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Detecting hallucinations in large language 
models using semantic entropy

Sebastian Farquhar1,2 ✉, Jannik Kossen1,2, Lorenz Kuhn1,2 & Yarin Gal1

Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show 
impressive reasoning and question-answering capabilities but often ‘hallucinate’  
false outputs and unsubstantiated answers3,4. Answering unreliably or without the 
necessary information prevents adoption in diverse fields, with problems including 
fabrication of legal precedents5 or untrue facts in news articles6 and even posing a  
risk to human life in medical domains such as radiology7. Encouraging truthfulness 
through supervision or reinforcement has been only partially successful8. Researchers 
need a general method for detecting hallucinations in LLMs that works even with new 
and unseen questions to which humans might not know the answer. Here we develop 
new methods grounded in statistics, proposing entropy-based uncertainty estimators 
for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and 
incorrect generations. Our method addresses the fact that one idea can be expressed 
in many ways by computing uncertainty at the level of meaning rather than specific 
sequences of words. Our method works across datasets and tasks without a priori 
knowledge of the task, requires no task-specific data and robustly generalizes to new 
tasks not seen before. By detecting when a prompt is likely to produce a confabulation, 
our method helps users understand when they must take extra care with LLMs and 
opens up new possibilities for using LLMs that are otherwise prevented by their 
unreliability.

‘Hallucinations’ are a critical problem9 for natural language genera-
tion systems using large language models (LLMs), such as ChatGPT1 or 
Gemini2, because users cannot trust that any given output is correct.

Hallucinations are often defined as LLMs generating “content 
that is nonsensical or unfaithful to the provided source content”9–11 
but they have come to include a vast array of failures of faithfulness 
and factuality. We focus on a subset of hallucinations which we call 
‘confabulations’12 for which LLMs fluently make claims that are both 
wrong and arbitrary—by which we mean that the answer is sensitive 
to irrelevant details such as random seed. For example, when asked a 
medical question “What is the target of Sotorasib?” an LLM confabu-
lates by sometimes answering KRASG12 ‘C’ (correct) and other times 
KRASG12 ‘D’ (incorrect) despite identical instructions. We distinguish 
this from cases in which a similar ‘symptom’ is caused by the following 
different mechanisms: when LLMs are consistently wrong as a result of 
being trained on erroneous data such as common misconceptions13; 
when the LLM ‘lies’ in pursuit of a reward14; or systematic failures of 
reasoning or generalization. We believe that combining these dis-
tinct mechanisms in the broad category hallucination is unhelpful. 
Our method makes progress on a portion of the problem of providing 
scalable oversight15 by detecting confabulations that people might 
otherwise find plausible. However, it does not guarantee factuality 
because it does not help when LLM outputs are systematically bad. Nev-
ertheless, we significantly improve question-answering accuracy for 
state-of-the-art LLMs, revealing that confabulations are a great source of  
error at present.

We show how to detect confabulations by developing a quantita-
tive measure of when an input is likely to cause an LLM to generate 
arbitrary and ungrounded answers. Detecting confabulations allows 
systems built on LLMs to avoid answering questions likely to cause 
confabulations, to make users aware of the unreliability of answers 
to a question or to supplement the LLM with more grounded search 
or retrieval. This is essential for the critical emerging field of free- 
form generation in which naive approaches, suited to closed vocabu-
lary and multiple choice, fail. Past work on uncertainty for LLMs has 
focused on simpler settings, such as classifiers16,17 and regressors18,19, 
whereas the most exciting applications of LLMs relate to free-form 
generations.

The term hallucination in the context of machine learning originally 
comes from filling in ungrounded details, either as a deliberate strat-
egy20 or as a reliability problem4. The appropriateness of the meta-
phor has been questioned as promoting undue anthropomorphism21. 
Although we agree that metaphor must be used carefully with LLMs22, 
the widespread adoption of the term hallucination reflects the fact 
that it points to an important phenomenon. This work represents a 
step towards making that phenomenon more precise.

To detect confabulations, we use probabilistic tools to define and 
then measure the ‘semantic’ entropy of the generations of an LLM—an 
entropy that is computed over meanings of sentences. High entropy 
corresponds to high uncertainty23–25—so semantic entropy is one way 
to estimate semantic uncertainties. Semantic uncertainty, the broader 
category of measures we introduce, could be operationalized with other 
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measures of uncertainty, such as mutual information, instead. Entropy 
in free-form generation is normally hard to measure because answers 
might mean the same thing (be semantically equivalent) despite being 
expressed differently (being syntactically or lexically distinct). This 
causes naive estimates of entropy or other lexical variation scores26 to 
be misleadingly high when the same correct answer might be written 
in many ways without changing its meaning.

By contrast, our semantic entropy moves towards estimating the 
entropy of the distribution of meanings of free-form answers to ques-
tions, insofar as that is possible, rather than the distribution over the 
‘tokens’ (words or word-pieces) which LLMs natively represent. This 
can be seen as a kind of semantic consistency check27 for random seed 
variation. An overview of our approach is provided in Fig. 1 and a worked 
example in Supplementary Table 1.

Intuitively, our method works by sampling several possible answers 
to each question and clustering them algorithmically into answers that 
have similar meanings, which we determine on the basis of whether 
answers in the same cluster entail each other bidirectionally28. That 
is, if sentence A entails that sentence B is true and vice versa, then we 
consider them to be in the same semantic cluster. We measure entail-
ment using both general-purpose LLMs and natural language inference 
(NLI) tools developed specifically for detecting entailment for which 
we show direct evaluations in Supplementary Tables 2 and 3 and Sup-
plementary Fig. 1. Textual entailment has previously been shown to 
correlate with faithfulness10 in the context of factual consistency29 as 

well as being used to measure factuality in abstractive summarization30, 
especially when applied at the right granularity31.

