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Neural-tumor interactions drive glioma growth as evidenced in preclinical
models, but clinical validation is limited. We present an epigenetically
defined neural signature of glioblastoma thatindependently predicts
patients’ survival. We use reference signatures of neural cells to deconvolve

tumor DNA and classify samples into low- or high-neural tumors. High-neural
glioblastomas exhibit hypomethylated CpG sites and upregulation of

genes associated with synaptic integration. Single-cell transcriptomic
analysis reveals a high abundance of malignant stemcell-like cells in
high-neural glioblastoma, primarily of the neural lineage. These cells

are further classified as neural-progenitor-cell-like, astrocyte-like and
oligodendrocyte-progenitor-like, alongside oligodendrocytes and
excitatory neurons. In line with these findings, high-neural glioblastoma

cells engender neuron-to-glioma synapse formationin vitro and in vivo and
show an unfavorable survival after xenografting. In patients, a high-neural
signature is associated with decreased overall and progression-free survival.
High-neural tumors also exhibit increased functional connectivity in
magnetencephalography and resting-state magnet resonance imaging and
canbe detected via DNA analytes and brain-derived neurotrophic factorin

patients’ plasma. The prognosticimportance of the neural signature was
further validated in patients diagnosed with diffuse midline glioma. Our
study presents an epigenetically defined malignant neural signature in
high-grade gliomas that is prognostically relevant. High-neural gliomas likely
require amaximized surgical resection approach forimproved outcomes.

Theimportance of the nervous system as aregulator of brain tumors
has beenrepeatedly highlighted but has not yet been translated into
atherapeutically relevant setting'™>. Particularly in gliomas, studies
have demonstrated that the activity-driven formation of malignant
neuron-to-glioma networksiis critical for cancer progression**#, and
that glioma cells remodel neuronal circuits by increasing neuronal
hyperexcitability**2 Further insight into molecular mechanisms
identified connected and unconnected glioblastoma cells that form
distinct cell states and differ in their gene signatures as well as func-
tions within neuron-to-glioma networks”. Additionally, glioblastomas
exhibiting high functional connectivity have been shown to be asso-
ciated with poorer survival>. Moreover, callosal projection neurons

were shown to promote glioma progression and widespread infiltra-
tion underpinning the importance of the central nervous system as
acritical regulator™.

High-grade glioma consists of both malignant and nonmalig-
nant cells™'. Therefore, their cell-type composition can be deter-
mined through epigenetic bulk DNA analysis, which allows for the
identification of molecular differences. Here, we aimed to use brain
tumor-related epigenetic signatures to understand isocitrate dehy-
drogenase (IDH)-wild-type high-grade gliomas, suggesting that cer-
tain epigenetic subclasses may be more likely to be integrated into
neuron-to-glioma networks with clinical relevance. We analyzed the
epigenetic neural signature of central nervous system (CNS) tumors,
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categorizing glioblastoma and H3K27-altered diffuse midline glioma
(DMG) into low- and high-neural subgroups, which were characterized
molecularly, functionally and clinically.

Results

Epigenetic neural signature predicts patients outcome
Toaddress our hypotheses, we applied the epigenetic neural signature
of Moss et al.” to estimate cellular composition (Fig. 1a) of acombined
dataset of epigenetically profiled CNS tumors of Capper et al.”* and our
institutional cohorts (Fig. 1b) as well as healthy tissue (Extended Data
Fig.1a). Using this combined dataset, glioblastoma samples (n =1,058)
were dichotomized for defining a cutoff separating low- and high-neural
tumors (cutoff based on median neural proportion 0.41; Fig. 1c,d).
We demonstrate that more than two clusters did not show significant
separability of survival among the resulting clusters (Extended Data
Fig.1b,c). The reproducibility of the cutoff (0.41) was validated across
multiple cohorts (Extended Data Fig. 1d-f). The cutoff was applied to
363 patients with glioblastoma from our clinical cohort who received
surgical treatment followed by standard-of-care combined chemora-
diotherapy. Survival analysis revealed a significantly shorter overall
survival (P< 0.0001, median overall survival 14.2 versus 21.2 months;
Fig. 1e) and progression-free survival (PFS) (P=0.02, median PFS 6.2
versus 10.0 months; Fig. 1f) for patients with a high-neural glioblas-
toma (Extended Data Table 1). This finding was replicated in an external
cohort with187 patients from The Cancer Genome Atlas (TCGA)-GBM
database® (P < 0.01, median overall survival 12.0 versus 17.1 months;
Fig.1g). The neural classification was identified as an independent
prognostic factor for overall survival (odds ratio (OR) 1.96; 95% con-
fidence interval (Cl) 1.45-2.64, P< 0.01; Fig. 1h) and PFS (OR 1.51; 95%
CI1.13-2.02, P< 0.01; Fig. 1i). Other infiltrating brain tumor cell types
of the lymphoid or myeloid lineage did not show an association with
patient survival (Extended Data Fig. 1g-j).

High-neural glioblastomas exhibit a synaptic character

To discern epigenetic differences in low- and high-neural glioblasto-
mas, we applied the ‘invasivity signature™ (172 genes linked to neural
features, migration and invasion) to the DNA methylation data of our
clinical cohort (Supplementary Table). High-neural tumors were hypo-
methylated at CpG sites within gene loci of the invasivity signature
compared to low-neural tumors (Extended Data Fig. 2a). In addition,
two gene sets that are either associated with neuron-to-gliomasynapse
formation®® (‘neuronal signature genes’; Supplementary Table) or
trans-synaptic signaling? (‘trans-synaptic signaling genes’; Supple-
mentary Table) were hypomethylated in high-neural glioblastomas
(Extended DataFig.2a), whereas synapse-related genes were upregu-
lated in high-neural glioblastoma (Extended Data Fig. 2b).

Next, we used an integrative analysis of paired epigenetic and
transcriptomic datasets of glioblastoma samples (n=86). First, we
computed ascale-free gene expression network (weighted correlation
network analysis; WGCNA?) resulting in gene expression modules,
which were further correlated to the neural signature through module
significance measurement by quantifying the absolute correlation

between the epigenetic signature and the individual module-derived
gene expression profiles (Fig. 2a,b). We identified three expres-
sion modules significantly correlated with the epigenetic status of
high-neural glioblastomas: module green (R*=0.55,P=3.5x10"%), mod-
ulecyan (R?=0.67, P<2.2 x10™%*) and module midnightblue (R*=0.41,
P=9.3x107) (Fig. 2¢,d). Gene Ontology analysis revealed that these
modules were associated with synaptic functions (GRIN3A, SYT4 and
SNAP2S), regulating the expression of genes involved in neuronal dif-
ferentiation (VEUROD2) and calcium-dependent celladhesion (CDH22,
CNTNAPS and CNTN3) (Fig. 2e,f).

We projected module eigengene signatures onto an integrated
single-cell dataset of malignant (GBMap?®®) and healthy brain cells
from the motor cortex (Allen Brain Institute). This analysis revealed
a significant enrichment of the corresponding expression mod-
ules clustering to cells of the neural lineage such as healthy neu-
rons along with malignant neural-progenitor-like cells (NPCs) and
oligodendrocyte-progenitor-like cells (OPCs) (module greenand cyan,
P<0.01), aswellasnonmalignant oligodendrocytes (module midnight
blue, P<0.01) (Fig. 2g-i and Extended Data Fig. 3a). This correlation
with the signature, dominated by typical neuronal marker genes, was
anticipated. To assess whether the neural signature in our samples
reflects malignant cell properties or merely the presence of neurons, we
analyzedtherelationship between DNA purity and the neural signature,
finding a notable positive correlation (P< 0.001, R?=0.19; Extended
Data Fig. 3b), whereas microglia (P < 0.001, R*= 0.35; Extended Data
Fig. 3¢c) and immune cell signatures (P < 0.001, R*= 0.67; Extended
Data Fig. 3d) showed a negative correlation. Our study, using only
glioblastoma samples withareliable diagnostic output from the DKFZ
methylation classifier (Methods) showed that the calibrated score for
‘IDH-wild-type glioblastoma’ was unaffected by the epigenetic neural
signature, nor vice versa (P=0.39, R*=0.003; Extended Data Fig. 3e).
Additionally, a non-reference-based multi-dimensional single-cell
deconvolution algorithm?* was used to differentiate the neural sig-
nature in tumor cells from neuronal contamination. The analysis,
which included glioblastoma tissue, matching tumor monocultures
(n=17), healthy cortex (n=9) and sorted NeuN" cells (n = 5), confirmed
a higher stem-cell-like signature in glioblastoma tissue and cell cul-
tures (Extended Data Fig. 3f) and the distinct neuronal signature in
NeuN’ cells and healthy cortex (Extended Data Fig. 3g). Integrating
RNA sequencing (RNA-seq) data, we observed 64 out of 67 samples
(95.52%; Extended Data Fig. 3h) clustered into the established Ver-
haak transcriptomic glioblastoma subtypes (classical, mesenchy-
mal and proneural)®. Ultimately, we analyzed the neural signature in
cell cultures from 17 freshly resected patients with glioblastoma and
observed a well-preserved neural signature (Extended Data Fig. 3i),
which remained stable even in long-term cultures (Extended Data
Fig. 3j) without the presence of NeuN" cells (Extended Data Fig. 3k).

The synaptic character of high-neural glioblastoma was further
validated in the tumor proteome (Extended Data Fig. 4a—-f), showing
anincrease in proteins related to synaptic transmission (Extended Data
Fig. 4a-d) and characteristics of malignant OPC-like, astrocyte-like
and NPC-like cells (Extended Data Fig. 4e,f). Histopathological

Fig.1| Epigenetic neural classification predicts outcome of patients with
glioblastoma. a, Schematic of the study workflow. In humans (n = 5,047)
diagnosed with a CNS tumor we performed deconvolution using DNA
methylation arrays (850k or 450k) for determining the neural signature. IDH-
wild-type glioblastomas were stratified into subgroups with a low- or high-neural
signature for further analyses. b, Epigenetic neural signature in all CNS tumor
entities (n=5,047). ¢, Dichotomization of the combined dataset from Capper et
al.”® and three institutional cohorts (Hamburg, Berlin and Frankfurt, all Germany)
into low- and high-neural glioblastomas. The black line indicates amedian neural
score of allincluded patients with glioblastoma (n=1,058) and represents the
cutoff (0.41) for stratification into low- and high-neural glioblastoma.

d, External validation of the cutoff value using the TCGA-GBM dataset (n =187).

