
Nature | Vol 630 | 20 June 2024 | 625

Article

Detecting hallucinations in large language
models using semantic entropy

Sebastian Farquhar1,2 ✉, Jannik Kossen1,2, Lorenz Kuhn1,2 & Yarin Gal1

Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show
impressive reasoning and question-answering capabilities but often ‘hallucinate’
false outputs and unsubstantiated answers3,4. Answering unreliably or without the
necessary information prevents adoption in diverse fields, with problems including
fabrication of legal precedents5 or untrue facts in news articles6 and even posing a
risk to human life in medical domains such as radiology7. Encouraging truthfulness
through supervision or reinforcement has been only partially successful8. Researchers
need a general method for detecting hallucinations in LLMs that works even with new
and unseen questions to which humans might not know the answer. Here we develop
new methods grounded in statistics, proposing entropy-based uncertainty estimators
for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and
incorrect generations. Our method addresses the fact that one idea can be expressed
in many ways by computing uncertainty at the level of meaning rather than specific
sequences of words. Our method works across datasets and tasks without a priori
knowledge of the task, requires no task-specific data and robustly generalizes to new
tasks not seen before. By detecting when a prompt is likely to produce a confabulation,
our method helps users understand when they must take extra care with LLMs and
opens up new possibilities for using LLMs that are otherwise prevented by their
unreliability.

‘Hallucinations’ are a critical problem9 for natural language genera-
tion systems using large language models (LLMs), such as ChatGPT1 or
Gemini2, because users cannot trust that any given output is correct.

Hallucinations are often defined as LLMs generating “content
that is nonsensical or unfaithful to the provided source content”9–11
but they have come to include a vast array of failures of faithfulness
and factuality. We focus on a subset of hallucinations which we call
‘confabulations’12 for which LLMs fluently make claims that are both
wrong and arbitrary—by which we mean that the answer is sensitive
to irrelevant details such as random seed. For example, when asked a
medical question “What is the target of Sotorasib?” an LLM confabu-
lates by sometimes answering KRASG12 ‘C’ (correct) and other times
KRASG12 ‘D’ (incorrect) despite identical instructions. We distinguish
this from cases in which a similar ‘symptom’ is caused by the following
different mechanisms: when LLMs are consistently wrong as a result of
being trained on erroneous data such as common misconceptions13;
when the LLM ‘lies’ in pursuit of a reward14; or systematic failures of
reasoning or generalization. We believe that combining these dis-
tinct mechanisms in the broad category hallucination is unhelpful.
Our method makes progress on a portion of the problem of providing
scalable oversight15 by detecting confabulations that people might
otherwise find plausible. However, it does not guarantee factuality
because it does not help when LLM outputs are systematically bad. Nev-
ertheless, we significantly improve question-answering accuracy for
state-of-the-art LLMs, revealing that confabulations are a great source of
error at present.

We show how to detect confabulations by developing a quantita-
tive measure of when an input is likely to cause an LLM to generate
arbitrary and ungrounded answers. Detecting confabulations allows
systems built on LLMs to avoid answering questions likely to cause
confabulations, to make users aware of the unreliability of answers
to a question or to supplement the LLM with more grounded search
or retrieval. This is essential for the critical emerging field of free-
form generation in which naive approaches, suited to closed vocabu-
lary and multiple choice, fail. Past work on uncertainty for LLMs has
focused on simpler settings, such as classifiers16,17 and regressors18,19,
whereas the most exciting applications of LLMs relate to free-form
generations.

The term hallucination in the context of machine learning originally
comes from filling in ungrounded details, either as a deliberate strat-
egy20 or as a reliability problem4. The appropriateness of the meta-
phor has been questioned as promoting undue anthropomorphism21.
Although we agree that metaphor must be used carefully with LLMs22,
the widespread adoption of the term hallucination reflects the fact
that it points to an important phenomenon. This work represents a
step towards making that phenomenon more precise.

To detect confabulations, we use probabilistic tools to define and
then measure the ‘semantic’ entropy of the generations of an LLM—an
entropy that is computed over meanings of sentences. High entropy
corresponds to high uncertainty23–25—so semantic entropy is one way
to estimate semantic uncertainties. Semantic uncertainty, the broader
category of measures we introduce, could be operationalized with other

https://doi.org/10.1038/s41586-024-07421-0

Received: 17 July 2023

Accepted: 12 April 2024

Published online: 19 June 2024

Open access

 Check for updates

1OATML, Department of Computer Science, University of Oxford, Oxford, UK. 2These authors contributed equally: Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn. ✉e-mail: sebfar@gmail.com

https://doi.org/10.1038/s41586-024-07421-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07421-0&domain=pdf
mailto:sebfar@gmail.com

626 | Nature | Vol 630 | 20 June 2024

Article

measures of uncertainty, such as mutual information, instead. Entropy
in free-form generation is normally hard to measure because answers
might mean the same thing (be semantically equivalent) despite being
expressed differently (being syntactically or lexically distinct). This
causes naive estimates of entropy or other lexical variation scores26 to
be misleadingly high when the same correct answer might be written
in many ways without changing its meaning.

By contrast, our semantic entropy moves towards estimating the
entropy of the distribution of meanings of free-form answers to ques-
tions, insofar as that is possible, rather than the distribution over the
‘tokens’ (words or word-pieces) which LLMs natively represent. This
can be seen as a kind of semantic consistency check27 for random seed
variation. An overview of our approach is provided in Fig. 1 and a worked
example in Supplementary Table 1.

Intuitively, our method works by sampling several possible answers
to each question and clustering them algorithmically into answers that
have similar meanings, which we determine on the basis of whether
answers in the same cluster entail each other bidirectionally28. That
is, if sentence A entails that sentence B is true and vice versa, then we
consider them to be in the same semantic cluster. We measure entail-
ment using both general-purpose LLMs and natural language inference
(NLI) tools developed specifically for detecting entailment for which
we show direct evaluations in Supplementary Tables 2 and 3 and Sup-
plementary Fig. 1. Textual entailment has previously been shown to
correlate with faithfulness10 in the context of factual consistency29 as

well as being used to measure factuality in abstractive summarization30,
especially when applied at the right granularity31.

Semantic entropy detects confabulations in free-form text genera-
tion across a range of language models and domains, without previous
domain knowledge. Our evaluations cover question answering in trivia
knowledge (TriviaQA32), general knowledge (SQuAD 1.1; ref. 33), life
sciences (BioASQ34) and open-domain natural questions (NQ-Open35)
derived from actual queries to Google Search36. In addition, seman-
tic entropy detects confabulations in mathematical word problems
(SVAMP37) and in a biography-generation dataset, FactualBio, accom-
panying this paper.

Our results for TriviaQA, SQuAD, BioASQ, NQ-Open and SVAMP are
all evaluated context-free and involve sentence-length answers (96 ± 70
characters, mean ± s.d.) and use LLaMA 2 Chat (7B, 13B and 70B param-
eters)38, Falcon Instruct (7B and 40B)39 and Mistral Instruct (7B)40. In the
Supplementary Information, we further consider short-phrase-length
answers. Results for FactualBio (442 ± 122 characters) use GPT-4
(ref. 1). At the time of writing, GPT-4 (ref. 1) did not expose output prob-
abilities41 or hidden states, although it does now. As a result, we propose
a discrete approximation of our estimator for semantic entropy which
allows us to run experiments without access to output probabilities,
which we use for all GPT-4 results in this paper and which performs
similarly well.

Our confabulation detection with semantic entropy is more robust
to user inputs from previously unseen domains than methods which

Who is Freddie Frith?

Freddie Frith was an
English motorcycle

road racer who
became a champion

in both pre-World
War II and post-war

eras. He won the
1935 and 1937 Grand

Prix motorcycle
racing European
Championships.

After retiring
from competition,

he became the
president of the Auto

Cycle Union, the
governing body of
British motorcycle

racing. He was also
an accomplished
motorcycle dealer
and manufacturer.

Frith was born in 1911
and died in 1988.