Semantic entropy detects confabulations in free-form text genera-
tion across a range of language models and domains, without previous 
domain knowledge. Our evaluations cover question answering in trivia 
knowledge (TriviaQA32), general knowledge (SQuAD 1.1; ref. 33), life 
sciences (BioASQ34) and open-domain natural questions (NQ-Open35) 
derived from actual queries to Google Search36. In addition, seman-
tic entropy detects confabulations in mathematical word problems 
(SVAMP37) and in a biography-generation dataset, FactualBio, accom-
panying this paper.

Our results for TriviaQA, SQuAD, BioASQ, NQ-Open and SVAMP are 
all evaluated context-free and involve sentence-length answers (96 ± 70 
characters, mean ± s.d.) and use LLaMA 2 Chat (7B, 13B and 70B param-
eters)38, Falcon Instruct (7B and 40B)39 and Mistral Instruct (7B)40. In the 
Supplementary Information, we further consider short-phrase-length 
answers. Results for FactualBio (442 ± 122 characters) use GPT-4  
(ref. 1). At the time of writing, GPT-4 (ref. 1) did not expose output prob-
abilities41 or hidden states, although it does now. As a result, we propose 
a discrete approximation of our estimator for semantic entropy which 
allows us to run experiments without access to output probabilities, 
which we use for all GPT-4 results in this paper and which performs  
similarly well.

Our confabulation detection with semantic entropy is more robust 
to user inputs from previously unseen domains than methods which 
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Fig. 1 | Overview of semantic entropy and confabulation detection. a, Naive 
entropy-based uncertainty measures variation in the exact answers, treating 
‘Paris’, ‘It’s Paris’ and ‘France’s capital Paris’ as different. But this is unsuitable 
for language tasks for which sometimes different answers mean the same 
things. Our semantic entropy clusters answers which share meanings before 
computing the entropy. A low semantic entropy shows that the LLM is confident 
about the meaning. b, Semantic entropy can also detect confabulations in 
longer passages. We automatically decompose a long generated answer into 

factoids. For each factoid, an LLM generates questions to which that factoid 
might have been the answer. The original LLM then samples M possible answers 
to these questions. Finally, we compute the semantic entropy over the answers 
to each specific question, including the original factoid. Confabulations are 
indicated by high average semantic entropy for questions associated with that 
factoid. Here, semantic entropy classifies Fact 1 as probably not a confabulation 
because generations often mean the same thing, despite very different 
wordings, which a naive entropy would have missed.
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aim to ‘learn’ how to detect confabulations from a set of example dem-
onstrations. Our method is unsupervised, meaning that we do not 
need labelled examples of confabulations. By contrast, supervised 
methods detect confabulations by learning patterns behind examples 
of confabulations, assuming that future questions preserve these pat-
terns. But this assumption is often untrue in new situations or with 
confabulations that human overseers are unable to identify (com-
pare Fig. 17 of ref. 24). As a strong supervised baseline, we compare 
to an embedding regression method inspired by ref. 24 which trains 
a logistic regression classifier to predict whether the model correctly 
answered a question on the basis of the final ‘embedding’ (hidden state) 
of the LLM. We also use the P(True) method24 which looks at the prob-
ability with which an LLM predicts that the next token is ‘True’ when 
few-shot prompted to compare a main answer with ‘brainstormed’  
alternatives.

Confabulations contribute substantially to incorrect answers given 
by language models. We show that semantic entropy can be used to pre-
dict many incorrect model answers and to improve question-answering 
accuracy by refusing to answer those questions the model is uncertain 
about. Corresponding to these two uses, we evaluate two main metrics. 
First, the widely used area under the receiver operating characteristic 
(AUROC) curve for the binary event that a given answer is incorrect. 
This measure captures both precision and recall and ranges from 
0 to 1, with 1 representing a perfect classifier and 0.5 representing 
an un-informative classifier. We also show a new measure, the area 
under the ‘rejection accuracy’ curve (AURAC). This studies the case in 
which the confabulation detection score is used to refuse to answer 
the questions judged most likely to cause confabulations. Rejection 
accuracy is the accuracy of the answers of the model on the remaining 
questions and the area under this curve is a summary statistic over 
many thresholds (representative threshold accuracies are provided in  
Supplementary Material). The AURAC captures the accuracy improve-
ment which users would experience if semantic entropy was used to 
filter out questions causing the highest entropy.

Detecting confabulations in QA and math
In Fig. 2, we show that both semantic entropy and its discrete approxi-
mation outperform our best baselines for sentence-length generations. 
These results are averaged across datasets and provide the actual scores 
on the held-out evaluation dataset. We report the raw average score 
across held-out evaluation datasets without standard error because 
the distributional characteristics are more a property of the models 
and datasets selected than the method. Consistency of relative results 
across different datasets is a stronger indicator of variation in this case.

Semantic entropy greatly outperforms the naive estimation of uncer-
tainty using entropy: computing the entropy of the length-normalized 
joint probability of the token sequences. Naive entropy estimation 
ignores the fact that token probabilities also express the uncertainty of 
the model over phrasings that do not change the meaning of an output.

Our methods also outperform the supervised embedding regression 
method both in- and out-of-distribution. In pale-yellow bars we show 
that embedding regression performance deteriorates when its train-
ing data do not match the deployment distribution—which mirrors the 
common real-world case in which there is a distribution shift between 
training and deployment42—the plotted value is the average metric for 
embedding regression trained on one of the four ‘off-distribution’ 
datasets for that evaluation. This is critical because reliable uncertainty 
is most important when the data distribution shifts. Semantic entropy 
also outperforms P(True) which is supervised ‘in-context’; that is, it is 
adapted to the deployment task with a few training examples provided 
in the LLM prompt itself. The discrete variant of semantic entropy per-
forms similarly to our standard estimator, despite not requiring exact 
output probabilities.