Theblackline indicates the median neural score. e-i, Survival analysis of patients
with low- and high-neural glioblastoma treated by radiochemotherapy after
surgery. e, Overall survival (OS) of 363 patients with glioblastoma of the internal
clinical cohort. log-rank test, P= 0.000005. Error bands represent 95% CI. f, PFS
of 226 patients with glioblastoma of the internal clinical cohort. log-rank test,
P=0.0233. Error bands represent 95% Cl. g, Overall survival of 187 patients with
glioblastoma of the TCGA-GBM cohort. log-rank test, P= 0.0017. Error bands
represent 95% Cl. h,i, Forest plots illustrating multivariate analysis of patients
withglioblastoma from the internal clinical cohort. Means are shown by closed
circles and whiskers represent 95% CI. GTR, gross total resection; PR, partial
resection; MGMT, O°-methylguanine-DNA-methyltransferase.
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staining demonstrated a higher fraction of OLIG2-positive tumor cells Next, we leveraged spatially resolved transcriptomic data with
inhigh-neural glioblastoma samples but comparable sparseinfiltration  paired methylation profiling (n = 24) to examine the molecular archi-
of NeuN' cells within the tumor samples (Extended Data Fig. 4g,h). tecture and cell-type distributionin low- and high-neural glioblastoma
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Fig.2|Integrated epigenetic and transcriptomic analysis reveals synaptic
functions and a malignant NPC/OPC-like character in high-neural
glioblastoma. a, Illustration of the workflow to integrate epigenetic and
transcriptional data. Gene co-regulation networks are correlated to the
epigenetic deconvolution signature. b, Hierarchical dendrogram of the gene
expression modules derived from the weighted correlation network analysis.
Dot-plot of the neural signature with gene expression models using Pearson
correlation (bottom). Size and color indicate the correlation coefficient,
nonsignificant correlation is marked. ¢, Bar-plot of the differential gene
expression of module eigengenes (log,-transformed fold change) in low- and
high-neural glioblastoma (cutoff 0.41). d, Dimensional reduction (UMAP) of

the gene expression modules (named by colors). e, A detailed visualization of
the modules: green, cyan and midnight blue (significantly associated with high-
neural tumors). f, Gene Ontology analysis of gene expression modules in low-and
high-neural tumors. g, UMAP dimensional reduction of the GBMap reference
dataset. Colorsindicate the different cell types. h, Module eigengene expression
of low-and high-neural glioblastoma in the GBMap reference dataset. i, Gene
expression enrichment of low- and high-neural-associated module eigengenes
across glioblastoma cell states. AC, astrocytes; DC, dendritic cells; GBM,
glioblastoma; NK, natural killer; OGD, oligodendrocytes; TAM, tumor-associated
macrophages.

samples (Fig. 3). We hypothesized that these tumors have distinct
architectures, reflected by aunique spatial arrangement of transcripts
that predict their epigenetic neural subgroup.

Tothisend, we trained agraph-neural network (GNN) using 1,000
randomly chosen microenvironments within the samples. Each micro-
environment was centered ona55-umspot and extended up to 450 pum.
These subgraphs were representative of the broader sample and were
instrumental for the GNN training, achieving an R? of 0.99 and an F1
score of 0.98, indicating that the neural score can be reliably predicted
fromthe transcriptional landscape (Fig. 3a,b).

We applied our neural score threshold of 0.41to categorize micro-
environments as ‘neural high’ or ‘neural low’. Of note, 41.2% of the
samples exhibited a blend of both categories, including those at the
threshold and those with the most elevated neural scores (Fig. 3c). For
instance, asample with a neural score of 0.58 showed two prominent
peaks at 0.38 and 0.58, suggesting a diverse microenvironmental
composition (Fig. 3d); however, a pure or predominant neural type
was present in all but one of the 24 samples (95.8%). Further analysis
revealed that high-neural score microenvironments typically encom-
pass NPC-like and astrocyte-like tumor cells (Fig. 3e), alongside a sig-
nificant presence of oligodendrocytes and OPC-like cells, painting a
picture of the tumor microenvironment’s unique architecture associ-
ated with the high-neural phenotype.

In conclusion, single-cell and spatially resolved transcriptomic
analyses decipher that the neural signature in glioblastomas predomi-
nantly originates from cells of the neural lineage exhibiting an OPC/
NPC/astrocyte-like phenotype andis characterized by adistinct tumor
microenvironment.

High-neural glioblastomas resemble a malignant stem
cell-like state

Using a nonreference-based multi-dimensional single-cell deconvolu-
tion algorithm, we observed a higher stem/progenitor cell-like state
but lower immune component in high-neural glioblastoma (28.05%)
compared to all newly diagnosed glioblastoma (17.31%) and low-neural
glioblastoma (14.14%) (Extended DataFig. 4i). Both components were
significantly correlated with the neural signature (Extended Data
Fig. 4j,k).

No significant copy-number variations were observed between
low- and high-neural subgroups (conumee R package v.1.28.0)*%
(Extended Data Fig. 5a). Next-generation sequencing (NGS) of 201
genes showed a higher frequency of PIK3CA (0 out of 65 (0.0%) versus
9 out of 60 (15.0%)) and TP53 (6 out of 65 (9.23%) versus 19 out of 60
(31.67%)) mutations in high-neural tumors (Extended Data Fig. 5b,c).

These findings were confirmed by an analysis of paired epigenetic and
sequencing data of the TCGA dataset (Extended Data Fig. 5d,e).

High-neural glioblastomas integrate into neuron-to-glioma
networks

The transcriptional and proteomic analysis revealed an increased
synaptogenic character in high-neural glioblastomas. This led us
to explore their integration into neuron-to-glioma networks. After
xenografting, an increased colocalization of neuron-to-glioma syn-
apse puncta (P < 0.01; Fig. 4a—c) was observed in high-neural glio-
blastoma which was proven using electron microscopy (P=0.008;
Fig.4d). Anincrease of colocalization of synapse punctain high-neural
glioblastoma cells after co-culturing with cortical neurons was found
(P<0.001; Fig. 4e).

For clinical translation, we assessed functional tumor connectivity
using magnetoencephalography (n = 38; Fig. 4f,g) and resting-state
functional magnetic resonanceimaging (n = 44; Fig. 4h-k) in patients
with glioblastoma. Both modalities showed a significantly higher
peritumoral connectivity within the high-neural subgroup (P < 0.01;
Fig. 4f-i). This aligns with recent studies on cellular states in regions
of HFC-glioblastoma™. Comparing the connectivity phenotype™ to
our neural classification showed high concordance (Fig. 4g); however,
no increased connectivity was seen between the tumor region and
the contralateral hemisphere (Fig. 4j). Volumetric analysis showed
significantly smaller volumes of contrast enhancement (P=0.03;
Extended DataFig. 6a) in high-neural glioblastoma, but no association
with fluid-attenuated inversion recovery (FLAIR) (P=0.18; Extended
Data Fig. 6b) and necrotic volume (P= 0.78; Extended Data Fig. 6c).
These findings indicate that high-neural glioblastomas engender
neuron-to-glioma synaptogenesis and have a distinct role within
neuron-to-glioma networks exhibiting functional connectivity.

Epigenetic neural signature is transferable toin vivo and
invitromodels

Most studies elucidating the biology of cancer neuroscience in
high-grade glioma were performed in preclinical models. Therefore,
we examined the translatability of our epigenetic neural signature in
cell cultures and patient-derived xenograft (PDX) models. We observed
awell-preserved neural signaturein 82.3% of our cell cultures compared
tothe original tumor samples (Fig. 5a), confirming that our preclinical
models sufficiently reflect the characteristics of the original tumor.
Comparison of low- and high-neural glioblastoma in PDX models of
aninternal cohort (n =30 mice of seven patient-derived glioblastoma
cell cultures; Fig. 5b) and two publicly available cohorts®*?* (n=96

Fig.3|Spatially resolved architecture of low- and high-neural glioblastoma.
a, lllustration of the workflow. Spatial transcriptomic data were used to identify
neighborhoods defined as subgraphs. A GNN was trained to predict the neural
score based on the spatial arrangements of transcripts. b, Scatter-plot of the
mean sample predictions and the ground truth values. ¢, Illustration of the
variance of neural score (predictions) compared to the threshold of 0.41. Bar plot
indicates the Heidelberg classifier values of the glioblastoma subclasses (n = 24)
(right). The dashed black line indicates the neural score threshold of 0.41.

d, Example of a high-neural glioblastoma sample with alarge blend of low-

and high-neural predicted scores. The hematoxylin and eosin (H&E) image
demonstrate the histology of the sample. Spatial neighborhoods derived from
subgraphs with high- and low-neural scores are demonstrated (bottom). The
single-cell maps are generated through single-cell deconvolution (Cell2Location)
and CytoSpace spatial deconvolution. wt, wild type. e, Overview of the cell-type
abundance correlated with the neural score.
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patient-derived glioblastoma cell cultures; Fig. 5¢c) showed a signifi-
cantly shorter survival of mice bearing high-neural tumors (inter-
nal cohort, P=0.0009; external cohort, P=0.001). Additionally, an
increased proliferation index was seen in high-neural glioblastoma

in vivo using immunodeficient mice (P < 0.01; Fig. 5d-f) aswell as in
co-cultures with cortical neurons (P < 0.001; Fig. 5g,h). In accordance
with currentliterature describing neuronal activity-driven widespread
infiltration of glioblastoma cells', we observed a significantly wider

) ) ) ) Latent space b R?=0.99, Acc=0.96
Spatial transcriptomics Three-hop neighborhood  Training P i
|
° |
o3 é 0.5 4 !
S0 ALR Neural score 2 !
9. 8893 it Boaq s
[eXXexi®) OeQ e} S col
0500'0080620 95968 § 01 1/24 false
©6,40505060%% 08650 9 o
O ) [}
Qogo" o O(O) % 8880 55 o 5 03 A ]
060383 0%6-e9 288 635959 Validation W~ i
00 2o 08% 230398 O S |
( 2t ) 0-0 > 0.2 4 :
|
|
T T T T T
02 03 04 05 06
i Neural score (EPIC)
Cc Neural classifier Heidelberg classifier d Example GBM IDH-wt, neural score: 0.58
| |
! | . M MES H&E
P | = -
| RTK1
. ; —ar s
o | o 0.50
4 - [ ] 8|2
- [
I o a N
6 ‘ [J— ERIE
I
c
74 : [ ] e 0.40
B 32
8 \ | I:| % x-Dimension
9 —— i ] o 0.3
10 \ ‘ [ | =
| ‘@
| - 0.30
n ‘ ] g
12 :
| /\
0 - | = | o
14 - -——-—————————
& \ | 02 0.3 0.4 05 0.7
15 /‘\ [ ] Cellular composition
I .
16 e [  insubgraph Subgraph 1
17 { )
% & ]
- b =
19 o )
20 =
21 | 5
| ) o
! [ .g
22 4 *‘ - g
281 w1 a
24 " >
T T T T T 11 x-Dimension
0.2 0.4 0.6 °© g 8
Neural score o < [ AC-like/Mes-like [ Glia: oligodendro-astrocyte [ Lymphocyte
® Neural score (EPIC) B Predicted score (subgraph) [ OPC-like/NPC-like  [] Stroma O Myeloid: microglia/TAM
€ Correlation of the relative subgraph cell distribution and the neural score
2
i &
} & O
@'
c ! »q"b & T ) . . .
S 037 o (g ¥ | | Associated with high-neural
.g } \)@Q ,‘?
= 4 N
[ I o
5 i 8
o O o~ _______| R
c [exe)l
5] o |
2 I
@© 00 I
o) 000
1—03* .o.oOOOOOOOOOOOOOOOOoOOOOOOOOOO | Associated with low-neural
’ 0000©° i
|
o 1
rrrrrrrrrrrrrrrrrrrr0 11111111 1T 1T T T T T T T T T
] == = SSEE0 5= BOFOFSSs R 3 = =
5= C2 300 08888220908 830 2 228 00 B R0CR2EERLERSE2E80E S
2E885°0ER ¥2o 08440 055085552233 8853 a5y 08982285803
39O zE o zZ28%5a 8 Q5e StdS & do88JE D a2%58825 S<
$8098 & K8% §9z ©35=2 Jlap Z=>8a= o0 Of52v5=c 2
2Q25¢ o ©og = ng 2332 os'% od 5 52 82 ¢ G
G2 ss 2 S g “oEZ Sz < = 32 2% § ¢
£ "= S = s F OF s 3% £¢2 2 ¢
3= = = < Q @ 2z ©
SF £ = = @ 2 g3
z = ] gD
| < a O
) = @
j
w
=
Nature Medicine | Volume 30 | June 2024 | 1622-1635 1627