Fact 1 of 7 :
Freddie Frith was an
English motorcycle

road racer

Fact 6 of 7 :
Frith was born

in 1911

Q1 of M for Fact 1:
What notable

accomplishments
did Freddie Frith

achieve?

30 May 1909

29 March 1909

26 October 1911

Q2 of M for Fact 1:
What was Freddie
Frith known for?

Q2 of M for Fact 6:
When was Freddie

Frith born?

Q1 of M for Fact 6:
When was Freddie

Frith’s year of
birth?

Five-time motorcycle racing world...

Motorcycle road racing world...

Motorcycle racing champion...

1909

1909

1909

Motorcycle racing.

He was a world champion motorcycle...

He was president of the
Auto Cycle Union...

Where is the
Eiffel Tower?

Paris

It’s Paris

France’s capital Paris

Rome

It’s Rome

Berlin

Paris

It’s Paris

France’s capital Paris

Rome

It’s Rome

Berlin

a Semantic entropy

b Application to FactualBio paragraphs
User: Question

Factoid decomposition Possible questions
Generate answers and

cluster by meaning
Semantic entropy

probability

N
ot

 li
ke

ly
 c

on
fa

b
ul

at
io

n
Li

ke
ly

 c
on

fa
b

ul
at

io
n

Generate

User: Question Generate

Misleadingly high naive entropy

LLM answers Probability

Low semantic entropy

LLM answers Probability
Cluster

answers by
semantic
meaning

LLMLLM

LLMLLM LLMLLM

Fig. 1 | Overview of semantic entropy and confabulation detection. a, Naive
entropy-based uncertainty measures variation in the exact answers, treating
‘Paris’, ‘It’s Paris’ and ‘France’s capital Paris’ as different. But this is unsuitable
for language tasks for which sometimes different answers mean the same
things. Our semantic entropy clusters answers which share meanings before
computing the entropy. A low semantic entropy shows that the LLM is confident
about the meaning. b, Semantic entropy can also detect confabulations in
longer passages. We automatically decompose a long generated answer into

factoids. For each factoid, an LLM generates questions to which that factoid
might have been the answer. The original LLM then samples M possible answers
to these questions. Finally, we compute the semantic entropy over the answers
to each specific question, including the original factoid. Confabulations are
indicated by high average semantic entropy for questions associated with that
factoid. Here, semantic entropy classifies Fact 1 as probably not a confabulation
because generations often mean the same thing, despite very different
wordings, which a naive entropy would have missed.

Nature | Vol 630 | 20 June 2024 | 627

aim to ‘learn’ how to detect confabulations from a set of example dem-
onstrations. Our method is unsupervised, meaning that we do not
need labelled examples of confabulations. By contrast, supervised
methods detect confabulations by learning patterns behind examples
of confabulations, assuming that future questions preserve these pat-
terns. But this assumption is often untrue in new situations or with
confabulations that human overseers are unable to identify (com-
pare Fig. 17 of ref. 24). As a strong supervised baseline, we compare
to an embedding regression method inspired by ref. 24 which trains
a logistic regression classifier to predict whether the model correctly
answered a question on the basis of the final ‘embedding’ (hidden state)
of the LLM. We also use the P(True) method24 which looks at the prob-
ability with which an LLM predicts that the next token is ‘True’ when
few-shot prompted to compare a main answer with ‘brainstormed’
alternatives.

Confabulations contribute substantially to incorrect answers given
by language models. We show that semantic entropy can be used to pre-
dict many incorrect model answers and to improve question-answering
accuracy by refusing to answer those questions the model is uncertain
about. Corresponding to these two uses, we evaluate two main metrics.
First, the widely used area under the receiver operating characteristic
(AUROC) curve for the binary event that a given answer is incorrect.
This measure captures both precision and recall and ranges from
0 to 1, with 1 representing a perfect classifier and 0.5 representing
an un-informative classifier. We also show a new measure, the area
under the ‘rejection accuracy’ curve (AURAC). This studies the case in
which the confabulation detection score is used to refuse to answer
the questions judged most likely to cause confabulations. Rejection
accuracy is the accuracy of the answers of the model on the remaining
questions and the area under this curve is a summary statistic over
many thresholds (representative threshold accuracies are provided in
Supplementary Material). The AURAC captures the accuracy improve-
ment which users would experience if semantic entropy was used to
filter out questions causing the highest entropy.

Detecting confabulations in QA and math
In Fig. 2, we show that both semantic entropy and its discrete approxi-
mation outperform our best baselines for sentence-length generations.
These results are averaged across datasets and provide the actual scores
on the held-out evaluation dataset. We report the raw average score
across held-out evaluation datasets without standard error because
the distributional characteristics are more a property of the models
and datasets selected than the method. Consistency of relative results
across different datasets is a stronger indicator of variation in this case.

Semantic entropy greatly outperforms the naive estimation of uncer-
tainty using entropy: computing the entropy of the length-normalized
joint probability of the token sequences. Naive entropy estimation
ignores the fact that token probabilities also express the uncertainty of
the model over phrasings that do not change the meaning of an output.

Our methods also outperform the supervised embedding regression
method both in- and out-of-distribution. In pale-yellow bars we show
that embedding regression performance deteriorates when its train-
ing data do not match the deployment distribution—which mirrors the
common real-world case in which there is a distribution shift between
training and deployment42—the plotted value is the average metric for
embedding regression trained on one of the four ‘off-distribution’
datasets for that evaluation. This is critical because reliable uncertainty
is most important when the data distribution shifts. Semantic entropy
also outperforms P(True) which is supervised ‘in-context’; that is, it is
adapted to the deployment task with a few training examples provided
in the LLM prompt itself. The discrete variant of semantic entropy per-
forms similarly to our standard estimator, despite not requiring exact
output probabilities.

Averaged across the 30 combinations of tasks and models we study,
semantic entropy achieves the best AUROC value of 0.790 whereas
naive entropy (0.691), P(True) (0.698) and the embedding regression
baseline (0.687) lag behind it. Semantic entropy performs well con-
sistently, with stable performance (between 0.78 and 0.81 AUROC)

AUROC AURAC
LLaMA 2 Chat 7B

0.3

0.4

0.5

0.6

0.7

0.8

AUROC AURAC
LLaMA 2 Chat 13B

Semantic entropy
Discrete semantic entropy

Naive entropy
P(True), ref. 24

Embedding regression
Embedding regression - OOD

AUROC AURAC
LLaMA 2 Chat 70B

Falcon 7B Instruct

0.3

0.4

0.5

0.6

0.7

0.8

Falcon 40B Instruct Mistral 7B Instruct

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

AUROC AURAC AUROC AURAC AUROC AURAC

Fig. 2 | Detecting confabulations in sentence-length generations. Semantic
entropy outperforms leading baselines and naive entropy. AUROC (scored on
the y-axes) measures how well methods predict LLM mistakes, which correlate
with confabulations. AURAC (likewise scored on the y-axes) measures the

performance improvement of a system that refuses to answer questions which
are judged likely to cause confabulations. Results are an average over five
datasets, with individual metrics provided in the Supplementary Information.

628 | Nature | Vol 630 | 20 June 2024

Article

across the different model families (LLaMA, Falcon and Mistral) and
scales (from 7B to 70B parameters) which we study (we report summary
statistics for each dataset and model as before). Although semantic
entropy outperforms the baselines across all model sizes, P(True)
seems to improve with model size, suggesting that it might become
more competitive for very capable honest models in settings that the
model understands well (which are, however, not the most important
cases to have good uncertainty). We use ten generations to compute
entropy, selected using analysis in Supplementary Fig. 2. Further
results for short-phrase generations are described in Supplementary
Figs. 7–10.

The results in Fig. 2 offer a lower bound on the effectiveness of seman-
tic entropy at detecting confabulations. These evaluations determine
whether semantic entropy and baseline methods can detect when the
answers of the model are incorrect (which we validate against human
correctness evaluations in Supplementary Table 4). In addition to errors
from confabulations (arbitrary incorrectness), this also includes other
types of mistakes for which semantic entropy is not suited, such as
consistent errors learned from the training data. The fact that methods
such as embedding regression are able to spot other kinds of errors, not
just confabulations, but still are outperformed by semantic entropy,
suggests that confabulations are a principal category of errors for
actual generations.