Averaged across the 30 combinations of tasks and models we study, 
semantic entropy achieves the best AUROC value of 0.790 whereas 
naive entropy (0.691), P(True) (0.698) and the embedding regression 
baseline (0.687) lag behind it. Semantic entropy performs well con-
sistently, with stable performance (between 0.78 and 0.81 AUROC) 
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Fig. 2 | Detecting confabulations in sentence-length generations. Semantic 
entropy outperforms leading baselines and naive entropy. AUROC (scored on 
the y-axes) measures how well methods predict LLM mistakes, which correlate 
with confabulations. AURAC (likewise scored on the y-axes) measures the 

performance improvement of a system that refuses to answer questions which 
are judged likely to cause confabulations. Results are an average over five 
datasets, with individual metrics provided in the Supplementary Information.
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across the different model families (LLaMA, Falcon and Mistral) and 
scales (from 7B to 70B parameters) which we study (we report summary 
statistics for each dataset and model as before). Although semantic 
entropy outperforms the baselines across all model sizes, P(True) 
seems to improve with model size, suggesting that it might become 
more competitive for very capable honest models in settings that the 
model understands well (which are, however, not the most important 
cases to have good uncertainty). We use ten generations to compute 
entropy, selected using analysis in Supplementary Fig. 2. Further 
results for short-phrase generations are described in Supplementary  
Figs. 7–10.

The results in Fig. 2 offer a lower bound on the effectiveness of seman-
tic entropy at detecting confabulations. These evaluations determine 
whether semantic entropy and baseline methods can detect when the 
answers of the model are incorrect (which we validate against human 
correctness evaluations in Supplementary Table 4). In addition to errors 
from confabulations (arbitrary incorrectness), this also includes other 
types of mistakes for which semantic entropy is not suited, such as 
consistent errors learned from the training data. The fact that methods 
such as embedding regression are able to spot other kinds of errors, not 
just confabulations, but still are outperformed by semantic entropy, 
suggests that confabulations are a principal category of errors for 
actual generations.

Examples of questions and answers from TriviaQA, SQuAD and 
BioASQ, for LLaMA 2 Chat 70B, are shown in Table 1. These illustrate 
how only semantic entropy detects when the meaning is constant 
but the form varies (the first row of the table) whereas semantic 

entropy and naive entropy both correctly predict the presence of 
confabulations when the form and meaning vary together (second 
row) and predict the absence of confabulations when the form and 
meaning are both constant across several resampled generations 
(third row). In the final row, we give an example in which semantic 
entropy is erroneously high as a result of overly sensitive semantic 
clustering relative to the reference answer. Our clustering method 
distinguishes the answers which provide a precise date from those 
which only provide a year. For some contexts that would have been 
correct but in this context the distinction between the specific day 
and the year is probably irrelevant. This highlights the importance 
of context and judgement in clustering, especially in subtle cases, as 
well as the shortcomings of evaluating against fixed reference answers 
which do not capture the open-ended flexibility of conversational  
deployments of LLMs.

Detecting confabulations in biographies
Semantic entropy is most natural for sentences that express a single 
proposition but the idea of semantic equivalence is trickier to apply to 
longer passages which express many propositions which might only 
agree partially43. Nevertheless, we can use semantic entropy to detect 
confabulations in longer generations, such as entire paragraphs of text. 
To show this, we develop a dataset of biographical generations from 
GPT-4 (v.0613) for 21 individuals notable enough to have their own 
Wikipedia page but without extensive online biographies. From each 
biography generated by GPT-4, we automatically extract propositional 

Table 1 | Semantic entropy applied to examples

Question Model answer Reference 
answer

Generations for entropy Prediction

Semantic entropy Naive entropy

Refineries, process 
chemical, power 
generation, mills and 
manufacturing plants 
are under what sector 
of construction?

Refineries, process 
chemical, power 
generation, mills and 
manufacturing plants 
are under the industrial 
sector of construction.

Industrial or heavy 
civil or heavy 
engineering.

• All the above are under the industrial sector of 
construction.

Not confabulation Confabulation
• The refineries, process chemical, power 
generation, mills and manufacturing plants are 
under the industrial sector of construction.

• These are all under the heavy industrial sector 
of construction.

What is the function of 
the stard10 protein?

The stard10 protein 
functions as a negative 
regulator of the mTOR 
pathway by inhibiting 
the activity of the 
mTORC1 and mTORC2 
complexes.

STARD10 is a lipid 
transfer protein.

• The stard10 protein plays a crucial role 
in regulating the dynamics of the actin 
cytoskeleton and cell adhesion during cell 
migration and cell division.

Confabulation Confabulation

• The stard10 protein functions as a negative 
regulator of the meiotic recombination process, 
specifically by inhibiting the activity of the Dmc1 
recombinase enzyme.

• The stard10 protein functions as a regulator of 
lipid metabolism, promoting the breakdown of 
lipids in the liver and inhibiting their synthesis in 
the liver and adipose tissue.

Of which European 
country is ‘fado’ the 
national music?

Portugal. Portugal.

• ‘Fado’ is the national music of Portugal.

Not confabulation Not confabulation• ‘Fado’ is the national music of Portugal.

• Fado is the national music of Portugal.

When was BSkyB’s 
digital service 
launched?

1 October 1998.
BSkyB’s digital 
service was 
launched in 1998.

• BSkyB’s digital service was launched in 1998.

Confabulation Not confabulation
• BSkyB’s digital service was launched on  
1 October 1998.

• BSkyB’s digital service was launched on  
1 October 1998.

The first row of Table 1 demonstrates a case in which semantic entropy correctly predicts that an answer is not a confabulation if naive entropy would incorrectly predict a confabulation. All of 
the generations from the model mean the same thing as each other so they are clustered together despite using different phrasings. The second row provides an example in which semantic 
entropy and naive entropy would both correctly predict a confabulation, in which each generation is both lexically distinct and also means something different. The third row is an example in 
which semantic entropy and naive entropy would both correctly predict no confabulation because the multiple generations are almost lexically identical. The fourth row gives an example  
in which semantic entropy might fail but naive entropy might succeed. In our experiment, semantic entropy clustered the answers into those which provided a specific date and those which 
gave only a year and treated the model as ‘uncertain’. This highlights the importance of context in semantic clustering. The examples come from LLaMA 2 Chat 70B generations for SQuAD, 
BioASQ and TriviaQA.
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factual claims about the individual (150 factual claims in total), which 
we manually label as true or false.