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-024-02969-w

a b
High-neural'glioblastoma
Pri tient-derived 100 4 e——— § E
—c rimary pa - —
// \ low- or high-neural glioblastoma cells o °:°,
( ) 2 = 80
T Q9 o
\\J / [ ‘]\T‘ " Neuron-to-glioma ‘5 & :
I 1) eymapses S g E oo — |
5 A S 4 .f_j o S []
—_— )
4 8 weeks = 8 S 40 - )
; 32 e e
Adult NSG mice = ] |
tre oy ™ §°3 %
€
Low-neural High-neural
glioblastoma glioblastoma
(n=5) (n=5)
d - e
25 n " g >
c—~ H'Qh.'){f‘eur![ gnQﬁlBStoma Lo Nk Primary patient-derived CD1 mice _. 704 ool
=3 B % S gLy by ¥ low- or high-neural 0 N9
2 ‘; 20 i \ i glioblastoma cells “ ‘E 60 - $}
o O (o] E
] c 2 50
A 15 S w
o 9 Neuron-to-glioma 'S ¢ 40 4
o2 o synapses g > 40
2% 1o ° 3T 30 %o
Q L°] ] o
o9 — Q s
EQ oW 20
Sc S o3
O & 3 10+
@ Neuron-glioma co-culture o o
o] L ;
Low-neural High-neural Low-neural  High-neural
glioblastoma glioblastoma glioblastoma glioblastoma
(n=3) (n=3) +neuron +neuron
(n=23) (n=23)
*
f . S 9
Low functional connectivity High functional connectivity
[}
(]
o 0.6 3
= Q0
g So28 ssd
2 0.4 e %s
© og o o
5 o [
2 °
0.2 4 o
o
° B High-neural glioblastoma
[ Low-neural glioblastoma
Low functional High functional
connectivity connectivity
(n=22) (n=16)
. N
h 1 * ] NS
1.0 o ’7 1.0 }7
1.0 ®
P=0.05
r=0.24 o) (@] — =
p— © — pas —
[ n=44 o 5 0.8 ® 0.8
g 08+ £ > = 5
E > S © =
2 .2 =
= o9 6o
o5 Qg 06+ o o 06
o @ 0.6 c (] c
c S c o S c (@) (]
[e] = [ ] =5
Sc @ 8 T o O
e 8 £ 0 ] £ ooooo
(s}
S 04 S 04 OO%SOOOoo O % 0.4 @ oo
[©] @°°6%a° Y a)oooo @) o0
CoP0000 e 938205
00 ® 0 e®o
02 ‘ ‘ ‘ ! 0.2 0.2
0.2 0.3 0.4 0.5 0.6 Low-neural High-neural Low-neural High-neural
Neural signature glioblastoma glioblastoma glioblastoma glioblastoma
(n=31) (n=13) (n=231) (n=13)

b Low-neural

Nature Medicine | Volume 30 | June 2024 | 1622-1635 1628


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02969-w

Fig. 4| High-neural glioblastomas are integrated into neuron-to-glioma
networks. a, Experimental workflow. b, Quantification of the colocalization

of presynaptic and postsynaptic markers in low-neural (n = 22 regions, five
mice) and high-neural (n = 21regions, five mice) glioblastoma xenografts.
P=0.0008, two-tailed Student’s ¢-test. Data are mean + s.e.m. ¢, Confocal image
ofinfiltrated whiter matter of high-neural glioblastoma xenograft. White box
and arrowheads highlight magnified view of synaptic puncta colocalization.
Blue, synapsin-1(presynaptic puncta); white, neurofilament heavy and medium
(axon); red, nestin (glioma cell processes); green, PSD95 (postsynaptic puncta).
Scale bars, 500 um (top) and 250 um (bottom). d, Electron microscopy of

red fluorescent protein (RFP)-labeled glioblastoma cells. Quantification of
neuron-to-glioma synaptic structures as a percentage of all visualized glioma
cell processes (left) and image of neuron-to-glioma process in a high-neural
glioblastoma xenograft (right). Asterix denotes immunogold particle labeling
of RFP. Postsynaptic density in RFP* tumor cell (green), synaptic cleft and vesicles
in presynaptic neuron (red) identify synapses. **P < 0.01, two-tailed Student’s
t-test. Scale bar,200 nm. Dataare mean + s.e.m. n = 3 biological replicates.

e, Colocalization of PSD95 and synapsin-1in low- and high-neural glioblastoma
cellsin co-cultures with neurons. P= 0.0007, not significant (NS), P> 0.05,

two-tailed Student’s ¢-test, n = 3 biological replicates. Data are mean + s.e.m.

f, Neural signature categorized into low functional connectivity (LFC) and

high functional connectivity (HFC) as defined by magnetoencephalography.
P=0.0327, two-tailed Student’s t-test. g, Overlap between samples classified to
the functional connectivity by Krishna et al.”> and the epigenetic-based neural
classification of our study. h, Correlation of neural signature with degree of
peritumoral connectivity as defined by resting-state functional magnetic
resonance imaging (rs-fMRI). Simple linear regression P = 0.05, error bands
representing the 95% Cl. i, Peritumoral functional connectivity (defined by rs-
fMRI) in low- and high-neural glioblastoma. P = 0.0416, two-sided Mann-Whitney
U-test. j, Functional connectivity to the contralateral hemisphere (defined by
rs-fMRI) in low- and high-neural glioblastoma groups. NS, P> 0.05, two-sided
Mann-Whitney U-test. k, Examples showing the region of interest (ROI)-to-

voxel functional connectivity of the contrast-enhancing area to its peritumoral
surrounding. Peritumoral connectivity of a high-neural glioblastoma (0.457) and
mean functional connectivity to its peritumoral area of 0.837 (left). By contrast,
alow-neural glioblastoma (0.347) is shown with mean functional connectivity to
its peritumoral area of 0.294 (right).

migration of high-neural glioblastoma cells in vitro (P < 0.05; Fig. 5i,j)
andinvivo (P< 0.001; Fig. 5k). These findings demonstrate the robust-
ness of the epigenetic neural signatureinvitroandinvivoandindicate
higher proliferation when receiving neuronal input.

Epigenetic neural classification remains spatiotemporally
stable

Asheterogeneity is a hallmark of glioblastoma, we investigated the spa-
tiotemporal heterogeneity of the epigenetic neural signature. First, we
analyzed 143 spatially collected biopsies from 34 patients (3—-7 samples
per patient). Among them, 23 patients (67.6%) demonstrated a pure
low- or high-neural signature, while ten patients (29.4%) exhibited a
predominant signature (Extended Data Fig. 6d). Temporal stability
was assessed in 39 patients with matched tissue from both initial and
recurrence surgery (Extended DataFig. 6e). Here, 31 out of 39 patients
(79.5%) remained in the same neural subgroup at recurrence (Extended
DataFig. 6f). Overall, the neural subgroup seemed to be spatiotempo-
rally stable in contrast to transcriptional states that changeinalarger
proportion of patients®*",

Drug sensitivity analysis of neural glioblastoma cells

Patients with glioblastomaroutinely undergo combined radiochemo-
therapy after surgical resection®. We evaluated 27 different agents
for their efficacy in the treatment of low- and high-neural glioblas-
toma cells (Extended Data Fig. 7a). We observed a trend for increased
cleaved caspase 3 (Extended Data Fig. 7b) and reduced tumor cell
size (Extended Data Fig. 7c) after treatment with lomustine (CCNU),
JNJ10198400 and cyclosporine-treated high-neural glioblastomacells,
whereas talazoparib showed atrend for greater sensitivity in low-neural

glioblastoma cells; however, none of these compounds reached sta-
tistical significance (Extended Data Fig. 7d). Therefore, we wondered
about the prognostic impact of surgical resection as we previously
demonstrated survival differences for other methylation-based glio-
blastoma subclasses®.

Neural classification predicts benefit of resection
Glioblastomas are epigenetically assigned to different subclasses®.
Here, RTK1and RTK I (receptor tyrosine kinaseland Il subtypes) tumors
showed a comparable high-neural signature, whereas mesenchymal
(MES) tumors had the lowest neural signature (Extended Data Fig. 7a).
Giventhedifferent neural signatures between methylation-based sub-
classes, we hypothesized that the neural signature might constitute
afactor for determining benefit from extent of resection (EOR). In
low-neural glioblastoma, a significant survival benefit of gross total
resection (GTR) (100% CE resection) and near GTR (=90% CE resec-
tion) was observed compared to partial resection (<90% CE resection)
(P<0.001; Fig. 6a). By contrast, the survival benefit of anear GTR was
notseeninhigh-neural glioblastoma (Fig. 6b). These findings held true
inmultivariate analyses (Extended DataFig. 8b,c) and after applying the
currentcriteriaof the RANO (Response Assessment in Neuro-Oncology)
resect group® (Extended DataFig. 8d,e). Amethylated MGMT promoter
showed asurvival benefitin both neural subgroups, but a striking dif-
ference in low-neural glioblastoma with a median overall survival dif-
ference of12.0 months depending on the MGMT promoter methylation
status (P < 0.0001; Fig. 6¢). Our combined survival data demonstrate
that high-neural glioblastomas have an unfavorable outcome and a
greater resection may be required to achieve a survival benefit in this
distinct subclass.

Fig. 5| Neural classificationis conserved in cell culture and correlates with
survival as well as proliferation. a, Comparison of neural signature between
patient’s tumor tissue and cell culture in17 glioblastomas. b,c, Survival after
xenografting of patient-derived low- and high-neural glioblastoma cells in

our internal cohort (b) and two combined external cohorts (c). log-rank test,
P=0.0009 (b), P=0.001(c). Error bands represent 95% CI. d, Primary patient-
derived low- and high-neural glioblastoma cell suspensions (n =1 per group)
were implanted into premotor cortex (M2) of adult NSG mice (n = 5 mice per
group). Mice were perfused after 8 weeks of tumor growth and brains sectioned
inthe coronal plane for further immunofluorescence analyses. e, Proliferation
index (measured by total number of HNA" cells co-labeled with Ki67 divided

by the total number of HNA* tumor cells counted across all areas quantified)
inlow- and high-neural glioblastoma-bearing mice (n = 5 mice per group).
P=0.00819, two-tailed Student’s t-test. Data are mean + s.e.m. f, Representative
confocal images of proliferationindex in low-neural (top) and high-neural

glioblastoma (bottom) xenografts. Human nuclear antigen (HNA), red; Ki67,
green. Scalebars, 1 um (overview images) and 200 pm (magnified images).

g, Experimental workflow. h, EdU proliferation index (measured by total number
of DAPI" cells co-labeled with EAU divided by the total number of DAPI* tumor
cells counted across all areas quantified) in low-neural (P = 0.418) and high-neural
(P=0.0000172) glioblastoma as monocultures and co-cultured with neurons.
Two-tailed Student’s t-test, n = 3 biological replicates. Data are mean +s.e.m.

ij, 3D migration assay analysis comparing distance of migration 72 h after
seeding (i) and representative images at time O h (left) and 72 h (right) of low-
and high-neural glioblastoma cells (j). P= 0.0115, two-tailed Student’s ¢-test,
n=3biological replicates. Scale bars,1 um. Data are mean +s.e.m.k, Invivo
spread of tumor cellsinto corpus callosum in low- and high-neural glioblastoma.
P<0.0004, two-tailed Student’s ¢-test. Data are mean + s.e.m. EdU, 5-ethynyl-2’-
deoxyuridine; DAPI, 4,6-diamidino-2-phenylindole.
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Serum biomarkers of neural glioblastoma glioblastomato further reach clinical translation. By analyzing serum
Next, we examined the feasibility of preoperatively determining levels of brain-derived neurotrophic factor (BDNF) in 94 patients at
the epigenetic neural subclassification in the blood of patients with  diagnosis, we found higher BDNF levels in high-neural glioblastoma
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compared to low-neural glioblastoma, patients with meningioma
(n=13) and healthy individuals (n =19) (Fig. 6d). The serum BDNF lev-
els positively correlated with the epigenetic neural signature (P< 0.01,
R?=0.28;Fig. 6e). Conversely, glioblastomas with higher BDNF serum
levels had a decreased immune cell signature (Fig. 6f), consistent with
the lower immune cell signature of high-neural tissue samples. We
observed elevated BDNF levels in patients with glioma-associated sei-
zures at the time of diagnosis (P=0.02; Fig. 6g) and during follow-up
(P<0.001; Fig. 6h), which aligns with the known activity-regulated
release of BDNF, most likely from healthy neurons (Fig. 6i,j) within
high-neural glioblastoma networks.

