized by two distinct stress responses. The cell phenotype repre-
sented by cluster 4, which is nearly absent from the mock-infected 
condition (Fig. 4A), exhibits markers associated with the integrated 

Fig. 3. Population dynamics across the EV-A71 genotype network. (A) The distribution of genotypes across the mutational network of EV-A71 across passages. The 
color indicates the relative frequency of genotypes within the population at each passage. The size represents the number of cells infected with that genotype. The 
“modal genotype,” or the most common genotype, is labeled. By P5, the modal sequence has shifted five mutations from the original modal sequence. (B) Plot showing 
the genetic distance of genotypes in the population relative to the modal sequence. (C) Violin plot and boxplot showing the distribution, mean, and median mutations 
per genome relative to the P1 modal genotype. Point indicates mean mutations per genome, and box shows the median and interquartile range of the population. (D) A 
genotype frequency plot showing the distribution and dynamics of specific genotypes in the population over passage. Major genotypes in the network are highlighted, 
and their relationship is shown in the subway map representation of the major genotypes in the network.
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stress response (ISR) downstream of activating transcription factor 4 
(ATF4), including increased expression of ATF3 and DNA Damage 
Inducible Transcript 3 (DDIT3). This likely reflects a late infection 
phenotype when viral protein expression is peaking. ATF4/ATF3-
mediated responses have been implicated in several positive-sense 
RNA viruses including the related EV, CV-B3. Besides regulating the 
ISR, ATF3 regulates cellular antiviral, apoptotic, and autophagy path-
ways via the inhibition of ISGs such as ISG15 (23–25). The presence 
of Protein Phosphatase 1 Regulatory Subunit 15A (PPP1R15A) [for-
merly Growth Arrest And DNA Damage-Inducible Protein (GADD34)] 
and BCL2 Antagonist/Killer 1 (BAK1) expression in cluster 4 (fig. S6B), 
both of which are expressed downstream ISR and the unfolded pro-
tein response, suggests that ATF3 is mediating a proapoptotic re-
sponse in these cells (26).

Cells in cluster 7 were characterized by the expression of a di-
verse set of genes, with many related to metabolic stress and mito-
chondrial dysfunction. The transcriptional phenotype of these 
cells appeared to shift in response to infection. To resolve expres-
sion differences at a finer resolution, we performed a targeted re-
analysis of this subset of cells, yielding three subclusters: 7.0, 7.1, 
and 7.2. Subclusters 7.0 and 7.2 are present in both infected and 
uninfected conditions and are associated with the expression of 
genes involved in plasma membrane regulation and mitochondria-
oxidative metabolism, respectively. Upon infection, a distinct phe-
notype (subcluster 7.1) emerged among infected cells that shared 
markers with the highly infected cluster 4, including CITED2, 
FOS, TXNIP, and CCNG2 genes. However, in contrast to cluster 4, 

subcluster 7.1 appears to represent an antiapoptotic cell pheno-
type, due to the presence of MTRNR2L12, TRIAP1, and RRM2B 
expression (fig. S6C).

Interpreting adaptive single-cell phenotypes
The combined observation of viral genotype and cell phenotype al-
lows us to correlate the adaptation of viral populations with pheno-
typic changes in infected cells (Fig.  4A iii). We mapped our 
genotypes acquired from each passage onto the phenotypic maps of 
the captured cells obtained through conventional single-cell se-
quencing. Over passage, we observed a trend that genotypes pre-
dominating in later passages coalesce into two infection-specific 
clusters, 4 and 7, with the majority falling in cluster 4.