Applying semantic entropy to this problem is challenging. Naively, 
one might simply regenerate each sentence (conditioned on the text 
so far) and then compute semantic entropy over these regenerations. 
However, the resampled sentences often target different aspects of 
the biography: for example, one time describing family and the next 
time profession. This is analogous to the original problem semantic 
entropy was designed to resolve: the model is uncertain about the right 
ordering of facts, not about the facts themselves. To address this, we 
break down the entire paragraph into factual claims and reconstruct 
questions which might have been answered by those claims. Only then 
do we apply semantic entropy (Fig. 1) by generating three new answers 
to each question (selected with analysis in Supplementary Figs. 3 and 4) 
and computing the semantic entropy over those generations plus the 
original factual claim. We aggregate these by averaging the semantic 
entropy over all the questions to get an uncertainty score for each 
proposition, which we use to detect confabulations. Unaggregated 
results are shown in Supplementary Figs. 5 and 6.

As GPT-4 did not allow access to the probability of the generation 
at the time of writing, we use a discrete variant of semantic entropy 
which makes the further approximation that we can infer a discrete 
empirical distribution over semantic meaning clusters from only the 
generations (Methods). This allows us to compute semantic entropy 
using only the black-box outputs of an LLM. However, we were unable 
to compute the naive entropy baseline, the standard semantic entropy 
estimator or the embedding regression baseline for GPT-4 without 
output probabilities and embeddings.

In Fig. 3 we show that the discrete variant of semantic entropy effec-
tively detects confabulations on this dataset. Its AUROC and AURAC are 
higher than either a simple ‘self-check’ baseline—which just asks the 
LLM whether the factoid is likely to be true—or a variant of P(True) which 
has been adapted to work for the paragraph-length setting. Discrete 
semantic entropy has better rejection accuracy performance until 
20% of the questions have been rejected at which point P(True) has 
a narrow edge. This indicates that the questions predicted to cause 
confabulations are indeed more likely to be wrong.

Discussion
Our probabilistic approach, accounting for semantic equivalence, 
detects an important class of hallucinations: those that are caused by a 

lack of LLM knowledge. These are a substantial portion of the failures at 
present and will continue even as models grow in capabilities because 
situations and cases that humans cannot reliably supervise will persist. 
Confabulations are a particularly noteworthy failure mode for question 
answering but appear in other domains too. Semantic entropy needs 
no previous domain knowledge and we expect that algorithmic adap-
tations to other problems will allow similar advances in, for example, 
abstractive summarization. In addition, extensions to alternative input 
variations such as rephrasing or counterfactual scenarios would allow 
a similar method to act as a form of cross-examination44 for scalable 
oversight through debate45.

The success of semantic entropy at detecting errors suggests that 
LLMs are even better at “knowing what they don’t know” than was 
argued by ref. 24—they just don’t know they know what they don’t 
know. Our method explicitly does not directly address situations in 
which LLMs are confidently wrong because they have been trained 
with objectives that systematically produce dangerous behaviour, 
cause systematic reasoning errors or are systematically mislead-
ing the user. We believe that these represent different underlying 
mechanisms—despite similar ‘symptoms’—and need to be handled  
separately.

One exciting aspect of our approach is the way it makes use of clas-
sical probabilistic machine learning methods and adapts them to the 
unique properties of modern LLMs and free-form language generation. 
We hope to inspire a fruitful exchange of well-studied methods and 
emerging new problems by highlighting the importance of meaning 
when addressing language-based machine learning problems.
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Methods

Semantic entropy as a strategy for overcoming confabulation builds 
on probabilistic tools for uncertainty estimation. It can be applied 
directly to any LLM or similar foundation model without requiring any 
modifications to the architecture. Our ‘discrete’ variant of semantic 
uncertainty can be applied even when the predicted probabilities for 
the generations are not available, for example, because access to the 
internals of the model is limited.

In this section we introduce background on probabilistic methods 
and uncertainty in machine learning, discuss how it applies to language 
models and then discuss our contribution, semantic entropy, in detail.

Background
Uncertainty and machine learning. We aim to detect confabulations 
in LLMs, using the principle that the model will be uncertain about 
generations for which its output is going to be arbitrary.

One measure of uncertainty is the predictive entropy of the output 
distribution, which measures the information one has about the output 
given the input25. The predictive entropy (PE) for an input sentence x 
is the conditional entropy (H) of the output random variable Y with 
realization y given x,

∣ ∣ ∣∑H Y P y P yPE( ) = ( ) = − ( )ln ( ). (1)
y

x x x x

A low predictive entropy indicates an output distribution which is 
heavily concentrated whereas a high predictive entropy indicates that 
many possible outputs are similarly likely.

Aleatoric and epistemic uncertainty. We do not distinguish between 
aleatoric and epistemic uncertainty in our analysis. Researchers some-
times separate aleatoric uncertainty (uncertainty in the underlying 
data distribution) from epistemic uncertainty (caused by having only 
limited information)46. Further advances in uncertainty estimation 
which separate these kinds of uncertainty would enhance the potential 
for our semantic uncertainty approach by allowing extensions beyond 
entropy.

Joint probabilities of sequences of tokens. Generative LLMs produce 
strings of text by selecting tokens in sequence. Each token is a wordpiece 
that often represents three or four characters (though especially com-
mon sequences and important words such as numbers typically get 
their own token). To compute entropies, we need access to the prob-
abilities the LLM assigns to the generated sequence of tokens. The 
probability of the entire sequence, s, conditioned on the context, x, is 
the product of the conditional probabilities of new tokens given past 
tokens, whose resulting log-probability is x xs s∑P P slog ( ) = log ( , )i i i<∣ ∣ , 
where si is the ith output token and s<i denotes the set of previous  
tokens.