Furthermore, we identified the neural signature in circulating
extracellular vesicle-associated DNA (EV-DNA) and cell-free DNA
(cfDNA) in patients’ plasma (Extended Data Fig. 8f-i). Circulating
extracellular vesicles, a surrogate marker for glioblastoma®**” and
involved in neuronal synchronization®®, correlated with the neural
signature (Extended Data Fig. 8f). Epigenetic profiling of EV-DNA in
plasmarevealed aneural signature that was absent in cfDNA (Extended
DataFig.8g). The neural signature detected in EV-DNA exhibited a sig-
nificant increase in glioblastoma compared to samples from healthy
donors and patients with meningioma (Extended Data Fig. 8g). Nota-
bly, high-neural tumors showed a higher incidence of a detectable
neural signaturein circulating EV-DNA (Extended Data Fig. 8h). While
plasma-derived EV-DNA displayed markedly lower levels of neural
signatures, cerebrospinal fluid EV-DNA exhibited lower but more com-
parable levels to tissue scores (Extended Data Fig. 8i).

Our findings suggest that BDNF could assist in stratifying patients
with glioblastoma based on their neural subgroup, potentially facili-
tating targeted therapy in the future and that the neural signature is
detectablein circulating extracellular vesicles.

Epigenetic neural classification informs survival in diffuse
midlineglioma

Besides glioblastoma, previous studies have highlighted the impor-
tance of neuronal activity-driven proliferationin DMG®’. We identified
the epigenetic neural signature in a cohort of H3 K27-altered DMG
consisting of pediatricand adolescent patients from our institutional
cohort (n=21), Chenetal.” (n=24)and Sturmetal.** (n=10). The neural
signature was evenly distributed among tumorsin the thalamus, pons
and medulla (Extended DataFig. 9a). Similar to glioblastomas, areasin
genesrelated to trans-synaptic signaling were mainly hypomethylated
inhigh-neural DMGs (Extended DataFig. 9b). A notable association with
stem and glial cell states (Extended Data Fig. 9c) and increased synaptic
gene expression* (P = 0.01; Extended Data Fig. 9d) was observed in
high-neural DMGs. Survival analysis of 72 patients showed an unfavora-
ble outcome for high-neural DMG (P < 0.01; Extended Data Fig. 9e-g).
Theseresults confirmthe relevance of the neural signature inan addi-
tional type of IDH-wild-type high-grade glioma.

Discussion

In recent years, the bidirectional interaction between glioma cells
and neural cells, with their ability to form synapses and integrate into
neuronal networks, hasbeenidentified as amajor factor in tumor pro-
gression*®"**°_In this study, we identified an epigenetically defined
malignant neural signature as a potential marker for neural-to-glioma

interactions and present the following findings: (1) A malignant neu-
ral signature is increased in glioblastoma and DMG, compared to
nonmalignant brain tumors. (2) High-neural glioblastoma confers an
unfavorable survival in humans and mice, and in addition, the neural
signatureis associated with higher functional connectivity in patients
with glioblastoma. (3) High-neural glioblastoma shows an increased
malignant stem cell and neural lineage character but decreased immune
infiltration. (4) The neural signature remains robust invitro andin vivo
and high-neural glioblastoma-bearing mice show higher proliferation
whenreceiving neuronal input as well as increased neuron-to-glioma
synapse formation. (5) High-neural tumors benefit from a maximized
resection. (6) Elevated BDNF serum levels are present in patients with
high-neural glioblastoma. (7) The prognostic value can also be seen
in H3K27-altered DMG.

Gliomas encompass a variety of cellular components of the tumor
microenvironment and subgroups can be described according to
distinct cellular states”. Epigenome profiling and deconvolution have
been effective in characterizing these glioma subclasses**2. A recent
study highlighted the importance of epigenetic regulation across vari-
ous cancer types and demonstrated a close epigenomic relationship
betweenglioblastoma cells and OPCs*. Our determination of an epige-
netic neural signaturerevealed anincrease in glioblastomaand DMG,
echoing findings of previous studies in preclinical models*”. Nonethe-
less, itis essential to note that the neural signature was derived froma
single cortical neuron reference generated from three IDAT files, and
while weintegrated DNA methylation data from healthy brainregions
for comparison, alarger sample size might have provided clearer dif-
ferentiation between low- and high-neural tumors.

High-neural glioblastoma showed gene upregulation and hypo-
methylation associated with invasiveness and neuro-glioma synapse
formation. Glioma growth is known to involve paracrine signaling
and glutamatergic synapticinput*®, and recently a study subdivided
glioblastoma cellsinto unconnected and connected cells with unique
cell states, explaining braininfiltration through hijacking of neuronal
mechanisms". Our spatial transcriptomic analysis has unveiled the
malignant stem-cell-like characteristics of high-neural glioblastoma,
primarily clustering with cells of the neural lineage, such as OPC/NPC/
astrocyte-like cells, alongside healthy oligodendrocytes and neu-
rons. These findings align with the previously described unconnected
glioblastoma cells that hijack neuronal mechanisms and drive brain
invasion. While tumors with an OPC/NPC-like cellular state have been
shown to overlap with the classical and proneural TCGA subtypes®,
which have been assumed as having abetter prognosis®, our identified
high-neural glioblastoma demonstrated a poor patient outcome. This
possible discrepancy may be explained by our integrated RNA-seq anal-
ysis, which revealed awide heterogeneity of the transcriptomic TCGA
subtypes in our epigenetic low- and high-neural tumors. In addition,
this difference can largely be attributed to the noted transcriptional
heterogeneity and plasticity within tumor populations™**. Our study
posits that the epigenetic signature offers a more stable marker than
purely transcriptional profiles. Unlike the transient nature of tran-
scriptional states, epigenetic signatures encompass not only the cells
in OPC/NPC/astrocyte-like states but also reflect broader dependen-
ciesand interactions within the tumor microenvironment. Therefore,
we argue that our high-neural phenotype should be interpreted as

Fig. 6 | Neural classification predicts benefit of EOR and MGMT promoter
methylation status and can be detected in serum of patients with
glioblastoma. a,b, Survival outcome categorized after EOR in patients

with glioblastoma treated by radiochemotherapy with alow-neural (a) and
high-neural (b) tumor. log-rank test, P= 0.0003 (a), P= 0.005 (b). Error

bands represent 95% Cl. ¢, Survival outcome categorized by MGMT promoter
methylation status in patients with glioblastoma treated by radiochemotherapy
withalow- and high-neural tumor. log-rank test, P=2.719 x10™. Error bands
represent 95% Cl.d,e, Immunoassay quantification of serum BDNF concentration

of 94 patients with glioblastoma and healthy donors as well as patients with
meningioma as control groups at the time of diagnosis. **P < 0.01, **P < 0.001,
two-tailed Student’s ¢-test; error bands represent 95% CI. f, Cell composition
analysis in glioblastoma with low and high BDNF serum levels. g,h, Seizure
outcome of patients with glioblastoma considering BDNF serum levels at the
time of surgery (g) and during follow-up (h). *P < 0.05, **P < 0.001, two-tailed
Student’s t-test. i, Transcriptomic analysis of BDNF expression. j, Western
blotting of BDNF in various healthy brain tissue samples and low- as well as high-
neural glioblastoma. n =3 biological replicates.
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being driven by epigenetic factors thatincline cells toward OPC/NPC/
astrocyte-like states, rather than solely being a direct consequence of
transcriptional variability.

Of note, the observed diploid oligodendrocyte transcriptomic
module may represent atumor cell population of primary near-diploid
state as glioblastomas are karyotypically heterogeneous tumors**.

Alternatively, it might be possible that surrounding healthy oligo-
dendrocytes are affecting the neuronal activity-driven mechanisms
onglioma cells?.

The clinical relevance of our findings is supported by the obser-
vation that patients suffering from high-neural glioblastoma or DMG
had an unfavorable outcome. Agreater EOR must be achieved to have
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prognostic improvement in high-neural glioblastoma, which may
explainthe results of our previous study examining theimpact of DNA
methylationsubclasses®. Our findings are in line with arecent study by
Krishnaetal.” demonstrating poorer survivalin patients with glioblas-
tomaexhibiting high functional connectivity. Integrating connectivity
datafromresting-state functional MRl and magnetoencephalography
(MEG) linked an increased functional connectivity to its peritumoral
surrounding with a higher neural signature in our patients. If areliable
stratification of the neural classification by MEG or MRl s predictable
remains tobe discussed in further studies. The synaptogenic character
with increased connectivity of high-neural glioblastomas could be
replicated withinvivo and in vitro experiments. Collectively, these data
underscore the tremendous importance of the synaptic integration of
gliomas into neuronal circuits and targeting these neuron-to-glioma
networks seems to be a promising therapeutic approach™*%,

Onefactor drawing attentionis BDNF, aneuronal activity-regulated
neurotrophin, which has been found to promote gliomagrowth®* and
interrupting BDNF-TrkB signaling has been shown to confer survival
benefitin mice’. We found elevated serum BDNF levels in patients with
high-neural glioblastoma and further correlation with increased sei-
zure frequency. Potential sources of elevated BDNF include neuronsin
aglioma-induced state of hyperexcitability*, given the known activity
regulation of BDNF secretion®*** or possibly from glioblastoma cells*.
Inbrief, neuronal activity arising from glioma-to-neuroninteractions
during tumor growth or seizure initiation seems to be a pivotal driver
for BDNF release and identifies a potential biomarker of high-neural
glioblastoma.

While the BDNF-TrkB axis may represent a therapeutic target for
high-neural glioblastoma, we further identified low-neural tumors as
immune-enriched based ontranscriptomic and cell state composition
analysis. Consequently, one could hypothesize that two opposing
glioblastoma subtypes seem to be differentiated here and will need
tobe pursuedinfuture studies and therapeutic avenues. The identifi-
cation of animmunosuppressive state in high-neural glioblastoma is
concordantwith recent findings which described immunosuppressive
mechanisms in thrombospondin-1-upregulated glioma samples>*.
This stratification of IDH-wild-type gliomas based on their epigenetic
neural signature may provide a potential tool for predicting response
to neuroscience-guided therapies.