Within these five passages, two dominant genotypes emerged, 
both with multiple mutations in the capsid protein relative to the 
modal genotype in passage 1. On the basis of the viral read counts 
in each cell (Fig. 4D), we observe that the early genotypes, inter-
mediate in the “subway map,” are associated with lower median viral 
RNA content at 6 hours postinfection (hpi) compared to geno-
types arising later, suggesting that these later genotypes are reaching 
peak replication faster. Because the majority of the mutations in 
these later genotypes, the terminal nodes on the subway map (carry-
ing non-synonymous substitutions: T210M, N847D  +  A1050V, 
H352Y + S848F, and I814V + S848F), lie on the capsid surface, we 
predict that these genotypes will exhibit enhanced entry or uncoat-
ing. The grouping of these genotypes together in the phenotypic 
cluster (4) characterized by markers of ER and proteotoxic stress 

Fig. 4. Connecting genotype with infected cell phenotype. (A) Uniform manifold approximation projection (UMAP) of the cell transcriptional phenotypes recovered 
from the passaged cell populations. (i) Clustering of transcriptional phenotypes derived from captured cells. (ii) Identification of infected and uninfected cells. Cells are 
also classified by high and low viral RNA content. (iii) Major genotypes captured by SEARCHLIGHT placed onto the phenotypic map of the host cells. (B) Distribution of 
transcriptional cluster membership and the proportion of cells in each cluster with no, low, or high viral RNA content. (C) Comparison of the proportion of cells either in 
an antiviral or infection-specific cluster. (D) Viral RNA (vRNA) content associated with cells infected with each of the nine major genotypes identified in the passage ex-
periment. Genotypes are ranked by median viral RNA content. Non-synonymous substitutions in each genotype are highlighted with bold lettering.
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associated with late infection further supports this interpretation 
(Fig. 4).

DISCUSSION
Genotypic diversity is so much a part of viral populations that we 
often invoke specific terminology, such as quasi-species, to describe 
its emergent behaviors. In this work, we establish SEARCHLIGHT 
as a facile method to recover viral genotypes from infected samples 
by leveraging existing single-cell platforms to partition individual 
infected cells before cDNA synthesis, sequencing, and genotype re-
construction. This allows us to capture and assemble hundreds of 
complete, and near-complete, viral haplotypes from individual in-
fected cells and place them within a genotypic network. Our analy-
sis of the dynamics of the population as it navigates this network 
highlights the ability of viral populations to remain centered on a 
slowly moving modal genotype while exploring multiple mutational 
paths, with branches operating in parallel to reach adaptive geno-
types many mutational steps away. Interpreting such genotype-
phenotype relationships from single-population sequencing 
experiments is only possible with single-genome resolution.

One aspect of viral population dynamics illustrated by these gen-
otype networks is how they span and spread across mutational land-
scapes, connecting distinct adaptive genotypes and spanning 
apparent “fitness valleys” in the local selective landscape. This is 
similar to the phenomenon known as “stochastic tunneling,” where 
populations reach adaptive genotypes through chains of low-
frequency, less fit genotypes linked through mutations that drift into 
evolving populations (27, 28). In our large population experiment, 
similar mutational “tunnels” in the central ring of our subway map 
connect nearby high fitness genotypes.

That the genotypes constituting these tunnels persist in the pop-
ulation over passage also highlights the ability of viral populations 
to hedge their evolutionary bets, similar to other theoretical and 
biological systems where mixed phenotypic strategies can optimize 
fitness in dynamic environments (29–31). Viral populations can 
carry tremendous diversity that represents a memory of past popu-
lation diversity along with new mutations that, upon selection or 
bottleneck, can emerge or reemerge to dominance. These genotypes 
form a connected network that might provide robustness to chang-
ing immune and environmental pressures. Further in-depth study 
of the dynamics and interactions of genotypes within structured vi-
ral populations and how these genotype networks relate to the bio-
physical constraints of viral biology will clarify their significance in 
viral population dynamics.

It is notable that the shared sites of variability in EV-A71 and 
EV-D68, which were observed here in conditions of relaxed im-
mune selection, overlap with those identified under antibody selec-
tion (17). It might suggest that these sites, which are polymorphic in 
both species, have evolved to be mutationally robust in response to 
past immune selection at this immunodominant site, in a sense, 
positioning drift and immune escape as parallel mutational forces as 
described for murine norovirus, a relative in the order Picornavirales 
(32) Moreover, most of the non-synonymous mutations that we 
observed in our genotypes were identified in previous studies of 
EV-A71 and EV-D68 adaptation in cultured cells or in vivo models 
(33, 34).