Length normalization. When comparing the log-probabilities of gen-
erated sequences, we use ‘length normalization’, that is, we use an 
arithmetic mean log-probability, xsP s∑ log ( , )N i

N
i i

1
<∣ , instead of the 

sum. In expectation, longer sequences have lower joint likelihoods 
because of the conditional independence of the token probabilities47. 
The joint likelihood of a sequence of length N shrinks exponentially in 
N. Its negative log-probability therefore grows linearly in N, so longer 
sentences tend to contribute more to entropy. We therefore interpret 
length-normalizing the log-probabilities when estimating the entropy 
as asserting that the expected uncertainty of generations is independ-
ent of sentence length. Length normalization has some empirical  
success48, including in our own preliminary experiments, but little 
theoretical justification in the literature.

Principles of semantic uncertainty
If we naively calculate the predictive entropy directly from the probabil-
ities of the generated sequence of tokens, we conflate the uncertainty 
of the model over the meaning of its answer with the uncertainty over 
the exact tokens used to express that meaning. For example, even if the 
model is confident in the meaning of a generation, there are still usually 
many different ways for phrasing that generation without changing its 
meaning. For the purposes of detecting confabulations, the uncertainty 
of the LLM over meanings is more important than the uncertainty over 
the exact tokens used to express those meanings.

Our semantic uncertainty method therefore seeks to estimate only 
the uncertainty the LLM has over the meaning of its generation, not 
the choice of words. To do this, we introduce an algorithm that clusters 
model generations by meaning and subsequently calculates semantic 
uncertainty. At a high level this involves three steps:
1. Generation: sample output sequences of tokens from the predictive 

distribution of a LLM given a context x.
2. Clustering: cluster sequences by their meaning using our clustering 

algorithm based on bidirectional entailment.
3. Entropy estimation: estimate semantic entropy by summing prob-

abilities of sequences that share a meaning following equation (2) 
and compute their entropy.

Generating a set of answers from the model. Given some context x 
as input to the LLM, we sample M sequences, {s(1), …, s(M)} and record 
their token probabilities, {P(s(1)∣x), …, P(s(M)∣x)}. We sample all our gen-
erations from a single model, varying only the random seed used for 
sampling from the token probabilities. We do not observe the method 
to be particularly sensitive to details of the sampling scheme. In our 
implementation, we sample at temperature 1 using nucleus sampling 
(P = 0.9) (ref. 49) and top-K sampling (K = 50) (ref. 50). We also sample 
a single generation at low temperature (0.1) as an estimate of the ‘best 
generation’ of the model to the context, which we use to assess the 
accuracy of the model. (A lower sampling temperature increases the 
probability of sampling the most likely tokens).

Clustering by semantic equivalence. To estimate semantic entropy 
we need to cluster generated outputs from the model into groups of 
outputs that mean the same thing as each other.

This can be described using ‘semantic equivalence’ which is the rela-
tion that holds between two sentences when they mean the same thing. 
We can formalize semantic equivalence mathematically. Let the space 
of tokens in a language be T . The space of all possible sequences of 
tokens of length N is then S T≡N

N. Note that N can be made arbitrarily 
large to accommodate whatever size of sentence one can imagine and 
one of the tokens can be a ‘padding’ token which occurs with certainty 
for each token after the end-of-sequence token. For some sentence 

∈ Ns S , composed of a sequence of tokens, s ∈i T , there is an associ-
ated meaning. Theories of meaning are contested51. However, for  
specific models and deployment contexts many considerations can  
be set aside. Care should be taken comparing very different models  
and contexts.

Let us introduce a semantic equivalence relation, E( ⋅ , ⋅ ), which holds 
for any two sentences that mean the same thing—we will operational-
ize this presently. Recall that an equivalence relation is any reflexive, 
symmetric and transitive relation and that any equivalence relation on 
a set corresponds to a set of equivalence classes. Each semantic equiv-
alence class captures outputs that can be considered to express the 
same meaning. That is, for the space of semantic equivalence classes 
C  the sentences in the set Cc ∈  can be regarded in many settings as 
expressing a similar meaning such that s s s sc E∀ , ′ ∈ : ( , ′) . So we can 
build up these classes of semantically equivalent sentences by check-
ing if new sentences share a meaning with any sentences we have already 
clustered and, if so, adding them into that class.
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We operationalize E( ⋅ , ⋅ ) using the idea of bidirectional entailment, 

which has a long history in linguistics52 and natural language process-
ing28,53,54. A sequence, s, means the same thing as a second sequence, 
s′, only if the sequences entail (that is, logically imply) each other. For 
example, ‘The capital of France is Paris’ entails ‘Paris is the capital of 
France’ and vice versa because they mean the same thing. (See later 
for a discussion of soft equivalence and cases in which bidirectional 
entailment does not guarantee equivalent meanings).

Importantly, we require that the sequences mean the same thing 
with respect to the context—key meaning is sometimes contained in 
the context. For example, ‘Paris’ does not entail ‘The capital of France 
is Paris’ because ‘Paris’ is not a declarative sentence without context. 
But in the context of the question ‘What is the capital of France?’, the 
one-word answer does entail the longer answer.

Detecting entailment has been the object of study of a great deal of 
research in NLI55. We rely on language models to predict entailment, 
such as DeBERTa-Large-MNLI56, which has been trained to predict entail-
ment, or general-purpose LLMs such as GPT-3.5 (ref. 57), which can 
predict entailment given suitable prompts.

We then cluster sentences according to whether they bidirection-
ally entail each other using the algorithm presented in Extended Data 
Fig. 1. Note that, to check if a sequence should be added to an existing 
cluster, it is sufficient to check if the sequence bidirectionally entails 
any of the existing sequences in that cluster (we arbitrarily pick the first 
one), given the transitivity of semantic equivalence. If a sequence does 
not share meaning with any existing cluster, we assign it its own cluster.