Conclusion

Overall, the definition of a high-neural signature in IDH-wild-type
gliomarevealed amalignant NPC/OPC/astrocyte-like character that
affects patient survival, remains stable during therapy and is con-
served in preclinical models. This knowledge supports clinicians in
stratifying patients with glioma according to their prognosis and
determining the surgical and neuro-oncological benefit for current
standard of care. Last, the here-presented clinical translation in the
field of glioma neuroscience using an epigenetic neural signature
may advance the development of trials with neuroscience-guided
therapies.
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Methods

Patient cohorts

Several patient cohorts were analyzed based on the glioma subclass.
A clinical cohort of 363 patients who underwent IDH-wild-type glio-
blastomaresection at University Medical Center Hamburg-Eppendorf,
University Hospital Frankfurt or Charité University Hospital Berlin was
analyzed. Informed written consent was obtained from all patients and
experiments were approved by the medical ethics committee of the
Hamburg chamber of physicians (PV4904). The TCGA-GBM cohort
was included for external validation®. A clinical cohort of pediatric and
adolescent patients who underwent surgery for H3K27-altered DMG at
University Medical Center Hamburg-Eppendorf was established and
extended with cohorts from Sturm et al.>* and Chen et al.*’. The refer-
ence and diagnostic set (n = 3,905) from Capper et al.”® was utilized.

Clinical definitions

Diagnosis for the clinical cohort followed World Health Organization
(WHO) classification guidelines®. The EOR of contrast-enhancing parts
was stratified into GTR, complete removal, near GTR,>90% removal and
partial resection, <90% removal. Overall survival refers to diagnosis
until death or last follow-up and PFS from diagnosis until progression
according to RANO criteria based onlocal assessment*®. Seizures and
antiepileptic medication use were defined by the current International
League Against Epilepsy guidelines”. T1-weighted and T2-weighted
FLAIR MRI images were analyzed using the Brainlab program. The
volume of contrast enhancement, FLAIR hyperintensity and necrotic
volume was assessed in cm®obtained via multiplanar 3D reconstruction
of the tumor ROI, enabled by delineating with the tool ‘Smart Brush’
manually in everyslice.

Stereotactic biopsies for spatial sample collection

Biopsies were obtained using a cranial navigation system (Brainlab
v.13.0) and intraoperative neuronavigation. To limit the influence of
brainshift, biopsies were obtained before tumor removal at the begin-
ning of surgery with minimal dural opening. Tissue samples were then
transferred to10% buffered formalin and sent to the Department of Neu-
ropathology for further processing and histopathological evaluation.

Measurement of functional connectivity using
magnetoencephalography

Tumor tissues with HFC and LFC sampled during surgery based on
preoperative MEG were obtained from patients with IDH-wild-type
glioblastoma operated on in the Department of Neurosurgery,
University of California, San Francisco'. From each formalin-fixed
paraffin-embedded (FFPE) tissue block, four serial sections at a thick-
ness of ~10 um each were used for DNA extraction. DNA was extracted
with the QIAamp DNA FFPE kit (QIAGEN). DNA was quantified using
the Nanodrop Spectrophotometer (Thermo Scientific). The ratio of
optical density at 260 nm to 280 nm was calculated and served as the
criterion for DNA quality.

Functional connectivity by rs-fMRI

Forty-four treatment-naive patients with glioblastoma (mean age
65 + 9 years) underwent rs-fMRI before surgery, with tumor tissues
subsequently analyzed for genome-wide DNA methylation patterns
using the Illumina EPIC (850k) array. Functional data preprocessing
followed a standardized protocol implemented in SPM12 (ref. 58)
within MATLAB (v.9.5)**°. In brief, functional images were realigned,
unwarped and coregistered to the structural image. Segmentation,
bias correction and spatial normalization were conducted, with func-
tional images smoothed using a 5-mm FWHM Gaussian kernel. Fur-
ther preprocessing steps included slice-time correction, regression
of movement-related time series using ICA-AROMA** and high-pass
filtering (>0.01 Hz). Tumor lesions were segmented using ITK-SNAP®!
software and utilized as regions of interest for seed-based correlation

analysis to compute voxel-based tumor-to-peritumoral connectivity
(Fisher z transformation). A 10-mm peritumoral distance mask was
created, and mean functional connectivity between the tumor and its
peritumoral surrounding was computed using aROI-to-voxel approach.

Immunoblotting

Frozentissue samples were lysed using RIPA buffer, containing 50 mM
Tris-HCI (pH 7.5), 150 mM NaCl, aprotinin (10 mg ml™), 1 mM phenyl-
methylsulfonyl fluoride, leupeptin (10 mg mi™), 2 mM Na,VO,, 4 mM
EDTA, 10 mM NaF, 10 mM sodium pyrophosphate, 1% NP-40, 0.1%
sodium deoxycholate and 1% protease inhibitor (Merck). Total pro-
tein concentration was measured by the bicinchoninic acid (BCA)
assay (Pierce). Proteins were separated using Tris-glycine gels, blotted
into nitrocellulose membrane and probed with antibodies anti-BDNF
(1:1,000 dilution, Cell Signaling, 47808) and anti-B-actin (1:1,000 dilu-
tion, Sigma-Aldrich A2228).

Immunohistochemistry

Tissue samples were fixedin 4% formaldehyde, dehydrated, embedded
in paraffin and sectioned at 2 pm following standard laboratory pro-
tocols. Immunohistochemical staining for NeuN (Chemico, MAB377,
1:200 dilution), Sox2 (Abcam, AB79351, 1:200 dilution), OLIG2 (R&D
Systems, AF2418, 1:50 dilution) and GFAP (DAKO, M0761, 1:200 dilu-
tion) was conducted using an automated staining machine (Ventana
BenchMark TX, Roche Diagnostics). Detection was achieved using
diamino-benzidine as achromogen, with counter-staining performed
using Mayer’s Solution (Sigma-Aldrich).

Drug sensitivity analysis

Patient-derived glioblastoma cell lines (GS-11, GS-73, GS-84, GS-110,
GS-13,GS-74,GS-80, GS-90 and GS-101) were dissociated into single cells
andseededinto a384-well plate at a density 0f1,250-7,500 cells per well
in neurobasal medium supplemented with B27, glutamine, pen/strep,
heparin and human FGF and EGF. Cells were treated with 27 drugs and
dimethylsulfoxide asa controlintriplicate for 48 hat 37 °C and 5% CO,.
After treatment, cells were fixed, blocked and stained with antibodies
against vimentin, cleaved caspase 3 and TUBB3.Imaging was performed
using an Opera Phenix automated confocal microscope and z-stacks
were segmented based on DAPI staining using CellProfiler (v.2.2.0)%%
Downstream analysis was conducted in MATLAB v.9.13.0, where
marker-positive cells/spheroids were identified using linear thresholds.
Cellcounts and average cell/spheroid areas were averaged per condition
and compared between drug treatment and control groups.

Spatially resolved transcriptomics

Quality assessment RNA. RNA extraction from FFPE tissue sections
was conducted following the ‘Purification of Total RNA from FFPE
tissue sections’ protocol (July 2021 version). Two 10-um sections per
tissue block were processed and RNA was eluted using 14 pl RNase-free
water. Subsequently, 2 pl of the eluted RNA was subjected to both the
Qubit RNA High-Sensitivity Assay and the DNF-471Standard Sensitivity
RNA Protocol using the Fragment Analyzer, following the respective
manufacturer’s instructions. RNA quality was assessed by comput-
ing the Distribution Value 200 (DV200) using Agilent’s ProSize Data
Analysis Software. The DV200 represents the percentage of RNA frag-
ments longer than 200 nucleotides within arange of 200-10,000 bp.
A DV200 =50% is considered desirable according to 10x Genomics
guidelines. Additionally, the software provided the RNA integrity
number to supplement the quality assessment.

Tissue preprocessing. To prepare FFPE tissue for spatial transcriptom-
ics, sections of 5-pmthickness were sliced using a microtome, floated
ina42 °Cwater bath and transferred onto glass slides. Following H&E
staining, tissue examination under the EVOS microscope facilitated the
selection of the area of interest. The ‘Visium Spatial Gene Expression
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for FFPE - Tissue Preparation Guide’ (CGO00408, Rev A) guided the
initial steps of tissue preprocessing. Modifications to these steps are
detailed explicitly in subsequent descriptions. For hydrationand trim-
ming, without conducting a tissue adhesion test due to intact tissue
adhesiononglassslides, FFPE tissue blocks underwent hydrationinan
icewater bath for 20 min, followed by trimming and cutting into 4-pm
thick sections using the Thermo Fisher Scientific HM355 S automatic
microtome. Trimming excess paraffin and tissue parts on a standard
glass slide was performed, followed by floating the sectionina 42 °C
water bath for extension and smoothing. Sections were then fit onto
Visium slides and dried using a thermocycler at 42 °C for 3 h, before
beingstoredinadesiccator at room temperature overnight. After heat-
ingthe Visiumslides at 60 °C for 2 h, they underwent two 15-minimmer-
sionsinxylene, followed by serial dilutionsin100%, 96%, 85% and 70%
ethanol for 3 min each. The slides were finally rinsed in Milli-Q water for
20 s. The slides were stained with 1 ml hematoxylin for 3 min, washed
in two successive Milli-Q water baths, treated with 1 ml bluing buffer
for 1 min, washed again and then stained with 1 ml alcoholic eosin for
1min, followed by another wash. Imaging was carried out withan EVOS
M7000 microscope from Thermo Fisher Scientific at x20 magnification
inthebrightfield setting, utilizing auto-focus for the firstimage of each
capture area. Following imaging, the slide was placed into a Visiumslide
cassette (PN2000282) with an alignment tool (PN3000433). Pipetting
was performed carefully to prevent disturbing the tissue, ensuring full
coverage of the capture area and complete removal of leftover fluids.
Each well of the cassette was treated twice with 100 pl 0.1N HCI, then
rinsed with 150 pl, pH 9.0 TE buffer, followed by another TE buffer
application and incubation at 70 °C for 1 h on a thermal cycler. This
initiated the library construction’s hybridization stage.

Library preparation. Fo the pre-hybridization mix application, each
wellreceived pre-hybridization mix, followed by a30-minincubation at
37 °C.Thiswas succeeded by an overnight incubation of probe hybridi-
zationmixat 50 °C, centrifugation, multiple washes and application of
probe ligation mix for 1 hat 37 °C. Post-ligation wash buffer was applied,
followed by several washes. For the RNase and permeabilization mix
application, the RNase mix and permeabilization mix were each applied
and incubated for 30 min and 1 h, respectively at 37 °C, followed by
washing and probe extension mix application. For probe elution and
PCR, 0.08 MKOH was utilized to elute the probe. After transferring the
solution to an eight-tube-strip, 1M, pH 7.0 Tris-HCl was added. Cycle
numbers for PCR were determined using a qPCR mix and performed
witha StepOnePlus Real-Time PCR System. Sample Index PCR followed,
with cleanup using SPRIselect and transfer of 25 pl to anew tube strip.
Asecond qPCR was performed with the NEBNext Library Quant kit for
lllumina to determine library molarities, ensuring successful library
construction and cDNA presence.

Sequencing. Sequencing of the libraries was conducted using the
NextSeq 500/550 device from Illumina. Libraries were normalized to
the same molarity before being combined. Denaturationand dilution of
libraries were performed following the ‘NextSeq System - Denature and
Dilute Libraries Guide’ protocol. The combined library was denatured
with 0.2 N NaOH, neutralized and diluted to a loading concentration
using High Outputkits. PhiX control was denatured, diluted and mixed
with thelibrary. The final mix underwent sequencing with the NextSeq
500/550 High Output kit v.2.5 (75 cycles).