One key advantage of our technique is the ability to directly link 
viral genotype to transcriptional phenotype without engineering 

cells or viruses. As such, we anticipate that our method will be com-
patible with off-the-shelf cell lines, primary cells, patient- and 
animal-derived samples, as well as engineered clones. This allows 
investigation of the evolution and adaptation of a virus in nearly 
natural environments with contemporary strains and complex viral 
populations. It is also compatible with other sequence capture meth-
ods or B and T cell receptor sequencing methods that use the same 
5′ capture approach.

Several key limitations remain to be optimized in the SEARCH-
LIGHT procedure. Now, with the sequencing depth and RT primer 
concentrations, we have a limited ability to reconstruct full ge-
nomes, limiting our analysis here to the coding region, to avoid dif-
ficulties in sequencing the highly structured internal ribosomal 
entry site at the viral 5′ end. Our method does not sample deep 
enough in the viral population of each cell to make effective use of 
the UMIs for error correction of viral transcripts, so our analysis is 
limited to the cell-level consensus. The consensus genomes recov-
ered in several cells included ambiguous nucleotides, indicating the 
presence of multiple genotypes, either from coinfecting particles or 
from newly emerging mutations. However, future advancements in 
single-cell technologies, deeper sequencing, and further bioinfor-
matic development may enable the identification of viral subpopula-
tions within individual cells. Moreover, the current resolution of 
SEARCHLIGHT may make it useful in exploring the dynamics of 
recombination in virus-infected cells. However, this is outside the 
scope of the current analysis.

This analysis reconstructs the structure of experimental popula-
tions to better understand how viral populations diversify and ex-
plore their mutational neighborhood to discover adaptive genotypes. 
Applying this method to the dynamics of immune and therapeutic 
pressure in  vivo and in  vitro will be of specific interest in under-
standing the repertoire of mutational pathways available to escape 
such pressures.

MATERIALS AND METHODS
Cell lines and viruses
ATCC cell line
RD [American Type Culture Collection (ATCC), CCL-136] and 
HeLa (ATCC, CCL-2) cells were maintained in Dulbecco’s modified 
Eagle medium (DMEM) (ATCC, 30-2002) supplemented with 10% 
fetal bovine serum (FBS) (Gibco) and 1× penicillin/streptomycin/
glutamine (100× PSG stock, Gibco). Cells were grown at 37°C 
and 5% CO2.
Viruses
​Long-term passage: EV-A71 (Tainan) and EV-D68 (MO/14-18947). 
EV-A71 and EV-D68 were produced through a single amplifying 
passage (passage 1, “P1”) of the virus stock received from BEI Re-
sources [catalog numbers NR-471 (Tainan/4643/1998) and NR-49129 
(US/MO/14-18947)] in RD cells with 2.5% FBS DMEM, at 37° and 
33°C, respectively. After 3 days and the observation of complete 
cytopathic effect (CPE), the cells were submitted to two rounds of 
freeze/thaw and centrifuged at 2000g for 5 min. The supernatants 
were collected and aliquoted into cryovials and stored at −80°C. For 
the passage experiment of EV-A71, the viruses were harvested at 
24 hpi instead of 3 days. The passage history of EV-A71 and EV-D68 
from BEI Resources [catalog numbers NR-49471 (Tainan/4643/1998) 
and NR-49129 (US/MO/14-18947)] was retrieved through personal 
communication with BEI personnel responsible for propagating these 
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viruses: EV-A71 (NR-471) deposited material is from a second pas-
sage in RD cells and was passaged twice in RD cells at BEI during the 
growth of the most recent lot. The EV-A71 P1 modal sequence of the 
population differs from the cited database entry by three SNVs and a 
single non-synonymous substitution in the capsid, E to Q at position 
710. EV-D68 (NR-49129) deposited material is fourth passage in RD 
cells, and it was passaged three times in RD cells at BEI during the 
growth of the most recent lot.