Computing the semantic entropy. Having determined the classes of 
generated sequences that mean the same thing, we can estimate the 
likelihood that a sequence generated by the LLM belongs to a given class 
by computing the sum of the probabilities of all the possible sequences 
of tokens which can be considered to express the same meaning as

x x xs s
s s

∣ ∑ ∑ ∏P c P P s( ) = ( ) = ( , ). (2)
c c i

i i
∈ ∈

<

Formally, this treats the output as a random variable whose event- 
space is the space of all possible meaning-classes, C, a sub-σ-algebra of 
the standard event-space S. We can then estimate the semantic entropy 
(SE) as the entropy over the meaning-distribution,

x x∣ ∣∑x P c P cSE( ) = − ( )log ( ) (3)
c



























x xs s

s s
∣ ∣∑ ∑ ∑P P= − ( ) log ( ) . (4)

c c c∈ ∈

There is a complication which prevents direct computation: we do 
not have access to every possible meaning-class c. Instead, we can only 
sample c from the sequence-generating distribution induced by the 
model. To handle this, we estimate the expectation in equation (3) 
using a Rao–Blackwellized Monte Carlo integration over the semantic 
equivalence classes C,

x x∑x P C P CSE( ) ≈ − ( )log ( ), (5)
i

C

i i
=1

∣ ∣
∣ ∣

where ∣ ∣
∣P C( ) = ∑i

P c

P c

( )

( )
i

c
x

x

x
 estimates a categorical distribution over the 

cluster meanings, that is, ∑iP(Ci∣x) = 1. Without this normalization step 
cluster ‘probabilities’ could exceed one because of length normaliza-
tion, resulting in degeneracies. Equation (5) is the estimator giving our 
main method that we refer to as semantic entropy throughout the text.

For scenarios in which the sequence probabilities are not available, 
we propose a variant of semantic entropy which we call ‘discrete’ seman-
tic entropy. Discrete semantic entropy approximates P(Ci∣x) directly 

from the number of generations in each cluster, disregarding the token 
probabilities. That is, we approximate P(Ci∣x) as ∑M I

M1
c Ci= , the proportion 

of all the sampled answers which belong to that cluster. Effectively, 
this just assumes that each output that was actually generated was 
equally probable—estimating the underlying distribution as the cat-
egorical empirical distribution. In the limit of M the estimator converges 
to equation (5) by the law of large numbers. We find that discrete seman-
tic entropy results in similar performance empirically.

We provide a worked example of the computation of semantic 
entropy in Supplementary Note 1.

Detecting confabulations in QA and math
Semantic entropy is designed to detect confabulations, that is, model 
outputs with arbitrary meaning. In our experiments, we use semantic 
uncertainty to predict model accuracy, demonstrating that confabula-
tions make up a notable fraction of model mistakes. We further show 
that semantic uncertainty can be used to improve model accuracy by 
refusing to answer questions when semantic uncertainty is high. Last, 
semantic uncertainty can be used to give users a way to know when 
model generations are probably unreliable.

Tasks. We use the datasets BioASQ34, SQuAD33, TriviaQA32, SVAMP37 
and NQ-Open35. BioASQ is a life-sciences question-answering dataset 
based on the annual challenge of the same name. The specific dataset 
we use is based on the QA dataset from Task B of the 2023 BioASQ 
challenge (11B). SQuAD is a reading comprehension dataset whose 
context passages are drawn from Wikipedia and for which the answers 
to questions can be found in these passages. We use SQuAD 1.1 which  
excludes the unanswerable questions added in v.2.0 that are deliberate-
ly constructed to induce mistakes so they do not in practice cause con-
fabulations to occur. TriviaQA is a trivia question-answering dataset. 
SVAMP is a word-problem maths dataset containing elementary-school 
mathematical reasoning tasks. NQ-Open is a dataset of realistic ques-
tions aggregated from Google Search which have been chosen to be 
answerable without reference to a source text. For each dataset, we 
use 400 train examples and 400 test examples randomly sampled 
from the original larger dataset. Note that only some of the methods 
require training, for example semantic entropy does not use the train-
ing data. If the datasets themselves are already split into train and 
test (or validation) samples, we sample our examples from within the 
corresponding split.

All these datasets are free-form, rather than multiple choice, because 
this better captures the opportunities created by LLMs to produce 
free-form sentences as answers. We refer to this default scenario as 
our ‘sentence-length’ experiments. In Supplementary Note 7, we also 
present results for confabulation detection in a ‘short-phrase’ scenario, 
in which we constrain model answers on these datasets to be as concise 
as possible.

To make the problems more difficult and induce confabulations, 
we do not provide the context passages for any of the datasets. When 
the context passages are provided, the accuracy rate is too high for 
these datasets for the latest generations of models to meaningfully 
study confabulations.

Models. For sentence-length generations we use: Falcon39 Instruct (7B 
and 40B), LLaMA 2 Chat38 (7B, 13B and 70B) and Mistral40 Instruct (7B).

Baselines. In addition to reporting results for semantic entropy, dis-
crete semantic entropy and naive entropy, we consider two strong 
baselines.

Embedding regression is a supervised baseline inspired by the P(IK) 
method24. In that paper, the authors fine-tune their proprietary LLM on 
a dataset of questions to predict whether the model would have been 
correct. This requires access to a dataset of ground-truth answers to the 
questions. Rather than fine-tuning the entire LLM in this way, we simply 



take the final hidden units and train a logistic regression classifier to 
make the same prediction. By contrast to their method, this is much 
simpler because it does not require fine-tuning the entire language 
model, as well as being more reproducible because the solution to the 
logistic regression optimization problem is not as seed-dependent as 
the fine-tuning procedure. As expected, this supervised approach per-
forms well in-distribution but fails when the distribution of questions 
is different from that on which the classifier is trained.