Examples of questions and answers from TriviaQA, SQuAD and
BioASQ, for LLaMA 2 Chat 70B, are shown in Table 1. These illustrate
how only semantic entropy detects when the meaning is constant
but the form varies (the first row of the table) whereas semantic

entropy and naive entropy both correctly predict the presence of
confabulations when the form and meaning vary together (second
row) and predict the absence of confabulations when the form and
meaning are both constant across several resampled generations
(third row). In the final row, we give an example in which semantic
entropy is erroneously high as a result of overly sensitive semantic
clustering relative to the reference answer. Our clustering method
distinguishes the answers which provide a precise date from those
which only provide a year. For some contexts that would have been
correct but in this context the distinction between the specific day
and the year is probably irrelevant. This highlights the importance
of context and judgement in clustering, especially in subtle cases, as
well as the shortcomings of evaluating against fixed reference answers
which do not capture the open-ended flexibility of conversational
deployments of LLMs.

Detecting confabulations in biographies
Semantic entropy is most natural for sentences that express a single
proposition but the idea of semantic equivalence is trickier to apply to
longer passages which express many propositions which might only
agree partially43. Nevertheless, we can use semantic entropy to detect
confabulations in longer generations, such as entire paragraphs of text.
To show this, we develop a dataset of biographical generations from
GPT-4 (v.0613) for 21 individuals notable enough to have their own
Wikipedia page but without extensive online biographies. From each
biography generated by GPT-4, we automatically extract propositional

Table 1 | Semantic entropy applied to examples

Question Model answer Reference
answer

Generations for entropy Prediction

Semantic entropy Naive entropy

Refineries, process
chemical, power
generation, mills and
manufacturing plants
are under what sector
of construction?

Refineries, process
chemical, power
generation, mills and
manufacturing plants
are under the industrial
sector of construction.

Industrial or heavy
civil or heavy
engineering.

• All the above are under the industrial sector of
construction.

Not confabulation Confabulation
• The refineries, process chemical, power
generation, mills and manufacturing plants are
under the industrial sector of construction.

• These are all under the heavy industrial sector
of construction.

What is the function of
the stard10 protein?

The stard10 protein
functions as a negative
regulator of the mTOR
pathway by inhibiting
the activity of the
mTORC1 and mTORC2
complexes.

STARD10 is a lipid
transfer protein.

• The stard10 protein plays a crucial role
in regulating the dynamics of the actin
cytoskeleton and cell adhesion during cell
migration and cell division.

Confabulation Confabulation

• The stard10 protein functions as a negative
regulator of the meiotic recombination process,
specifically by inhibiting the activity of the Dmc1
recombinase enzyme.

• The stard10 protein functions as a regulator of
lipid metabolism, promoting the breakdown of
lipids in the liver and inhibiting their synthesis in
the liver and adipose tissue.

Of which European
country is ‘fado’ the
national music?

Portugal. Portugal.

• ‘Fado’ is the national music of Portugal.

Not confabulation Not confabulation• ‘Fado’ is the national music of Portugal.

• Fado is the national music of Portugal.

When was BSkyB’s
digital service
launched?

1 October 1998.
BSkyB’s digital
service was
launched in 1998.

• BSkyB’s digital service was launched in 1998.

Confabulation Not confabulation
• BSkyB’s digital service was launched on
1 October 1998.

• BSkyB’s digital service was launched on
1 October 1998.

The first row of Table 1 demonstrates a case in which semantic entropy correctly predicts that an answer is not a confabulation if naive entropy would incorrectly predict a confabulation. All of
the generations from the model mean the same thing as each other so they are clustered together despite using different phrasings. The second row provides an example in which semantic
entropy and naive entropy would both correctly predict a confabulation, in which each generation is both lexically distinct and also means something different. The third row is an example in
which semantic entropy and naive entropy would both correctly predict no confabulation because the multiple generations are almost lexically identical. The fourth row gives an example
in which semantic entropy might fail but naive entropy might succeed. In our experiment, semantic entropy clustered the answers into those which provided a specific date and those which
gave only a year and treated the model as ‘uncertain’. This highlights the importance of context in semantic clustering. The examples come from LLaMA 2 Chat 70B generations for SQuAD,
BioASQ and TriviaQA.

Nature | Vol 630 | 20 June 2024 | 629

factual claims about the individual (150 factual claims in total), which
we manually label as true or false.

Applying semantic entropy to this problem is challenging. Naively,
one might simply regenerate each sentence (conditioned on the text
so far) and then compute semantic entropy over these regenerations.
However, the resampled sentences often target different aspects of
the biography: for example, one time describing family and the next
time profession. This is analogous to the original problem semantic
entropy was designed to resolve: the model is uncertain about the right
ordering of facts, not about the facts themselves. To address this, we
break down the entire paragraph into factual claims and reconstruct
questions which might have been answered by those claims. Only then
do we apply semantic entropy (Fig. 1) by generating three new answers
to each question (selected with analysis in Supplementary Figs. 3 and 4)
and computing the semantic entropy over those generations plus the
original factual claim. We aggregate these by averaging the semantic
entropy over all the questions to get an uncertainty score for each
proposition, which we use to detect confabulations. Unaggregated
results are shown in Supplementary Figs. 5 and 6.

As GPT-4 did not allow access to the probability of the generation
at the time of writing, we use a discrete variant of semantic entropy
which makes the further approximation that we can infer a discrete
empirical distribution over semantic meaning clusters from only the
generations (Methods). This allows us to compute semantic entropy
using only the black-box outputs of an LLM. However, we were unable
to compute the naive entropy baseline, the standard semantic entropy
estimator or the embedding regression baseline for GPT-4 without
output probabilities and embeddings.

In Fig. 3 we show that the discrete variant of semantic entropy effec-
tively detects confabulations on this dataset. Its AUROC and AURAC are
higher than either a simple ‘self-check’ baseline—which just asks the
LLM whether the factoid is likely to be true—or a variant of P(True) which
has been adapted to work for the paragraph-length setting. Discrete
semantic entropy has better rejection accuracy performance until
20% of the questions have been rejected at which point P(True) has
a narrow edge. This indicates that the questions predicted to cause
confabulations are indeed more likely to be wrong.

Discussion
Our probabilistic approach, accounting for semantic equivalence,
detects an important class of hallucinations: those that are caused by a

lack of LLM knowledge. These are a substantial portion of the failures at
present and will continue even as models grow in capabilities because
situations and cases that humans cannot reliably supervise will persist.
Confabulations are a particularly noteworthy failure mode for question
answering but appear in other domains too. Semantic entropy needs
no previous domain knowledge and we expect that algorithmic adap-
tations to other problems will allow similar advances in, for example,
abstractive summarization. In addition, extensions to alternative input
variations such as rephrasing or counterfactual scenarios would allow
a similar method to act as a form of cross-examination44 for scalable
oversight through debate45.

The success of semantic entropy at detecting errors suggests that
LLMs are even better at “knowing what they don’t know” than was
argued by ref. 24—they just don’t know they know what they don’t
know. Our method explicitly does not directly address situations in
which LLMs are confidently wrong because they have been trained
with objectives that systematically produce dangerous behaviour,
cause systematic reasoning errors or are systematically mislead-
ing the user. We believe that these represent different underlying
mechanisms—despite similar ‘symptoms’—and need to be handled
separately.

One exciting aspect of our approach is the way it makes use of clas-
sical probabilistic machine learning methods and adapts them to the
unique properties of modern LLMs and free-form language generation.
We hope to inspire a fruitful exchange of well-studied methods and
emerging new problems by highlighting the importance of meaning
when addressing language-based machine learning problems.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07421-0.

1. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
2. Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/

2312.11805 (2023).
3. Xiao, Y. & Wang, W. Y. On hallucination and predictive uncertainty in conditional language

generation. In Proc. 16th Conference of the European Chapter of the Association for
Computational Linguistics 2734–2744 (Association for Computational Linguistics, 2021).

4. Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T. & Saenko, K. Object hallucination in
image captioning. In Proc. 2018 Conference on Empirical Methods in Natural Language
Processing (eds Riloff, E., Chiang, D., Hockenmaier, J. & Tsujii, J.) 4035–4045 (Association
for Computational Linguistics, 2018).

5. Weiser, B. Lawyer who used ChatGPT faces penalty for made up citations. The New York
Times (8 Jun 2023).

6. Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182
(2023).

7. Shen, Y. et al. ChatGPT and other large language models are double-edged swords.
Radiology 307, e230163 (2023).

8. Schulman, J. Reinforcement learning from human feedback: progress and challenges.
Presented at the Berkeley EECS Colloquium. YouTube www.youtube.com/
watch?v=hhiLw5Q_UFg (2023).

9. Ji, Z. et al. Survey of hallucination in natural language generation. ACM Comput. Surv.55,
248 (2023).

10. Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in
abstractive summarization. In Proc. 58th Annual Meeting of the Association for
Computational Linguistics (eds Jurafsky, D., Chai, J., Schluter, N. & Tetreault, J.) 1906–1919
(Association for Computational Linguistics, 2020).

11. Filippova, K. Controlled hallucinations: learning to generate faithfully from noisy data.
In Findings of the Association for Computational Linguistics: EMNLP 2020 (eds Webber,
B., Cohn, T., He, Y. & Liu, Y.) 864–870 (Association for Computational Linguistics, 2020).

12. Berrios, G. Confabulations: a conceptual history. J. Hist. Neurosci. 7, 225–241 (1998).
13. Lin, S., Hilton, J. & Evans, O. Teaching models to express their uncertainty in words.

Transact. Mach. Learn. Res. (2022).
14. Evans, O. et al. Truthful AI: developing and governing AI that does not lie. Preprint at

https://arxiv.org/abs/2110.06674 (2021).
15. Amodei, D. et al. Concrete problems in AI safety. Preprint at https://arxiv.org/abs/

1606.06565 (2016).
16. Jiang, Z., Araki, J., Ding, H. & Neubig, G. How can we know when language models know?

On the calibration of language models for question answering. Transact. Assoc. Comput.
Linguist. 9, 962–977 (2021).

AUROC AURAC 80% 90% 95% 100%
0.4

0.5

0.6

0.7

0.8

Rejection accuracy

Discrete semantic entropy
P(True), ref. 24 variant
Self-check baseline

Fig. 3 | Detecting GPT-4 confabulations in paragraph-length biographies.
The discrete variant of our semantic entropy estimator outperforms baselines
both when measured by AUROC and AURAC metrics (scored on the y-axis). The
AUROC and AURAC are substantially higher than for both baselines. At above
80% of questions being answered, semantic entropy has the highest accuracy.
Only when the top 20% of answers judged most likely to be confabulations are
rejected does the answer accuracy on the remainder for the P(True) baseline
exceed semantic entropy.

https://doi.org/10.1038/s41586-024-07421-0
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://www.youtube.com/watch?v=hhiLw5Q_UFg
https://www.youtube.com/watch?v=hhiLw5Q_UFg
https://arxiv.org/abs/2110.06674
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565

630 | Nature | Vol 630 | 20 June 2024

Article
17. Desai, S. & Durrett, G. Calibration of pre-trained transformers. In Proc. 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP) (eds Webber, B., Cohn, T.,
He, Y. & Liu, Y.) 295–302 (Association for Computational Linguistics, 2020).

18. Glushkova, T., Zerva, C., Rei, R. & Martins, A. F. Uncertainty-aware machine translation
evaluation. In Findings of the Association for Computational Linguistics: EMNLP 2021 (eds
Moens, M-F., Huang, X., Specia, L. & Yih, S.) 3920–3938 (Association for Computational
Linguistics, 2021).

19. Wang, Y., Beck, D., Baldwin, T. & Verspoor, K. Uncertainty estimation and reduction of
pre-trained models for text regression. Transact. Assoc. Comput. Linguist. 10, 680–696
(2022).

20. Baker, S. & Kanade, T. Hallucinating faces. In Proc. Fourth IEEE International Conference
on Automatic Face and Gesture Recognition. 83–88 (IEEE, Catalogue no PR00580,
2002).

21. Eliot, L. AI ethics lucidly questioning this whole hallucinating AI popularized trend that
has got to stop. Forbes Magazine (24 August 2022).

22. Shanahan, M. Talking about large language models. Commun. Assoc. Comp. Machinery
67, 68–79 (2024).

23. MacKay, D. J. C. Information-based objective functions for active data selection. Neural
Comput. 4, 590–604 (1992).

24. Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://
arxiv.org/abs/2207.05221 (2022).

25. Lindley, D. V. On a measure of the information provided by an experiment. Ann. Math.
Stat. 27, 986–1005 (1956).

26. Xiao, T. Z., Gomez, A. N. & Gal, Y. Wat zei je? Detecting out-of-distribution translations with
variational transformers. In Workshop on Bayesian Deep Learning at the Conference on
Neural Information Processing Systems (NeurIPS, Vancouver, 2019).

27. Christiano, P., Cotra, A. & Xu, M. Eliciting Latent Knowledge (Alignment Research
Center, 2021); https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_
EpsnjrC1dwZXR37PC8/edit.

28. Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D. & Marchetti, A. Divide and conquer:
crowdsourcing the creation of cross-lingual textual entailment corpora. In Proc. 2011
Conference on Empirical Methods in Natural Language Processing 670–679 (Association
for Computational Linguistics, 2011).

29. Honovich, O. et al. TRUE: Re-evaluating factual consistency evaluation. In Proc. Second
DialDoc Workshop on Document-grounded Dialogue and Conversational Question
Answering 161–175 (Association for Computational Linguistics, 2022).

30. Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I. & Gurevych, I. Ranking generated
summaries by correctness: an interesting but challenging application for natural
language inference. In Proc. 57th Annual Meeting of the Association for Computational
Linguistics 2214–2220 (Association for Computational Linguistics, 2019).

31. Laban, P., Schnabel, T., Bennett, P. N. & Hearst, M. A. SummaC: re-visiting NLI-based
models for inconsistency detection in summarization. Trans. Assoc. Comput. Linguist. 10,
163–177 (2022).

32. Joshi, M., Choi, E., Weld, D. S. & Zettlemoyer, L. TriviaQA: a large scale distantly supervised
challenge dataset for reading comprehension. In Proc. 55th Annual Meeting of the
Association for Computational Linguistics 1601–1611 (Association for Computational
Linguistics. 2017).

33. Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ questions for machine
compression of text. In Proc. 2016 Conference on Empirical Methods in Natural Language
Processing (eds Su, J., Duh, K. & Carreras, X.) 2383–2392 (Association for Computational
Linguistics, 2016).

34. Tsatsaronis, G. et al. An overview of the BIOASQ large-scale biomedical semantic
indexing and question answering competition. BMC Bioinformatics 16, 138 (2015).

35. Lee, K., Chang, M.-W. & Toutanova, K. Latent retrieval for weakly supervised open domain
question answering. In Proc. 57th Annual Meeting of the Association for Computational
Linguistics 6086–6096 (Association for Computational Linguistics, 2019).

36. Kwiatkowski, T. et al. Natural questions: a benchmark for question answering research.
Transact. Assoc. Comput. Linguist. 7, 452–466 (2019).

37. Patel, A., Bhattamishra, S. & Goyal, N. Are NLP models really able to solve simple math
word problems? In Proc. 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (eds Toutanova, K. et al.)
2080–2094 (Assoc. Comp. Linguistics, 2021).

38. Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at
https://arxiv.org/abs/2307.09288 (2023).

39. Penedo, G. et al. The RefinedWeb dataset for Falcon LLM: outperforming curated
corpora with web data, and web data only. In Proc. 36th Conference on Neural
Information Processing Systems (eds Oh, A. et al.) 79155–79172 (Curran Associates,
2023)

40. Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825 (2023).
41. Manakul, P., Liusie, A. & Gales, M. J. F. SelfCheckGPT: Zero-Resource Black-Box

hallucination detection for generative large language models. In Findings of the
Association for Computational Linguistics: EMNLP 2023 (eds Bouamor, H., Pino, J. & Bali, K.)
9004–9017 (Assoc. Comp. Linguistics, 2023).

42. Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. & Gal, Y. Deep deterministic
uncertainty: a new simple baseline. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition 24384–24394 (Computer Vision Foundation, 2023).

43. Schuster, T., Chen, S., Buthpitiya, S., Fabrikant, A. & Metzler, D. Stretching sentence-pair
NLI models to reason over long documents and clusters. In Findings of the Association for
Computational Linguistics: EMNLP 2022 (eds Goldberg, Y. et al.) 394–412 (Association for
Computational Linguistics, 2022).

44. Barnes, B. & Christiano, P. Progress on AI Safety via Debate. AI Alignment Forum
www.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-
debate-1 (2020).

45. Irving, G., Christiano, P. & Amodei, D. AI safety via debate. Preprint at https://arxiv.org/
abs/1805.00899 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit
https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06825
http://www.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1
http://www.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1
https://arxiv.org/abs/1805.00899
https://arxiv.org/abs/1805.00899
http://creativecommons.org/licenses/by/4.0/

Methods

Semantic entropy as a strategy for overcoming confabulation builds
on probabilistic tools for uncertainty estimation. It can be applied
directly to any LLM or similar foundation model without requiring any
modifications to the architecture. Our ‘discrete’ variant of semantic
uncertainty can be applied even when the predicted probabilities for
the generations are not available, for example, because access to the
internals of the model is limited.

In this section we introduce background on probabilistic methods
and uncertainty in machine learning, discuss how it applies to language
models and then discuss our contribution, semantic entropy, in detail.

Background
Uncertainty and machine learning. We aim to detect confabulations
in LLMs, using the principle that the model will be uncertain about
generations for which its output is going to be arbitrary.

One measure of uncertainty is the predictive entropy of the output
distribution, which measures the information one has about the output
given the input25. The predictive entropy (PE) for an input sentence x
is the conditional entropy (H) of the output random variable Y with
realization y given x,

∣ ∣ ∣∑H Y P y P yPE() = () = − ()ln (). (1)
y

x x x x

A low predictive entropy indicates an output distribution which is
heavily concentrated whereas a high predictive entropy indicates that
many possible outputs are similarly likely.

Aleatoric and epistemic uncertainty. We do not distinguish between
aleatoric and epistemic uncertainty in our analysis. Researchers some-
times separate aleatoric uncertainty (uncertainty in the underlying
data distribution) from epistemic uncertainty (caused by having only
limited information)46. Further advances in uncertainty estimation
which separate these kinds of uncertainty would enhance the potential
for our semantic uncertainty approach by allowing extensions beyond
entropy.

Joint probabilities of sequences of tokens. Generative LLMs produce
strings of text by selecting tokens in sequence. Each token is a wordpiece
that often represents three or four characters (though especially com-
mon sequences and important words such as numbers typically get
their own token). To compute entropies, we need access to the prob-
abilities the LLM assigns to the generated sequence of tokens. The
probability of the entire sequence, s, conditioned on the context, x, is
the product of the conditional probabilities of new tokens given past
tokens, whose resulting log-probability is x xs s∑P P slog () = log (,)i i i<∣ ∣ ,
where si is the ith output token and s<i denotes the set of previous
tokens.

Length normalization. When comparing the log-probabilities of gen-
erated sequences, we use ‘length normalization’, that is, we use an
arithmetic mean log-probability, xsP s∑ log (,)N i

N
i i

1
<∣ , instead of the

sum. In expectation, longer sequences have lower joint likelihoods
because of the conditional independence of the token probabilities47.
The joint likelihood of a sequence of length N shrinks exponentially in
N. Its negative log-probability therefore grows linearly in N, so longer
sentences tend to contribute more to entropy. We therefore interpret
length-normalizing the log-probabilities when estimating the entropy
as asserting that the expected uncertainty of generations is independ-
ent of sentence length. Length normalization has some empirical
success48, including in our own preliminary experiments, but little
theoretical justification in the literature.

Principles of semantic uncertainty
If we naively calculate the predictive entropy directly from the probabil-
ities of the generated sequence of tokens, we conflate the uncertainty
of the model over the meaning of its answer with the uncertainty over
the exact tokens used to express that meaning. For example, even if the
model is confident in the meaning of a generation, there are still usually
many different ways for phrasing that generation without changing its
meaning. For the purposes of detecting confabulations, the uncertainty
of the LLM over meanings is more important than the uncertainty over
the exact tokens used to express those meanings.

Our semantic uncertainty method therefore seeks to estimate only
the uncertainty the LLM has over the meaning of its generation, not
the choice of words. To do this, we introduce an algorithm that clusters
model generations by meaning and subsequently calculates semantic
uncertainty. At a high level this involves three steps:
1. Generation: sample output sequences of tokens from the predictive

distribution of a LLM given a context x.
2. Clustering: cluster sequences by their meaning using our clustering

algorithm based on bidirectional entailment.
3. Entropy estimation: estimate semantic entropy by summing prob-

abilities of sequences that share a meaning following equation (2)
and compute their entropy.

Generating a set of answers from the model. Given some context x
as input to the LLM, we sample M sequences, {s(1), …, s(M)} and record
their token probabilities, {P(s(1)∣x), …, P(s(M)∣x)}. We sample all our gen-
erations from a single model, varying only the random seed used for
sampling from the token probabilities. We do not observe the method
to be particularly sensitive to details of the sampling scheme. In our
implementation, we sample at temperature 1 using nucleus sampling
(P = 0.9) (ref. 49) and top-K sampling (K = 50) (ref. 50). We also sample
a single generation at low temperature (0.1) as an estimate of the ‘best
generation’ of the model to the context, which we use to assess the
accuracy of the model. (A lower sampling temperature increases the
probability of sampling the most likely tokens).

Clustering by semantic equivalence. To estimate semantic entropy
we need to cluster generated outputs from the model into groups of
outputs that mean the same thing as each other.

This can be described using ‘semantic equivalence’ which is the rela-
tion that holds between two sentences when they mean the same thing.
We can formalize semantic equivalence mathematically. Let the space
of tokens in a language be T . The space of all possible sequences of
tokens of length N is then S T≡N

N. Note that N can be made arbitrarily
large to accommodate whatever size of sentence one can imagine and
one of the tokens can be a ‘padding’ token which occurs with certainty
for each token after the end-of-sequence token. For some sentence

∈ Ns S , composed of a sequence of tokens, s ∈i T , there is an associ-
ated meaning. Theories of meaning are contested51. However, for
specific models and deployment contexts many considerations can
be set aside. Care should be taken comparing very different models
and contexts.

Let us introduce a semantic equivalence relation, E( ⋅ , ⋅ ), which holds
for any two sentences that mean the same thing—we will operational-
ize this presently. Recall that an equivalence relation is any reflexive,
symmetric and transitive relation and that any equivalence relation on
a set corresponds to a set of equivalence classes. Each semantic equiv-
alence class captures outputs that can be considered to express the
same meaning. That is, for the space of semantic equivalence classes
C the sentences in the set Cc ∈ can be regarded in many settings as
expressing a similar meaning such that s s s sc E∀ , ′ ∈ : (, ′) . So we can
build up these classes of semantically equivalent sentences by check-
ing if new sentences share a meaning with any sentences we have already
clustered and, if so, adding them into that class.

Article
We operationalize E( ⋅ , ⋅ ) using the idea of bidirectional entailment,

which has a long history in linguistics52 and natural language process-
ing28,53,54. A sequence, s, means the same thing as a second sequence,
s′, only if the sequences entail (that is, logically imply) each other. For
example, ‘The capital of France is Paris’ entails ‘Paris is the capital of
France’ and vice versa because they mean the same thing. (See later
for a discussion of soft equivalence and cases in which bidirectional
entailment does not guarantee equivalent meanings).

Importantly, we require that the sequences mean the same thing
with respect to the context—key meaning is sometimes contained in
the context. For example, ‘Paris’ does not entail ‘The capital of France
is Paris’ because ‘Paris’ is not a declarative sentence without context.
But in the context of the question ‘What is the capital of France?’, the
one-word answer does entail the longer answer.