​cDNA molecular clone: CV-B3 (Nancy strain). The CV-B3 cDNA 
molecular clone (p53CB3T7) was provided by G. Belov, University 
of Maryland, College Park. For CV-B3 production, we produced vi-
ral RNA from the molecular clone using T7 RNA polymerase (New 
England Biolabs). These viral RNA were purified and transfected to 
HeLa cells using the TransIT-mRNA Transfection Kit (Mirus) at 37°C 
for 3 days to achieve complete CPE. We harvested the virus by freeze/
thaw as described above to produce our P0 stock. The viruses from P0 
were titrated by TCID50 assay and passed at a low MOI (0.1) in HeLa 
cells to recover P1, and this P1 stock was used for the subsequent 
single-cell experiment.

Viral infection and cell preparation
RD cells were plated on the day before the experiment (~2 × 106 
cells in T-25 flasks). One extra flask was used to count the cells be-
fore to ensure the cells count for MOI calculation. Inoculums of 
0.3 MOI were prepared fresh using in FBS-free medium of the three 
viruses (EV-A71, EV-D68, and CV-B3 P1). After removing the me-
dium and washing with warm phosphate-buffered saline (PBS), the 
cells were incubated for 1 hour with the inoculums (rocked each 
10 min) at 37°C for EV-A71 and CV- B3 and at 33°C for EV-D68. 
After 1 hour, the inoculum was removed, and 5% FBS medium was 
added. The cells were incubated into their respective temperatures 
(37° and 33°C) until the time point of collection (6 hpi). Mock-
infected cells were also collected at 6 hpi. After 6 hpi, the cells were 
submitted to the standard protocol of sample preparation proposed 
by 10x Genomics [Chromium Single Cell 5′ Reagent Kits User 
Guide (v2 Chemistry Dual Index), document number CG00331 - 
Rev E, August 2022]. Briefly, the medium is removed, and the cells 
are washed with warm PBS. TrypLE is added (2 ml) to dissociate the 
cells, and 2 ml of medium is added to homogenize the cells. The cells 
are counted and checked for viability. After counting, cells are cen-
trifuged at 500g for 5 min. Then, the supernatant is removed, and 
the cells are washed with 1× PBS with 0.04% bovine serum albumin 
(BSA) and centrifuged again at 500g for 5 min. Supernatant is re-
moved, and the appropriate volume of PBS/BSA is added to achieve 
the concentration of cells desired (~1000 cells/μl). Cells are counted 
once more to assess cell viability, and cells are moved to ice before 
loading on the microfluidic controller.

scRNA-seq cDNA library generation
All samples were calculated to achieve ~5000 to 8000 targeting cells 
in the single-cell preparations using a Chromium Next GEM Single-
Cell 5′ standard kit. For the preparation of the cDNA and sequenc-
ing library generation, we followed the instructions from the user 
guide for the Chromium Next GEM Single Cell 5′ Reagent Kit v2 
(Dual Index) with one modification. The modification consists of a 
primer spike-in approach during the RT master mix preparation 
step (step 1.1), similar to other applications, including CRISPR 
guide RNA-seq by Replogle and colleagues (35). In their method, 
they report the concentration of poly-dT RT primer as ~100 pmol in 

each RT reaction. In our approach, virus-specific primers tiled 
across the viral genome were added to the master mix along with 
poly-dT RT primer. The virus-specific primer concentration into 
each RT reaction was ~15 pmol each, and three to four primers were 
added depending on the virus primer set (table  S1) (36). All the 
other reagents were added according to the protocol, except the 
nuclease-free water, which was adjusted to accommodate the spike-
in volume. All other steps were followed to produce cDNA and sub-
sequent Illumina sequencing libraries for conventional single-cell 
sequencing. The Illumina library preparation was submitted to 
quality control in the TapeStation D1000 high sensitivity for size 
distribution and DNA concentration was measured by a Qubit High 
Sensitivity dsDNA kit. The molar concentration of the libraries was 
determined, and the samples were diluted for sequencing according 
to the manufacturers’ protocols. Sequencing was designed to yield 
50,000 reads per target cell.