The second baseline we consider is the P(True) method24, in which 
the model first samples M answers (identically to our semantic entropy 
approach) and then is prompted with the list of all answers generated 
followed by the highest probability answer and a question whether 
this answer is “(a) True” or “(b) False”. The confidence score is then 
taken to be the probability with which the LLM responds with ‘a’ to the 
multiple-choice question. The performance of this method is boosted 
with a few-shot prompt, in which up to 20 examples from the training 
set are randomly chosen, filled in as above, but then provided with the 
actual ground truth of whether the proposed answer was true or false. 
In this way, the method can be considered as supervised ‘in-context’ 
because it makes use of some ground-truth training labels but can 
be used without retraining the model. Because of context-size con-
straints, this method cannot fit a full 20 few-shot examples in the 
context when input questions are long or large numbers of genera-
tions are used. As a result, we sometimes have to reduce the number 
of few-shot examples to suit the context size and we note this in the  
Supplementary Material.

Entailment estimator. Any NLI classification system could be used for 
our bidirectional entailment clustering algorithm. We consider two 
different kinds of entailment detector.

One option is to use an instruction-tuned LLM such as LLaMA 2, GPT-
3.5 (Turbo 1106) or GPT-4 to predict entailment between generations. 
We use the following prompt:

We are evaluating answers to the question {question}
Here are two possible answers:
Possible Answer 1: {text1}
Possible Answer 2: {text2}
Does Possible Answer 1 semantically entail Possible Answer 2? 

Respond with entailment, contradiction, or neutral.

Alternatively, we consider using a language model trained for entail-
ment prediction, specifically the DeBERTa-large model56 fine-tuned on 
the NLI dataset MNLI58. This builds on past work towards paraphrase 
identification based on embedding similarity59,60 and BERT-style 
models61,62. We template more simply, checking if DeBERTa predicts 
entailment between the concatenation of the question and one 
answer and the concatenation of the question and another answer. 
Note that DeBERTa-large is a relatively lightweight model with only 
1.5B parameters which is much less powerful than most of the LLMs  
under study.

In Supplementary Note 2, we carefully evaluate the benefits and 
drawbacks of these methods for entailment prediction. We settle on 
using GPT-3.5 with the above prompt, as its entailment predictions 
agree well with human raters and lead to good confabulation detec-
tion performance.

In Supplementary Note 3, we provide a discussion of the compu-
tational cost and choosing the number of generations for reliable 
clustering.

Prompting templates. We use a simple generation template for all 
sentence-length answer datasets:

 Answer the following question in a single brief but complete  
sentence.
Question: {question}
Answer:

Metrics and accuracy measurements. We use three main metrics to 
evaluate our method: AUROC, rejection accuracy and AURAC. Each of 
these is grounded in an automated factuality estimation measurement 
relative to the reference answers provided by the datasets that we use.
AUROC, rejection accuracy and AURAC. First, we use the AUROC 
curve, which measures the reliability of a classifier accounting for both 
precision and recall. The AUROC can be interpreted as the probability 
that a randomly chosen correct answer has been assigned a higher con-
fidence score than a randomly chosen incorrect answer. For a perfect 
classifier, this is 1.

Second, we compute the ‘rejection accuracy at X%’, which is the 
question-answering accuracy of the model on the most-confident 
X% of the inputs as identified by the respective uncertainty method. 
If an uncertainty method works well, predictions on the confident 
subset should be more accurate than predictions on the excluded 
subset and the rejection accuracy should increase as we reject  
more inputs.

To summarize this statistic we compute the AURAC—the total 
area enclosed by the accuracies at all cut-off percentages X%. This 
should increase towards 1 as given uncertainty method becomes 
more accurate and better at detecting likely-inaccurate responses 
but it is more sensitive to the overall accuracy of the model than the  
AUROC metric.

In Supplementary Note 5, we provide the unaggregated rejection 
accuracies for sentence-length generations.
Assessing accuracy. For the short-phrase-length generation setting 
presented in Supplementary Note 7, we simply assess the accuracy 
of the generations by checking if the F1 score of the commonly used 
SQuAD metric exceeds 0.5. There are limitations to such simple scor-
ing rules63 but this method is widely used in practice and its error is 
comparatively small on these standard datasets.

For our default scenario, the longer sentence-length generations, 
this measure fails, as the overlap between the short reference answer 
and our long model answer is invariably too small. For sentence-length 
generations, we therefore automatically determine whether an answer 
to the question is correct or incorrect by using GPT-4 to compare the 
given answer to the reference answer. We use the template:

 We are assessing the quality of answers to the following question: 
{question}
The expected answer is: {reference answer}
The proposed answer is: {predicted answer}
Within the context of the question, does the proposed answer mean 

the same as the expected answer? Respond only with yes or no.

We make a small modification for datasets with several reference 
answers: line two becomes “The following are expected answers to this 
question:” and the final line asks “does the proposed answer mean the 
same as any of the expected answers?”.

In Supplementary Note 6, we check the quality of our automated 
ground-truth evaluations against human judgement by hand. We find 
that GPT-4 gives the best results for determining model accuracy and 
thus use it in all our sentence-length experiments.

Detecting confabulations in biographies
In this section we describe the application of semantic entropy to 
confabulation detection in longer model generations, specifically 
paragraph-length biographies.

We introduce a biography-generation dataset—FactualBio— 
available alongside this paper. FactualBio is a collection of biographies 
of individuals who are notable enough to have Wikipedia pages but not 
notable enough to have large amounts of detailed coverage, generated 
by GPT-4 (v.0613). To generate the dataset, we randomly sampled 21 
individuals from the WikiBio dataset64. For each biography, we gener-
ated a list of factual claims contained in each biography using GPT-4, 
with 150 total factual claims (the total number is only coincidentally a 
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round number). For each of these factual claims, we manually deter-
mined whether the claim was correct or incorrect. Out of 150 claims, 45 
were incorrect. As before, we apply confabulation detection to detect 
incorrect model predictions, even though there may be model errors 
which are not confabulations.