Detecting entailment has been the object of study of a great deal of
research in NLI55. We rely on language models to predict entailment,
such as DeBERTa-Large-MNLI56, which has been trained to predict entail-
ment, or general-purpose LLMs such as GPT-3.5 (ref. 57), which can
predict entailment given suitable prompts.

We then cluster sentences according to whether they bidirection-
ally entail each other using the algorithm presented in Extended Data
Fig. 1. Note that, to check if a sequence should be added to an existing
cluster, it is sufficient to check if the sequence bidirectionally entails
any of the existing sequences in that cluster (we arbitrarily pick the first
one), given the transitivity of semantic equivalence. If a sequence does
not share meaning with any existing cluster, we assign it its own cluster.

Computing the semantic entropy. Having determined the classes of
generated sequences that mean the same thing, we can estimate the
likelihood that a sequence generated by the LLM belongs to a given class
by computing the sum of the probabilities of all the possible sequences
of tokens which can be considered to express the same meaning as

x x xs s
s s

∣ ∑ ∑ ∏P c P P s() = () = (,). (2)
c c i

i i
∈ ∈

<

Formally, this treats the output as a random variable whose event-
space is the space of all possible meaning-classes, C, a sub-σ-algebra of
the standard event-space S. We can then estimate the semantic entropy
(SE) as the entropy over the meaning-distribution,

x x∣ ∣∑x P c P cSE() = − ()log () (3)
c

x xs s

s s
∣ ∣∑ ∑ ∑P P= − () log () . (4)

c c c∈ ∈

There is a complication which prevents direct computation: we do
not have access to every possible meaning-class c. Instead, we can only
sample c from the sequence-generating distribution induced by the
model. To handle this, we estimate the expectation in equation (3)
using a Rao–Blackwellized Monte Carlo integration over the semantic
equivalence classes C,

x x∑x P C P CSE() ≈ − ()log (), (5)
i

C

i i
=1

∣ ∣
∣ ∣

where ∣ ∣
∣P C() = ∑i

P c

P c

()

()
i

c
x

x

x
 estimates a categorical distribution over the

cluster meanings, that is, ∑iP(Ci∣x) = 1. Without this normalization step
cluster ‘probabilities’ could exceed one because of length normaliza-
tion, resulting in degeneracies. Equation (5) is the estimator giving our
main method that we refer to as semantic entropy throughout the text.

For scenarios in which the sequence probabilities are not available,
we propose a variant of semantic entropy which we call ‘discrete’ seman-
tic entropy. Discrete semantic entropy approximates P(Ci∣x) directly

from the number of generations in each cluster, disregarding the token
probabilities. That is, we approximate P(Ci∣x) as ∑M I

M1
c Ci= , the proportion

of all the sampled answers which belong to that cluster. Effectively,
this just assumes that each output that was actually generated was
equally probable—estimating the underlying distribution as the cat-
egorical empirical distribution. In the limit of M the estimator converges
to equation (5) by the law of large numbers. We find that discrete seman-
tic entropy results in similar performance empirically.

We provide a worked example of the computation of semantic
entropy in Supplementary Note 1.

Detecting confabulations in QA and math
Semantic entropy is designed to detect confabulations, that is, model
outputs with arbitrary meaning. In our experiments, we use semantic
uncertainty to predict model accuracy, demonstrating that confabula-
tions make up a notable fraction of model mistakes. We further show
that semantic uncertainty can be used to improve model accuracy by
refusing to answer questions when semantic uncertainty is high. Last,
semantic uncertainty can be used to give users a way to know when
model generations are probably unreliable.

Tasks. We use the datasets BioASQ34, SQuAD33, TriviaQA32, SVAMP37
and NQ-Open35. BioASQ is a life-sciences question-answering dataset
based on the annual challenge of the same name. The specific dataset
we use is based on the QA dataset from Task B of the 2023 BioASQ
challenge (11B). SQuAD is a reading comprehension dataset whose
context passages are drawn from Wikipedia and for which the answers
to questions can be found in these passages. We use SQuAD 1.1 which
excludes the unanswerable questions added in v.2.0 that are deliberate-
ly constructed to induce mistakes so they do not in practice cause con-
fabulations to occur. TriviaQA is a trivia question-answering dataset.
SVAMP is a word-problem maths dataset containing elementary-school
mathematical reasoning tasks. NQ-Open is a dataset of realistic ques-
tions aggregated from Google Search which have been chosen to be
answerable without reference to a source text. For each dataset, we
use 400 train examples and 400 test examples randomly sampled
from the original larger dataset. Note that only some of the methods
require training, for example semantic entropy does not use the train-
ing data. If the datasets themselves are already split into train and
test (or validation) samples, we sample our examples from within the
corresponding split.

All these datasets are free-form, rather than multiple choice, because
this better captures the opportunities created by LLMs to produce
free-form sentences as answers. We refer to this default scenario as
our ‘sentence-length’ experiments. In Supplementary Note 7, we also
present results for confabulation detection in a ‘short-phrase’ scenario,
in which we constrain model answers on these datasets to be as concise
as possible.

To make the problems more difficult and induce confabulations,
we do not provide the context passages for any of the datasets. When
the context passages are provided, the accuracy rate is too high for
these datasets for the latest generations of models to meaningfully
study confabulations.

Models. For sentence-length generations we use: Falcon39 Instruct (7B
and 40B), LLaMA 2 Chat38 (7B, 13B and 70B) and Mistral40 Instruct (7B).

Baselines. In addition to reporting results for semantic entropy, dis-
crete semantic entropy and naive entropy, we consider two strong
baselines.

Embedding regression is a supervised baseline inspired by the P(IK)
method24. In that paper, the authors fine-tune their proprietary LLM on
a dataset of questions to predict whether the model would have been
correct. This requires access to a dataset of ground-truth answers to the
questions. Rather than fine-tuning the entire LLM in this way, we simply

take the final hidden units and train a logistic regression classifier to
make the same prediction. By contrast to their method, this is much
simpler because it does not require fine-tuning the entire language
model, as well as being more reproducible because the solution to the
logistic regression optimization problem is not as seed-dependent as
the fine-tuning procedure. As expected, this supervised approach per-
forms well in-distribution but fails when the distribution of questions
is different from that on which the classifier is trained.

The second baseline we consider is the P(True) method24, in which
the model first samples M answers (identically to our semantic entropy
approach) and then is prompted with the list of all answers generated
followed by the highest probability answer and a question whether
this answer is “(a) True” or “(b) False”. The confidence score is then
taken to be the probability with which the LLM responds with ‘a’ to the
multiple-choice question. The performance of this method is boosted
with a few-shot prompt, in which up to 20 examples from the training
set are randomly chosen, filled in as above, but then provided with the
actual ground truth of whether the proposed answer was true or false.
In this way, the method can be considered as supervised ‘in-context’
because it makes use of some ground-truth training labels but can
be used without retraining the model. Because of context-size con-
straints, this method cannot fit a full 20 few-shot examples in the
context when input questions are long or large numbers of genera-
tions are used. As a result, we sometimes have to reduce the number
of few-shot examples to suit the context size and we note this in the
Supplementary Material.

Entailment estimator. Any NLI classification system could be used for
our bidirectional entailment clustering algorithm. We consider two
different kinds of entailment detector.

One option is to use an instruction-tuned LLM such as LLaMA 2, GPT-
3.5 (Turbo 1106) or GPT-4 to predict entailment between generations.
We use the following prompt:

We are evaluating answers to the question {question}
Here are two possible answers:
Possible Answer 1: {text1}
Possible Answer 2: {text2}
Does Possible Answer 1 semantically entail Possible Answer 2?

Respond with entailment, contradiction, or neutral.

Alternatively, we consider using a language model trained for entail-
ment prediction, specifically the DeBERTa-large model56 fine-tuned on
the NLI dataset MNLI58. This builds on past work towards paraphrase
identification based on embedding similarity59,60 and BERT-style
models61,62. We template more simply, checking if DeBERTa predicts
entailment between the concatenation of the question and one
answer and the concatenation of the question and another answer.
Note that DeBERTa-large is a relatively lightweight model with only
1.5B parameters which is much less powerful than most of the LLMs
under study.