PCR for virus-specific single-cell sequencing
While the cDNA produced from the first step of the 10x single-cell 
pipeline is used for sequencing library preparation, only 50 ng is 
used for Illumina library prep. The remaining cDNA served as tem-
plate for a virus-specific amplification by polymerase chain reaction 
(PCR) to enrich and increase the signal for virus-specific fragments. 
We performed the virus-specific reaction with a Kapa HiFi HotStart 
PCR kit, following the manufacturer’s instructions, and 25 cycles as 
recommended for high-fidelity amplification. Each primer set was 
performed in a separate reaction, with 10x cDNA Forward Primer 
(200089) as a common forward primer to retain single-cell barcod-
ing information, with the virus-specific reverse primer of each frag-
ment. After each PCR reaction, the amplicons were run into the 
TapeStation D5000 kit to visualize the size distribution, and the con-
centration was measured by a Qubit Broad Range dsDNA kit. Then, 
all products are pooled at equimolar concentrations and cleaned up 
with SPRI beads (left-side size selection, 0.6× ratio) to remove adap-
tors that can also be amplified during the PCR (<200 base pairs). 
The cleaned products are again measured by TapeStation and Qubit 
to verify purity and concentration of the amplicons. The amplicons 
were submitted to PacBio sequencing in the Frederick National Lab-
oratory for Cancer Research (CCR-Sequencing Facility). Briefly, the 
amplicons were used as input for library preparation using a SMRT-
bell prep kit 3.0 and sequenced on PacBio Sequel II with one flow 
cell for each sample (targeting up to 4 million reads per sample).

Viral genotype reconstruction and network
Anchovy
Anchovy is an approach wherein viral reads are mapped and binned 
into cell-specific bins, which are used to compute the consensus geno-
type in the cell. First, viral sequences are identified by mapping our 
PacBio amplicon sequencing reads, in the form of a FASTQ file, to the 
viral genome using minimap2 (37). As input, we have the FASTQ files 
from PacBio sequencing and the viral reference as a fasta. The output 
of minimap is the SAM file. We then run an in-house script, anchovy.
py, which identifies the cell barcodes associated with bona fide cells 
identified by CellRanger analysis of the Illumina sequencing of our 
10x libraries. The anchovy.py is a script that we developed to recover 
viral reads along with 10x barcodes from Nanopore and PacBio long-
read sequencing to generate viral consensus sequences per cell 
(fig. S1). We used this script to generate a CSV file summarizing the 
barcodes and associated consensus, the aligned and consensus fasta 
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files for each barcode. The consensus in each cell is determined using 
sam2consensus (38). Because of limitations in coverage in the highly 
structured UTR, we extracted the coding sequence of each viral se-
quence to focus on amino acid changes.
Cytoscape
Using the “_Annot.csv” files for each sample, a list of binary interac-
tions was generated in R by determining genotypes separated by 
SNVs. This table of source and target nodes, along with annotations 
of mutation distance and genotype information, was used as input 
for visualization in Cytoscape 3.9.1 (39).

scRNA analysis
CellRanger/Seurat
10x Genomics CellRanger 7.0.0 was performed on all single-cell 
libraries produced, using the Binary Base Call (BCL) files from Il-
lumina sequencing output: MakeFastQ, CellRanger Count, and 
CellRanger Aggregate functions (40). The final outputs of count 
were barcodes.tsv, features.tsv, and matrix.mtx (all from filtered out-
put). All these outputs were used as input in Seurat (R toolkit for 
single-cell analysis) for further analysis. Using Seurat V4, we pro-
ceeded with preprocessing of the data (quality control and nor-
malization), linear dimensionality reduction, clustering, uniform 
manifold approximation projection (UMAP), differentially ex-
pressed genes, and the aggregation of the samples from the perti-
nent experiments together (41). All embeddings of UMAPs generated 
were exported for the generation of Fig. 4 and fig. S4. Biological in-
terpretation of each cluster used DAVID (42, 43) and manual cura-
tion of the gene markers returned by the Seurat FindAllMarkers 
function. These UMAP embeddings were also used to integrate the 
data from the transcriptome with the viral haplotypes for a full pic-
ture of the SEARCHLIGHT output, the viral genotype in the pheno-
typic space.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Tables S1 and S2
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