Isolation and analysis of extracellular vesicles

Extracellular vesicles were isolated from plasma or cerebrospinal
fluid of patients with glioblastoma by differential centrifugation®.
Afterinitial centrifugation steps to eliminate cells, platelets and large
vesicles, extracellular vesicle pellets were obtained through ultracen-
trifugation. These pellets were resuspended with filtered PBS and ana-
lyzed for concentration and size using nanoparticle tracking analysis.

Extracellular vesicle-enriched samples were diluted before nanoparti-
cletracking analysis and the analysis was conducted using appropriate
parameters. Additionally, extracellular vesicles were characterized
by electron microscopy for size and morphology and by imaging flow
cytometry for extracellular vesicle markers (CD9, CD63 and CD81).
DNA extraction from extracellular vesicles was performed using a
purificationkit. For comparison, bulk cfDNA wasisolated from plasma
using acommercial kit.

Detection of BDNF serum levels

Plasma from patients with glioblastoma was isolated by double spin
centrifugation of whole blood. Samples were aliquoted and stored
at —80 °C before use. BDNF plasma levels were detected using the
LEGENDplex Neuroinflammation Panel 1 (BioLegend). Data were
acquired using the BD LSR Fortessaand Beckman Coulter Cytoflex LX
flow cytometer and analyzed with the BioLegend LEGENDplex software.

Proteomic processing of human glioblastoma samples

FFPE samples of tumors were obtained from tissue archives from the
neuropathology unit in Hamburg. Tumor samples were fixed in 4%
paraformaldehyde, dehydrated, embedded in paraffin and sectioned
at 10 pm for microdissection using standard laboratory protocols.
For paraffin removal, FFPE tissue sections were incubated in 0.5 ml
n-heptane at room temperature for 30 min, using a ThermoMixer (Ther-
moMixer 5436, Eppendorf). Samples were centrifuged at 14,000g for
5minand the supernatant was discarded. Samples were reconditioned
with70% ethanol and centrifuged at14,000g for 5 min. The supernatant
was discarded. The procedure was repeated twice. Pellets were dis-
solvedin150 pl1% w/v sodium deoxycholatein 0.1 M triethylammonium
bicarbonate buffer and incubated for 1 h at 95 °C for reverse formalin
fixation. Samples were sonicated for 5 s at an energy of 25% to destroy
interfering DNA. ABCA assay was performed (Pierce BCA Protein Assay
kit, Thermo Scientific) to determine the protein concentration, follow-
ing the manufacturer’s instructions. Tryptic digestion was performed
for 20 pg protein, using the single-pot, solid-phase-enhanced sample
preparation (SP3) protocol®*. Eluted peptides were dried in a Savant
SpeedVac Vacuum Concentrator (Thermo Fisher Scientific) and stored
at-20 °Cuntil further use. Directly before measurement, dried peptides
wereresolved in 0.1% formicacid toafinal concentration of 1pug pl™. In
total1 pg was subjected to mass spectrometric analysis.

Liquid chromatography-tandem mass spectrometer
parameters

LC-MS/MS measurements were performed using a QExactive mass
spectrometer (Thermo Fisher Scientific) coupled with a Dionex Ulti-
mate 3000 UPLC system (Thermo Fisher Scientific). Tryptic pep-
tides were injected via an autosampler, purified, and desalted using
areversed-phase trapping column (Acclaim PepMap 100 C18 trap)
before separation on a reversed-phase column (Acclaim PepMap 100
C18). Trapping occurred for 5 min at a flow rate of 5 pl min™, followed
by separation using a linear gradient from 2% to 30% solvent B over
65minat 0.3 pl min™. Peptides were ionized using nano-electrospray
ionization (nano-ESI) with a spray voltage of 1,800 V and analyzed
in data-dependent acquisition mode. During MS1 scans, ions were
accumulated for a maximum of 240 ms or until reaching a charge
density of 1 x 10® ions (AGC target), with mass analysis performed ata
resolution of 70,000 at m/z =200 over amassrange of400-1,200 m/z.
Peptides with charge states between 2+ and 5+ and intensities above
5,000 were isolated within a 2.0 m/z isolation window in top-speed
mode for 3 s from each precursor scan and fragmented using higher
energy collisional dissociation with a normalized collision energy of
25%.MS2 scanning, conducted using an orbitrap mass analyzer, had a
starting mass of 100 m/z with a resolution of 17,500 at m/z=200 and
was accumulated for 50 ms or until reaching an AGC target of 1 x 10°.
Peptides that were already fragmented were excluded for 20 s.
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NGS of low- and high-neural glioblastoma samples

Tumor mutational profiling was conducted at the Department of Neu-
ropathology, University Hospital Heidelberg, using a custom CNS
tumor-specific NGS gene panel (Agilent, SureSelect Custom Tier2,
1,235 Mb). Library preparation followed manufacturer recommenda-
tions with the SureSelect XT HS2 DNA kit (Agilent, 5191-5688). Prepared
libraries were pooled and sequenced on the Illumina Novseq6000
platform (Novaseqv.1.5200 cycles S1Reagentkit,20028318). The NGS
panel covers the entire coding region, along with selected intronic
and promoter regions of 201 genes relevant to CNS tumors. It detects
single-nucleotide variants, small insertions/deletions (indels), exonic
rearrangements and recurrent fusion events. Sequenced reads were
mapped to GRCh38 using the nf-core/sarek (v.3.3.2) pipeline® ¢, with
single-nucleotide variant and structural variant calling performed
using Strelka (v.4.4.0.0)°® and Manta (v.1.6.0)*. Variant annotation
was performed using SNPeff (v.5.1d)*’. Variants were filtered based
on several criteria, including mapping to exonic regions, QUAL > 20,
MQ > 30, DP > 15, high/moderate impact and a population frequency
<0.001 from the 1000 Genomes project. Additionally, variants with
high population frequencies in the Genome Aggregation Database
(gnomAD), such as SETD2 c.5885C>T and KMT2C c.2447dupA,
were filtered out.

Mice housing

In vivo experiments were conducted following approved protocols
fromthe Stanford University Institutional Animal Care and Use Commit-
teeand the University Medical Center Hamburg-Eppendorf, adhering
toinstitutional guidelines and explicit permissions from local authori-
ties. Animals were housed under standard conditions in pathogen-free
environments, with temperature- and humidity-controlled housing
and access to food and water in a12-h light-dark cycle. For xenograft
experiments, the Institutional Animal Care and Use Committee estab-
lished guidelines based on indications of morbidity, with mice killed
if they displayed signs of neurological morbidity or lost 15% or more
of their body weight.

Orthotopic xenografting of patient-derived low- and
high-neural glioblastoma cells

NSG mice (NOD-SCID-IL2Ry-chain-deficient, The Jackson Laboratory)
were used for experiments conducted at Stanford University, with
equal distribution of male and female mice. Primary patient-derived
low- (‘'UCSF-UKE-1’) or high-neural (UCSF-UKE-2’) glioblastoma neuro-
spheres were prepared in sterile Hanks balanced salt solution (HBSS)
and stereotacticallyimplanted into the premotor cortex (M2) of mice
at postnatal day (P) 28-30. Mice survival analyses were performed on
NMRI-Foxnlnuimmunodeficient mice (Janvier-Labs) at the University
Medical Center Hamburg-Eppendorf. Neurospheres from cultured
primary patient-derived low- (‘GS-8’, ‘GS-10’, ‘GS-73" and ‘GS-80’) or
high-neural (‘GS-57’, ‘GS-74’, ‘GS-75’ and ‘GS-101’) glioblastoma were
injected into the striatum. External validation of mice survival data
was conducted using publicly available datasets from Vaubel et al.”®
and Golebiewska et al.”.

Perfusion and immunofluorescence staining

Eight weeks post-xenografting, low and high-neural
glioblastoma-bearing mice were anesthetized with intraperitoneal
avertin and transcardially perfused with PBS followed by fixation in
4% paraformaldehyde (PFA) overnight at 4 °C. After cryoprotectionin
30% sucrose for 48 h, brains were embedded in Tissue-Tek O.C.T. and
sectioned coronally at 40 pm using a sliding microtome. Forimmuno-
fluorescence, sections were blocked inasolution of 3% normal donkey
serum and 0.3% Triton X-100 in TBS, followed by incubation with pri-
mary antibodies overnight at 4 °C. Antibodies used included mouse
anti-human nuclei clone 235-1, rabbit anti-Ki67, rat anti-MBP, mouse
anti-nestin, guinea pig anti-synapsin-1/2, chicken anti-neurofilament or

anti-PSD95. After rinsing, sections were incubated with appropriate sec-
ondary antibodies and mounted with ProLong Gold Mounting medium.

Confocal imaging and quantification of cell proliferation and
infiltration

Cell quantification within xenografts was conducted by a blinded
investigator using a Zeiss LSM980 scanning confocal microscope.
Al-in-6series of coronal brain sections were selected, with four consec-
utive slicesanalyzed at approximately 1.1-0.86 mm anterior to bregma.
HNA-positive tumor cells were quantified in each field to determine the
proliferationindex, calculated as the percentage of HNA-positive cells
co-labeled with Ki67. Infiltration into the corpus callosum was assessed
in the same sections, with HNA-positive tumor cells co-labeled with
Ki67 and divided by the total number of DAPI-marked nuclei.

Confocal puncta quantification

Images were captured using a x63 oil-immersion objective on a Zeiss
LSM980 confocal microscope. Colocalization analysis of synaptic
punctaimages from both low and high-neural glioblastoma xenograft
samples was performed by a blinded investigator. A custom ImageJ
processing script, developed at the Stanford Shriram Cell Science
Imaging Facility, was utilized for this purpose. The script defined each
pre- and postsynaptic puncta and assessed colocalization within a
defined proximity of 1.5 M. To subtract local background, the ImageJ
rolling ball background subtraction method was applied. Peaks were
identified using theimglib2 DogDetection plugin, which employs the
difference of Gaussians to enhance the signal of interest. The plugin
then assigned ROIs to each channel based on predefined parameters.
Neuron and gliomaROIs were quantified, and the script extracted the
number of gliomaROIs within 1.5 pmof the neuron ROIs. This script was
implemented in Fiji/Image] using the ImgLib2 and ImageJ Ops libraries.

Sample preparation and image acquisition for electron
microscopy

Twelve weeks post-xenografting of low- (n =3, ‘UCSF-UKE-1’) and
high-neural glioblastoma cells (n = 3, ‘UCSF-UKE-2’), mice were killed
viatranscardial perfusion with Karnovsky’s fixative: 2% glutaraldehyde
and 4% PFAin 0.1 Msodium cacodylate (pH 7.4). Transmission electron
microscopy (TEM) analysis was conducted on tumor masses withinthe
CAlregion ofthe hippocampus. Samples were post-fixed in 1% osmium
tetroxide, washed and enbloc-stained overnight. Dehydration was per-
formed usinggraded ethanoland acetonitrile. Samples were then infil-
trated with EMbed-812resin, followed by embedding in TAAB capsules
and oven curing. Sections of 40-60 nm were cut on a Leica Ultracut S
and mounted on 100-mesh Nigrids. Forimmunohistochemistry, grids
underwent microetching with periodic acid and osmium elution with
sodium metaperiodate. Grids were blocked, incubated with primary
goat anti-RFP antibody overnight, rinsed and incubated with secondary
antibodies. Grids were contrast stained with uranyl acetate and lead
citrate. Imaging was conducted using aJEOL JEM-1400 TEM at 120 kV,
with image capture facilitated by a Gatan Orius digital camera.