In Supplementary Note 2, we carefully evaluate the benefits and
drawbacks of these methods for entailment prediction. We settle on
using GPT-3.5 with the above prompt, as its entailment predictions
agree well with human raters and lead to good confabulation detec-
tion performance.

In Supplementary Note 3, we provide a discussion of the compu-
tational cost and choosing the number of generations for reliable
clustering.

Prompting templates. We use a simple generation template for all
sentence-length answer datasets:

 Answer the following question in a single brief but complete
sentence.
Question: {question}
Answer:

Metrics and accuracy measurements. We use three main metrics to
evaluate our method: AUROC, rejection accuracy and AURAC. Each of
these is grounded in an automated factuality estimation measurement
relative to the reference answers provided by the datasets that we use.
AUROC, rejection accuracy and AURAC. First, we use the AUROC
curve, which measures the reliability of a classifier accounting for both
precision and recall. The AUROC can be interpreted as the probability
that a randomly chosen correct answer has been assigned a higher con-
fidence score than a randomly chosen incorrect answer. For a perfect
classifier, this is 1.

Second, we compute the ‘rejection accuracy at X%’, which is the
question-answering accuracy of the model on the most-confident
X% of the inputs as identified by the respective uncertainty method.
If an uncertainty method works well, predictions on the confident
subset should be more accurate than predictions on the excluded
subset and the rejection accuracy should increase as we reject
more inputs.

To summarize this statistic we compute the AURAC—the total
area enclosed by the accuracies at all cut-off percentages X%. This
should increase towards 1 as given uncertainty method becomes
more accurate and better at detecting likely-inaccurate responses
but it is more sensitive to the overall accuracy of the model than the
AUROC metric.

In Supplementary Note 5, we provide the unaggregated rejection
accuracies for sentence-length generations.
Assessing accuracy. For the short-phrase-length generation setting
presented in Supplementary Note 7, we simply assess the accuracy
of the generations by checking if the F1 score of the commonly used
SQuAD metric exceeds 0.5. There are limitations to such simple scor-
ing rules63 but this method is widely used in practice and its error is
comparatively small on these standard datasets.

For our default scenario, the longer sentence-length generations,
this measure fails, as the overlap between the short reference answer
and our long model answer is invariably too small. For sentence-length
generations, we therefore automatically determine whether an answer
to the question is correct or incorrect by using GPT-4 to compare the
given answer to the reference answer. We use the template:

 We are assessing the quality of answers to the following question:
{question}
The expected answer is: {reference answer}
The proposed answer is: {predicted answer}
Within the context of the question, does the proposed answer mean

the same as the expected answer? Respond only with yes or no.

We make a small modification for datasets with several reference
answers: line two becomes “The following are expected answers to this
question:” and the final line asks “does the proposed answer mean the
same as any of the expected answers?”.

In Supplementary Note 6, we check the quality of our automated
ground-truth evaluations against human judgement by hand. We find
that GPT-4 gives the best results for determining model accuracy and
thus use it in all our sentence-length experiments.

Detecting confabulations in biographies
In this section we describe the application of semantic entropy to
confabulation detection in longer model generations, specifically
paragraph-length biographies.

We introduce a biography-generation dataset—FactualBio—
available alongside this paper. FactualBio is a collection of biographies
of individuals who are notable enough to have Wikipedia pages but not
notable enough to have large amounts of detailed coverage, generated
by GPT-4 (v.0613). To generate the dataset, we randomly sampled 21
individuals from the WikiBio dataset64. For each biography, we gener-
ated a list of factual claims contained in each biography using GPT-4,
with 150 total factual claims (the total number is only coincidentally a

Article
round number). For each of these factual claims, we manually deter-
mined whether the claim was correct or incorrect. Out of 150 claims, 45
were incorrect. As before, we apply confabulation detection to detect
incorrect model predictions, even though there may be model errors
which are not confabulations.

Prompting and generation. Given a paragraph-length piece of LLM-
generated text, we apply the following sequence of steps:
1. Automatically decompose the paragraph into specific factual claims

using an LLM (not necessarily the same as the original).
2. For each factual claim, use an LLM to automatically construct Q ques-

tions which might have produced that claim.
3. For each question, prompt the original LLM to generate M answers.
4. For each question, compute the semantic entropy of the answers,

including the original factual claim.
5. Average the semantic entropies over the questions to arrive at a score

for the original factual claim.

We pursue this slightly indirect way of generating answers because
we find that simply resampling each sentence creates variation unre-
lated to the uncertainty of the model about the factual claim, such as
differences in paragraph structure.

We decompose the paragraph into factual claims using the follow-
ing prompt:

 Please list the specific factual propositions included in the answer
above. Be complete and do not leave any factual claims out. Provide
each claim as a separate sentence in a separate bullet point.

We found that we agreed with the decompositions in all cases in
the dataset.

We then generate six questions for each of the facts from the decom-
position. We generate these questions by prompting the model twice
with the following:

Following this text:
{text so far}
You see the sentence:
{proposition}

Generate a list of three questions, that might have generated the
sentence in the context of the preceding original text, as well as their
answers. Please do not use specific facts that appear in the follow-up
sentence when formulating the question. Make the questions and
answers diverse. Avoid yes-no questions. The answers should not be a
full sentence and as short as possible, e.g. only a name, place, or thing.
Use the format “1. {question} – {answer}”.

These questions are not necessarily well-targeted and the difficulty
of this step is the main source of errors in the procedure. We gener-
ate three questions with each prompt, as this encourages diversity of
the questions, each question targeting a different aspect of the fact.
However, we observed that the generated questions will sometimes
miss obvious aspects of the fact. Executing the above prompt twice
(for a total of six questions) can improve coverage. We also ask for
brief answers because the current version of GPT-4 tends to give long,
convoluted and highly hedged answers unless explicitly told not to.

 Then, for each question, we generate three new answers using the
following prompt:

 We are writing an answer to the question “{user question}”. So far
we have written:
{text so far}
The next sentence should be the answer to the following question:
{question}
 Please answer this question. Do not answer in a full sentence. Answer
with as few words as possible, e.g. only a name, place, or thing.

We then compute the semantic entropy over these answers plus
the original factual claim. Including the original fact ensures that the
estimator remains grounded in the original claim and helps detect
situations in which the question has been interpreted completely dif-
ferently from the original context. We make a small modification to
handle the fact that GPT-4 generations often include refusals to answer
questions. These refusals were not something we commonly observe
in our experiments with LLaMA 2, Falcon or Mistral models. If more
than half of the answers include one of the strings ‘not available’, ‘not
provided’, ‘unknown’ or ‘unclear’ then we treat the semantic uncertainty
as maximal.

We then average the semantic entropies for each question corre-
sponding to the factual claim to get an entropy for this factual claim.

Despite the extra assumptions and complexity, we find that this
method greatly outperforms the baselines.

Entailment estimator. To compute semantic entailment between the
original claim and regenerated answers, we rely on the DeBERTa entail-
ment prediction model as we find empirically that DeBERTa predictions
result in higher train-set AUROC than other methods. Because DeBERTa
has slightly lower recall than GPT-3.5/4, we use a modified set-up for
which we say the answers mean the same as each other if at least one
of them entails the other and neither is seen to contradict the other—
a kind of ‘non-defeating’ bidirectional entailment check rather than
true bidirectional entailment. The good performance of DeBERTa in
this scenario is not surprising as both factual claims and regenerated
answers are relatively short. We refer to Supplementary Notes 2 and 3
for ablations and experiments regarding our choice of entailment
estimator for paragraph-length generations.

Baselines. We implement two baselines. First, we implement a variant
of the P(True) method, which is adapted to the new setting. For each
factoid, we generate a question with answers in the same way as for
semantic entropy. We then use the following prompt:

Question: {question}
Here are some brainstormed ideas:
{list of regenerated answers}
Possible answer: {original answer}
Is the possible answer true? Respond with “yes” or “no”.