Prompting and generation. Given a paragraph-length piece of LLM- 
generated text, we apply the following sequence of steps:
1. Automatically decompose the paragraph into specific factual claims 

using an LLM (not necessarily the same as the original).
2. For each factual claim, use an LLM to automatically construct Q ques-

tions which might have produced that claim.
3. For each question, prompt the original LLM to generate M answers.
4. For each question, compute the semantic entropy of the answers, 

including the original factual claim.
5. Average the semantic entropies over the questions to arrive at a score 

for the original factual claim.

We pursue this slightly indirect way of generating answers because 
we find that simply resampling each sentence creates variation unre-
lated to the uncertainty of the model about the factual claim, such as 
differences in paragraph structure.

We decompose the paragraph into factual claims using the follow-
ing prompt:

 Please list the specific factual propositions included in the answer 
above. Be complete and do not leave any factual claims out. Provide 
each claim as a separate sentence in a separate bullet point.

We found that we agreed with the decompositions in all cases in 
the dataset.

We then generate six questions for each of the facts from the decom-
position. We generate these questions by prompting the model twice 
with the following:

Following this text:
{text so far}
You see the sentence:
{proposition}

Generate a list of three questions, that might have generated the 
sentence in the context of the preceding original text, as well as their 
answers. Please do not use specific facts that appear in the follow-up 
sentence when formulating the question. Make the questions and 
answers diverse. Avoid yes-no questions. The answers should not be a 
full sentence and as short as possible, e.g. only a name, place, or thing. 
Use the format “1. {question} – {answer}”.

These questions are not necessarily well-targeted and the difficulty 
of this step is the main source of errors in the procedure. We gener-
ate three questions with each prompt, as this encourages diversity of 
the questions, each question targeting a different aspect of the fact. 
However, we observed that the generated questions will sometimes 
miss obvious aspects of the fact. Executing the above prompt twice 
(for a total of six questions) can improve coverage. We also ask for 
brief answers because the current version of GPT-4 tends to give long, 
convoluted and highly hedged answers unless explicitly told not to.

 Then, for each question, we generate three new answers using the 
following prompt:

 We are writing an answer to the question “{user question}”. So far 
we have written:
{text so far}
The next sentence should be the answer to the following question:
{question}
 Please answer this question. Do not answer in a full sentence. Answer 
with as few words as possible, e.g. only a name, place, or thing.

We then compute the semantic entropy over these answers plus 
the original factual claim. Including the original fact ensures that the 
estimator remains grounded in the original claim and helps detect 
situations in which the question has been interpreted completely dif-
ferently from the original context. We make a small modification to 
handle the fact that GPT-4 generations often include refusals to answer 
questions. These refusals were not something we commonly observe 
in our experiments with LLaMA 2, Falcon or Mistral models. If more 
than half of the answers include one of the strings ‘not available’, ‘not 
provided’, ‘unknown’ or ‘unclear’ then we treat the semantic uncertainty 
as maximal.

We then average the semantic entropies for each question corre-
sponding to the factual claim to get an entropy for this factual claim.

Despite the extra assumptions and complexity, we find that this 
method greatly outperforms the baselines.

Entailment estimator. To compute semantic entailment between the 
original claim and regenerated answers, we rely on the DeBERTa entail-
ment prediction model as we find empirically that DeBERTa predictions 
result in higher train-set AUROC than other methods. Because DeBERTa 
has slightly lower recall than GPT-3.5/4, we use a modified set-up for 
which we say the answers mean the same as each other if at least one 
of them entails the other and neither is seen to contradict the other—
a kind of ‘non-defeating’ bidirectional entailment check rather than 
true bidirectional entailment. The good performance of DeBERTa in 
this scenario is not surprising as both factual claims and regenerated 
answers are relatively short. We refer to Supplementary Notes 2 and 3  
for ablations and experiments regarding our choice of entailment 
estimator for paragraph-length generations.

Baselines. We implement two baselines. First, we implement a variant 
of the P(True) method, which is adapted to the new setting. For each 
factoid, we generate a question with answers in the same way as for 
semantic entropy. We then use the following prompt:

Question: {question}
Here are some brainstormed ideas:
{list of regenerated answers}
Possible answer: {original answer}
Is the possible answer true? Respond with “yes” or “no”.

As we cannot access the probabilities GPT-4 assigns to predicting 
‘yes’ and ‘no’ as the next token, we approximate this using Monte Carlo  
samples. Concretely, we execute the above prompt ten times (at tem-
perature 1) and then take the fraction of answers which was ‘yes’ as our 
unbiased Monte Carlo estimate of the token probability GPT-4 assigns 
to ‘yes’.

As a second, simpler, baseline we check if the model thinks the answer 
is true. We simply ask:

Following this text:
{text so far}
You see this statement:
{proposition}
Is it likely that the statement is true? Respond with ‘yes’ or ‘no’.

It is interesting that this method ought to perform very well if we think 
that the model has good ‘self-knowledge’ (that is, if “models mostly 
know what they don’t know”24) but in fact semantic entropy is much 
better at detecting confabulations.

Data availability
The data used for the short-phrase and sentence-length generations 
are publicly available and the released code details how to access it. We 
release a public version of the FactualBio dataset as part of the code 
base for reproducing the paragraph-length experiments.
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for short-phrase and sentence-length experiments can be found at 
github.com/jlko/semantic_uncertainty and https://doi.org/10.5281/
zenodo.10964366 (ref. 65). The code for paragraph-length experiments 
can be found at github.com/jlko/long_hallucinations and https://doi.
org/10.5281/zenodo.10964366 (ref. 65).
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Extended Data Fig. 1 | Algorithm outline for bidirectional entailment clustering. Given a set of outputs in response to a context, the bidirectional entailment 
answer returns a set of sets of outputs which have been classified as sharing a meaning.
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