Cell culture

Fresh glioblastoma samples were obtained from patients operated
in the Department of Neurosurgery, University Medical Center
Hamburg-Eppendorf. Samples were immediately placed in HBSS (Invit-
rogen), transferred to the laboratory and processed within 20 min. The
tissue was cutinto <1-mm?fragments, washed with HBSS and digested
with1 mg ml™ collagenase/dispase (Roche) for 30 minat 37 °C. Digested
fragments were filtered using a 70-pum cell mesh (Sigma-Aldrich) and
the cells were seeded into T25 flasks at 2,500-5,000 cells per cm?.
The culture medium consisted of neurobasal medium (Invitrogen)
with B27 supplement (20 pl ml7, Invitrogen), Glutamax (10 pl m1™,
Invitrogen), fibroblast growth factor-2 (20 ng ml™, Peprotech), epi-
dermal growth factor (20 ng ml™, Peprotech) and heparin (32 IE ml™,
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Ratiopharm). Growth factors and heparin were renewed twice weekly.
Spheres were split by mechanical dissociation when they reached asize
0f200-500 um. In this study, analyzed cell cultures with clinical data
are represented in Extended Data Fig. 4. Long-term cultivation cell
cultures were used from a publicly available dataset (n = 7, GSE181314)
andonein-house cellline (n=1).

Neuron-glioma co-culture experiments

Neurons were isolated from CD1 (The Jackson Laboratory) mice at PO
using the Neural Tissue Dissociation kit - Postnatal Neurons (Miltenyi)
and followed by the Neuron Isolation kit, Mouse (Miltenyi). After iso-
lation, 150,000 neurons were plated onto glass coverslips (Electron
Microscopy Services) after pre-treatment with poly-L-lysine (Sigma)
and mouse laminin (Thermo Fisher)*. Neurons are cultured in BrainPhys
neuronal medium (StemCell Technologies) containing B27 (Invitro-
gen), BDNF (10 ng mI™, Shenandoah), GDNF (5 ng ml™, Shenandoah),
TRO19622 (5 uM; Tocris) and B-mercaptoethanol (Gibco). Half of the
medium was replenished on days in vitro (DIV) 1and 3. On DIV 5, half
of the medium was replaced in the morning. In the afternoon, the
medium was again replaced with half serum-free medium containing
75,000 cells from patient-derived low- (UCSF-UKE-1) or high-neural
(‘UCSF-UKE-2’) cell cultures. Cells were cultured with neuronsfor72 h
and then fixed with 4% PFA for 20 min at room temperature and stained
for puncta quantification as described above.

EdU proliferation assay

For EdU proliferation assays, coverslips were prepared as described
above. Again, at DIV 5, low-neural (‘UCSF-UKE-1") or high-neural
(‘UCSF-UKE-2’) glioblastoma cells were added to the neuron cultures.
Forty-eight hours after addition of glioblastoma cells, slides were
treated with 10 pM EdU. Cells were fixed after an additional 24 h using
4% PFA and stained using the Click-iT EdUkit and protocol (Invitrogen).
Proliferationindex was then determined by quantifying the percentage
of EdU-labeled glioblastoma cells (identified by EQU*/DAPI*) over total
number of glioblastoma cells using confocal microscopy.

3D migration assay

3D migration experiments were performed as previously intro-
duced’® with some modifications. In brief, 96-well flat-bottomed
plates (Falcon) were coated with 2.5 pg per 50 pl laminin per well
(Thermo Fisher) in sterile water. After coating, a total of 200 pl of
culture medium per well was added to each well. A total of 100 pl
of medium was taken from 96-well round-bottom ULA plates con-
taining ~200-um diameter neurospheres of low- (UCSF-UKE-1") and
high-neural (UCSF-UKE-2’) glioblastoma lines and the remaining
medium, including neurospheres was transferred into the pre-coated
plates. Images were then acquired usingan EVOS M5000 microscope
(Thermo Fisher Scientific) at time 0, 24, 48 and 72 h after encapsu-
lation. Image analysis was performed using ImageJ by measuring
the diameter of the invasive area. The extent of cell migration on
the laminin was measured for six replicate wells normalized to the
diameter of each spheroid at time zero and the data are presented as
amean ratio for three biological replicates.

Bioinformatic and statistical analysis

DNA methylation profiling and processing. DNA was extracted
from tumors, extracellular vesicles and bulk plasma, and analyzed
for genome-wide DNA methylation patterns using the Illumina
EPIC (850k) array. The processing of DNA methylation data was
performed with custom approaches’. Methylation profiling results
from the first surgery were submitted to the molecular neuropa-
thology methylation classifier v.12.5 hosted by the German Cancer
Research Center'®. Patients were included if the calibrated score for
the specific methylation class was >0.84 at the time of diagnosis’’.
For IDH-wild-type glioblastoma, patients (scores between 0.7 and

0.84) with a combined gain of chromosome 7 and loss of chromo-
some 10 or amplification of EGFR were included in accordance with
cIMPACT-NOW criteria”. A class member score of >0.5 for one of
the glioblastoma subclasses was required. Evaluation of the MGMT
promoter methylation status was made from the classifier output
v.12.5 using the MGMT-STP27 method”.

AIIIDAT files were processed using the preprocess lllumina (minfi,
v.1.40.0)”. Probes with detection Pvalues <0.01 were kept for further
analysis. Probes with <3 beads in at least 5% of samples, all non-CpG
probes, SNP-related probes and probes located on X and Y chromo-
somes were discarded.

Dichotomization of tumors into low- and high-neural subgroups.
We used the cell-type-specific methylation signature available from
Moss etal.” consisting of 25 cell-type components. We used the original
implementation of Moss et al. to perform cell-type deconvolution using
non-negative least square linear regression.

Wedeciphered the neural signature in GBM using acombined data-
set (n=1,058) from Capperetal.® (n = 624) and our institutional cohorts
from Hamburg, Berlin and Frankfurt (all Germany) (n = 434). The com-
bined dataset was dichotomized into low- (n = 529) and high-neural
(n=>529) tumors using the median neural proportion of 0.41. This cutoff
value was used to classify GBM into low- and high-neural tumors for all
analyses. External validation was performed using the publicly avail-
able dataset from the TCGA-GBM database (n =178)".

Reproducibility of differential methylation sites between low- and
high-neural groups. We performed differential methylation analysis
of 363 samples of the internal cohort using dmpFinder function from
minfi R package™ (v.1.40.0). In total, we identified 1,289 CpG sites
differentiating low- and high-neural groups. To estimate the predic-
tive power of these sites, we trained a logistic regression model using
scikit-learn package (v.1.2.2) on the clinical cohort using the differen-
tially methylated sites as input features. The model was subsequently
applied to the other cohorts.

Cell state composition analysis. To infer cell-type and cell state abun-
dance, we conducted abulk DNA methylation assay using EPIC arrays
and applied the reference-free deconvolution method by Silverbush
et al.”. This method, trained on the DKFZ glioblastoma cohort and
tested on TCGA-GBM data, successfully infers cell types (immune, glia
and neuron) and malignant cell states (stem-like and differentiated).
We followed the protocol of Silverbush et al.”, using the EpiDISH pack-
age’®, utilizing the provided encoding and RPC method with 2,000
maximum iterations.

DNA tumor purity. Tumor purity was predicted in silico from DNA
methylation data using the RF_purify Package in R”. This package
uses the ‘absolute’ method, which measures the frequency of somatic
mutations within the tumor sample and relates this to the entire
DNA quantity’.

Integrative analysis of methylation and gene expression. WGCNA
was performed using the hdWGCNA?* R package. Methylation-derived
neural subgroup labels were considered as a trait. The optimal soft
power was determined to be 16. For dimension reduction and visuali-
zation of the coexpression network, we employed the UMAP via the
ModuleUMAPPIot function. Gene Ontology analysis was subsequently
performed on the top 100 module-associated genes using the com-
pareCluster function. Visualization of module-associated pathway
activations was accomplished using the clusterProfiler package.

To contextualize the identified modules at a single-cell level, we
utilized GBMap® and the reference dataset of human motor cortex
(Allen Institute). Both datasets were integrated by alignment of the
latent space representation. Based on the zero-inflated nature of
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single-cell data, we estimated the module enrichment by the frequency
of each gene (g) being detected and the expression values as follows:

Z,';lx,, sn#i=1(x, =0)
2n

Mexp =

mey, refers to the module expression score per cell which is esti-
mated by the mean of xthe log normalized and scaled expression values
of ngenes from the WGCNA modules. The mean is normalized by the
frequency of nonzero-determined genes.

SRT data analysis. Computational analysis of spatially resolved tran-
scriptomics (SRT) datawas performed by the SPATA2 R package (v.2.01).
An SPATA object was prepared for the SRT data.

Single-cell deconvolution. Single-cell deconvolution was performed
using Cell2location’ with the GBMap single-cell data* as a reference.
The SPATA object was converted into the AnnData format and mito-
chondrial genes were sequestered into the obsm['MT’] matrix of the
object before training the model for 500 epochs on the GPU. After
training, we invoked export_posterior on the model to extract the
posterior distribution of cell-type abundances, drawing 1,000 samples
to robustly estimate these abundances across spatial locations. The
cell-type abundances were exported back to the SPATA object by the
addFeature function of SPATA2.

RNA deconvolution. We utilized the GBMapExtended single-cell
RNA-seq (scRNA-seq) dataset and the human neocortex dataset from
the AllenInstitute to perform cell-type deconvolution. Data preparation
involvedloading and transforming the scRNA-seq datainto a SingleCell-
Experiment object with Seurat and SingleCellExperiment libraries in
R, annotated with relevant cell and gene identifiers. We leveraged the
digitalDLSorteR package to trainadeconvolution model, initiating with
the setting of arandom seed for reproducibility, followed by loading
scRNA-seq profiles into the digitalDLSorteR framework. Key param-
eters, including celland gene identifiers and cell-type annotations, were
specified. The digitalDLSorteR’s zinbwave parameters were estimated
to simulate single-cell profiles, incorporating previous knowledge of
cell-type distributions to refine the simulation. A bulk cell matrix was
generated based on probabilistic design from simulated cell profiles,
and a digitalDLSorter model was trained on this matrix with standard
scaling. Post-training, the model was applied to deconvolve a dataset
comprising RNA-seqand methylation data, processed to extract counts
and metadata. The deconvolution results were then visualized using
ggplot2, with sample types and percentage compositions graphed,
showcasing the cellular heterogeneity across different samples.

Construction of spatial graphs from Visium SRTs. The SRT object was
preprocessed with SPATA2, including log transformation of the count
matrix and alignment of the imaging dataset (H&E Image). Nucleus
positions were annotated using an automated ilastik pretrained seg-
mentation algorithm. For samples with low image quality, we adapted
CytoSpace® in our workflow. Spot coordinates were extracted via the
getCoordsDf function and a pairwise distance matrix was computed
based on the ‘x’ and ‘y’ coordinates of cells. The zero values in the dis-
tance matrix were replaced with a constant value of 1,000 to avoid
computationalissues. This ensured that subsequent thresholding steps
would not falsely consider acell asits own neighbor. A distance thresh-
old (one unitgreater than the smallest nonzero distance) was employed
to constructanadjacency matrix, where cells within the threshold dis-
tance were designated ‘1’ for adjacency and cells beyond the threshold
were assigned ‘0’ for no adjacency. Unique cell barcodes were used to
label the rows and columns of the adjacency matrix, obtained from
getCoordsDf. The adjacency matrix was then transformed into an
undirected graph using the graph_from_adjacency_matrix function

from the igraph package. We obtained the gene expression matrix
with 5,000 most variable genes from our object and transposed it to
alignwiththe graph’s vertices. Using the graphical representation, we
characterized the local topology around a specific location, termed a
‘query spot, by identifying its n-hop neighborhood. Specifically, the
three-hop neighborhood of a query spot was defined as the set of all
spots reachable within three edges from the query spotin the graph.