As we cannot access the probabilities GPT-4 assigns to predicting
‘yes’ and ‘no’ as the next token, we approximate this using Monte Carlo
samples. Concretely, we execute the above prompt ten times (at tem-
perature 1) and then take the fraction of answers which was ‘yes’ as our
unbiased Monte Carlo estimate of the token probability GPT-4 assigns
to ‘yes’.

As a second, simpler, baseline we check if the model thinks the answer
is true. We simply ask:

Following this text:
{text so far}
You see this statement:
{proposition}
Is it likely that the statement is true? Respond with ‘yes’ or ‘no’.

It is interesting that this method ought to perform very well if we think
that the model has good ‘self-knowledge’ (that is, if “models mostly
know what they don’t know”24) but in fact semantic entropy is much
better at detecting confabulations.

Data availability
The data used for the short-phrase and sentence-length generations
are publicly available and the released code details how to access it. We
release a public version of the FactualBio dataset as part of the code
base for reproducing the paragraph-length experiments.

Code availability
We release all code used to produce the main experiments. The code
for short-phrase and sentence-length experiments can be found at
github.com/jlko/semantic_uncertainty and https://doi.org/10.5281/
zenodo.10964366 (ref. 65). The code for paragraph-length experiments
can be found at github.com/jlko/long_hallucinations and https://doi.
org/10.5281/zenodo.10964366 (ref. 65).

46. Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 31,
105–112 (2009).

47. Malinin, A. & Gales, M. Uncertainty estimation in autoregressive structured prediction.
In Proceedings of the International Conference on Learning Representations https://
openreview.net/forum?id=jN5y-zb5Q7m (2021).

48. Murray, K. & Chiang, D. Correcting length bias in neural machine translation. In Proc.
Third Conference on Machine Translation (eds Bojar, O. et al.) 212–223 (Assoc. Comp.
Linguistics, 2018).

49. Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of neural text
degeneration. In Proceedings of the International Conference on Learning Representations
https://openreview.net/forum?id=rygGQyrFvH (2020).

50. Fan, A., Lewis, M. & Dauphin, Y. Hierarchical neural story generation. In Proc. 56th Annual
Meeting of the Association for Computational Linguistics (eds Gurevych, I. & Miyao, Y.)
889–898 (Association for Computational Linguistics, 2018).

51. Speaks, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics
Research Lab, Stanford Univ., 2021).

52. Culicover, P. W. Paraphrase generation and information retrieval from stored text. Mech.
Transl. Comput. Linguist. 11, 78–88 (1968).

53. Padó, S., Cer, D., Galley, M., Jurafsky, D. & Manning, C. D. Measuring machine translation
quality as semantic equivalence: a metric based on entailment features. Mach. Transl. 23,
181–193 (2009).

54. Androutsopoulos, I. & Malakasiotis, P. A survey of paraphrasing and textual entailment
methods. J. Artif. Intell. Res. 38, 135–187 (2010).

55. MacCartney, B. Natural Language Inference (Stanford Univ., 2009).
56. He, P., Liu, X., Gao, J. & Chen, W. Deberta: decoding-enhanced BERT with disentangled

attention. In International Conference on Learning Representations https://openreview.
net/forum?id=XPZIaotutsD (2021).

57. Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33,
1877–1901 (2020).

58. Williams, A., Nangia, N. & Bowman, S. R. A broad-coverage challenge corpus for sentence
understanding through inference. In Proc. 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(eds Walker, M. et al.) 1112–1122 (Assoc. Comp. Linguistics, 2018).

59. Yu, L., Hermann, K. M., Blunsom, P. & Pulman, S. Deep learning for answer sentence
selection. Preprint at https://arxiv.org/abs/1412.1632 (2014).

60. Socher, R., Huang, E., Pennin, J., Manning, C. D. & Ng, A. Dynamic pooling and unfolding
recursive autoencoders for paraphrase detection. In Proceedings of the 24th Conference
on Neural Information Processing Systems (eds Shawe-Taylor, J. et al.) (2011)

61. He, R., Ravula, A., Kanagal, B. & Ainslie, J. Realformer: Transformer likes residual attention.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
(eds Zhong, C., et al.) 929–943 (Assoc. Comp. Linguistics, 2021).

62. Tay, Y. et al. Charformer: fast character transformers via gradient-based subword
tokenization. In Proceedings of the International Conference on Learning Representations
https://openreview.net/forum?id=JtBRnrlOEFN (2022).

63. Kane, H., Kocyigit, Y., Abdalla, A., Ajanoh, P. & Coulibali, M. Towards neural similarity
evaluators. In Workshop on Document Intelligence at the 32nd conference on Neural
Information Processing (2019).

64. Lebret, R., Grangier, D. & Auli, M. Neural text generation from structured data with
application to the biography domain. In Proc. 2016 Conference on Empirical Methods in
Natural Language Processing (eds Su, J. et al.) 1203–1213 (Association for Computational
Linguistics, 2016).

65. Kossen, J., jlko/semantic_uncertainty: Initial release v.1.0.0. Zenodo https://doi.org/
10.5281/zenodo.10964366 (2024).

Acknowledgements We thank G. Irving, K. Perlin, J. Richens, L. Rimell and M. Turpin for their
comments or discussion related to this work. We thank K. Handa for his help with the human
evaluation of our automated accuracy assessment. We thank F. Bickford Smith and L. Melo for
their code review. Y.G. is supported by a Turing AI Fellowship funded by the UK government’s
Office for AI, through UK Research and Innovation (grant reference EP/V030302/1), and
delivered by the Alan Turing Institute.

Author contributions S.F. led the work from conception to completion and proposed using
bidirectional entailment to cluster generations as a way of computing entropy in LLMs.
He wrote the main text, most of the Methods and Supplementary Information and prepared
most of the figures. J.K. improved the mathematical formalization of semantic entropy; led
the extension of semantic entropy to sentence- and paragraph-length generations; wrote the
code for, and carried out, all the experiments and evaluations; wrote much of the Methods and
Supplementary Information and prepared drafts of many figures; and gave critical feedback
on the main text. L.K. developed the initial mathematical formalization of semantic entropy;
wrote code for, and carried out, the initial experiments around semantic entropy and its
variants which demonstrated the promise of the idea and helped narrow down possible
research avenues to explore; and gave critical feedback on the main text. Y.G. ideated the
project, proposing the idea to differentiate semantic and syntactic diversity as a tool for
detecting hallucinations, provided high-level guidance on the research and gave critical
feedback on the main text; he runs the research laboratory in which the work was carried out.

Competing interests S.F. is currently employed by Google DeepMind and L.K. by OpenAI. For
both, this paper was written under their University of Oxford affiliation. The remaining authors
declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-024-07421-0.
Correspondence and requests for materials should be addressed to Sebastian Farquhar.
Peer review information Nature thanks Mirella Lapata and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/jlko/semantic_uncertainty
https://doi.org/10.5281/zenodo.10964366
https://doi.org/10.5281/zenodo.10964366
https://github.com/jlko/long_hallucinations
https://doi.org/10.5281/zenodo.10964366
https://doi.org/10.5281/zenodo.10964366
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://arxiv.org/abs/1412.1632
https://openreview.net/forum?id=JtBRnrlOEFN
https://doi.org/10.5281/zenodo.10964366
https://doi.org/10.5281/zenodo.10964366
https://doi.org/10.1038/s41586-024-07421-0
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | Algorithm outline for bidirectional entailment clustering. Given a set of outputs in response to a context, the bidirectional entailment
answer returns a set of sets of outputs which have been classified as sharing a meaning.

	Detecting hallucinations in large language models using semantic entropy
	Detecting confabulations in QA and math
	Detecting confabulations in biographies
	Discussion
	Online content
	Fig. 1 Overview of semantic entropy and confabulation detection.
	Fig. 2 Detecting confabulations in sentence-length generations.
	Fig. 3 Detecting GPT-4 confabulations in paragraph-length biographies.
	Extended Data Fig. 1 Algorithm outline for bidirectional entailment clustering.
	Table 1 Semantic entropy applied to examples.