GNN architecture. We used adeep neural network combiningagraph
isomorphism network (GIN) backbone with multiple multilayer percep-
tron (MLP) prediction heads. We used the Pytorch Geometric library
and defined each spot as a node and edges were defined as the direct
neighbors of each individual spot within a three-hop neighborhood.
Node features were log-scaled and normalized expression values from
the 5,000 most variably expressed genes. Non-expressed genes within
asubgraph were masked. Edge features were defined based on each
node’sdirect neighbors, with eachnode having amaximum of six neigh-
bors. Subgraphs with fewer than 15 nodes were excluded. Self-loop
edgeswere added toinputgraphs before forward pass.

We employed athree-layer GIN, and in the kthgraph convolutional
layer to process batches (size of 32) of SRT data, messages were com-
puted using MLPs,

my, = MLP (h,)

where u,v € N(v) and then aggregated for each node v over neighbor-
hood N(v),

a, = Z my,

ueN({)

The updated embedding of node v was updated on the basis of all
incoming messagestov,

h, = MLP (a,)

The GINlayers are represented as follows: x, defines the expression
vectorof nodevand N(v) is the set of its neighbors. The GIN convolution
operation updates the feature vector of node v by aggregating features
from N(v) and combining them with x, own features. The updated
feature vector x, is computed with ReLU (rectified linear unit)
as follows:

x, = ReLU (((1 +€) XX, +

> ReL(xu))>

ueN(@)

we define easalearnable parameter that allows the model toweigh the
importance of anode’s own features versus the features of its neigh-
bors. This operation is stacked multiple times (k =2) in the kth GIN to
allow for deeper aggregation of neighborhood information. After each
GIN convolutionallayer, batch normalization and LeakyReLU activation
with a negative slope of 0.2 are applied, followed by a dropout layer
with a dropout rate of 0.5 for regularization. The latent space repre-
sentation of the graphis obtained by passing the output of the second
GIN convolutional layer through a linear transformation (self.merge)
withweightsinitialized using the Xavier uniform method. The resulting
features are merged into alatent space and then global mean pooling
isapplied to create graph-level representations.

For the prediction tasks, separate MLP modules are employed.
Each MLP consists of alinear layer,aReLU activation, batch normaliza-
tion, dropout and afinallinear layer that outputs the predictions. The
MLPs are structured as follows:

h(xX)=WyxDxBx@(W;xx+by)+b,

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02969-w

Wherexis the latent space vector to the MLP, W, and W, are the weight
matrices for the first and second linear transformations, respectively,
b,and b, are the bias vectors for the first and second linear transforma-
tions, respectively, ¢ denotes the ReLU activation function,
applied element-wise, where ¢, = ma(0,z), B represents the batch
normalization operation applied to the activated output and D
represents the dropout operation, which randomly zeroes some of the
elements of its input with a certain probability to prevent
overfitting.

For neural score prediction tasks, we minimized the squared L1
norm loss between predictions and score (torch.nn.L1loss).

Data split and evaluation metrics. We evaluated the GNN and
comparative methods on both our proprietary Visium dataset and
additional public domain datasets. We split the data into training
and evaluation subsets using a stratified procedure. For the training
dataset, we selected 20,000 subgraphs from spatial transcriptomics
samples across 20 patients, incorporating clinical attributes such as
tumor type and epigenetic neural score. For the evaluation dataset,
we reserved samples from the remaining four patients, covering a
range of neural scores. Additionally, we included a validation set of
24,000 subgraphs fromall 24 patients, ensuringindependence from
the training set.

This approach ensured robust evaluation across diverse clinical
and molecular features, with the neural score used as the prediction
task, evaluated by R? against the neural score from EPIC methylation
profiling.

Evaluation of the subgraph cell composition. We commenced by
retrieving the spatial coordinates of each nucleus using the getNucle-
usPosition function from the SPATAwrappers package. The spatial
coordinates representing the nuclei positions were obtained as
P ={p;li =1,...,N}where p;is the coordinate pair for the ith nucleusand
Nisthetotal number of nuclei. Spatial grid coordinates corresponding
to the transcriptomics data points were retrieved, denoted as
G ={gli =1,...,M}, witheachg representing the coordinate pair for the
Jthgrid point. For each grid point g;, a vector of deconvolution scores
D; ={dylk =1,..., T} was extracted, where dj, represents the score for
the kth cell type at grid point,jand T is the number of cell types. The
scores were normalized to a range of [0, 1], and the number of cells of
each type at each grid point was estimated as:

d, xN;
Cix = round( j’; j)
2k B

where d, is the normalized score and N is the number of cells at grid
point;. Cell types were assigned to each grid point g;to create a map-
ping M, correlating grid points with their respective cell types. The
cell-type mapping was integrated with nucleus position datato produce
a comprehensive spatial map of cell-type distribution:
S ={(piM;) Ip; € P.M; € M}. This methodology facilitates the visualiza-
tion and analysis of the cellular composition within the tissue section,
providing insightsinto the complex spatial organization of the cellular
environment.

Proteomic data processing. Proteomic samples (n = 28) were meas-
ured with liquid chromatography-tandem mass spectrometry (LC-
MS/MS) systems and processed with Proteome Discoverer v.3.0. and
searched against areviewed FASTA database (UniProtKB®': Swiss-Prot,
Homo sapiens, February 2022,20,300 entries). The proteinabundances
were normalized at the peptide level. Perseus v.2.0.3 was used to obtain
log, transformed intensities. Theimputation was performed using the
random forest imputation algorithm (hyperparameters, 1,000 trees
and ten repetitions) in RStudio v.4.3.

WGCNA for proteomics. We used hdWGCNA® to identify gene coex-
pression modules, employing a soft power of 9 and minimum mod-
ule size of 10. After correcting for technical batch effects, significant
modules (P < 0.05) were selected based on their correlation with traits.
Overrepresentation analysis of gene sets within these modules was
performed using clusterProfiler®’. Cell-type enrichment within modules
wasidentified using gene sets from PanglaoDB through the Python pack-
age enrichr®®. Module scores on single cells were calculated using Scan-
py’sscore_genes function with the core GBM single-cell atlas (GBMap)*.

Electron microscopy data analysis. Sections from xenografted hip-
pocampi of mice wereimaged using TEM imaging. The xenografts were
originally generated for a study by Krishna et al."> and mouse tissue
was re-analyzed after epigenetic profiling and assignment to low- or
high-neural glioblastomagroups. Here, 42 sections of high-neural glio-
blastomaacross three mice and 45 sections of low-neural glioblastoma
across three mice were analyzed. Electron microscopy images were
taken at x6,000 with a field of view of 15.75 pm?. Glioma cells were
counted and analyzed after identification of immunogold particle
labeling with three or more particles. Furthermore, to determine syn-
apticstructuresall three of the following criteria had to be clearly met
as previously described*: (1) presence of synaptic vesicle clusters; (2)
visually apparent synaptic cleft; and (3) identification of postsynaptic
density in the glioma cell. To quantify the percentage of glioma cells
forming synaptic structures, the number of glioma-to-neuron synapses
identified was divided by the total number of glioma cells analyzed.

Statistical analysis. Gaussian distribution was confirmed using the
Shapiro-Wilk test. Parametric data were analyzed with an unpaired
two-tailed Student’s ¢-tests or one-way ANOVA with Tukey’s post hoc
tests. Survival curves were generated using the Kaplan-Meier method,
withstatistical significance determined by two-tailed log-rank analyses.
Multivariate analysis for overall survival and PFS included computing
hazard ratios and 95% confidence intervals using Cox proportional
hazards regressionmodels. Variables with P< 0.05 in univariate analysis
were included. Significance was set at P< 0.05. GraphPad Prism v.10
was used for statistical analyses and data illustrations and R Studio
was used for alluvial plots.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

IDAT files of the clinical cohort (363 patients with GBM) are
available at the Gene Expression Omnibus under accession
code GSE240704. The methylation data provided by Capper
et al.”® as illustrated in Extended Data Fig. 1 are accessible under
accession code GSE109381. The TCGA-GBM cohort analyzed for
external validation and as shown in Fig. 1d is accessible at https://
portal.gdc.cancer.gov/projects/TCGA-GBM. Data files used in the
spatial transcriptomic analyses are accessible at Zenodo at https://
doi.org/10.5281/zenodo0.10863736 (ref. 83). The single-cell RNA-seq
dataset GBMap is available from the original publication and can
be accessed through cellXgene (https://cellxgene.cziscience.
com/collections/999f2al15-3d7e-440b-96ae-2c806799c08c¢) and the
human motor cortex single-cell RNA-seq dataset is available from the
Allen Brain Institute at https://portal.brain-map.org/atlases-and-data/
rnaseq/human-mi-10x. Source data are provided with this paper.

Code availability

The code used to perform DNA methylation and proteomics analysis
is available at https://github.com/imsb-uke/epigenetic-neural-
glioblastoma. Codes used for performing transcriptomic analy-
ses in Figs. 2 and 3 and Extended Data Figs. 3 and 4f are available at
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https://github.com/heilandd/GBNeural. Additionally, the code for
the non-reference-based multi-dimensional single-cell deconvo-
lution from DNA methylation data as presented in Fig. 6f and Sup-
plementary Fig. 4i can be found at https://github.com/danasilv/
Deconvolution_of GBM_bulk_DNA_methylation_profiles.
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Extended Data Fig. 1| Implementation of the epigenetic neural signature and
validation of low- and high-neural subclassification of glioblastoma samples.
a). Epigenetic neural signature in healthy brain tissues obtained from the Capper
dataset*. b, ¢). Analysis of different number of neural clusters that can predict
differential survival outcomein the clinical cohort (n=363) by using 10-fold
cross-validation with Kmeans. The figure displays Kaplan-Meier curves of the
clustersin the validation set of the 5™ fold. The survival curves demonstrate that
the best results are obtained with two clusters (low- versus high-neural). Log

rank test was used for the survival difference between the clusters. Error bands
representing the 95% confidence interval. d). Validation of the cut off for the neural
signature across multiple cohorts used in the manuscript. Beta-values for CpGs

differentially methylated between the low-neural and high-neural groups. The
selection was made using the clinical cohort (n=363). e). Using the clinical cohort
asthetraining set, alogistic regression model was trained. The logistic regression
model trained on the clinical cohort on the identified signature classifies across
cohorts with overall AUC of 0.944 and > 0.84 in all cohorts. f). Same asine.) but
athreshold on the prediction score was set (0.9) to keep only high confidence
predictions. The AUC of the classifier is > 0.91in the external cohorts when

using only high probability predictions. g, j). Survival analysis of patients with
glioblastoma applying brain tumor-related cell signatures of the Moss signature.
Log-rank test,g) P=0.2415, h.) P= 0.2703, i) P= 0.9010, j) P= 0.6646. Error bands
representing the 95% confidence interval. OS: overall survival.
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Extended Data Fig. 3| Quality measurements and reliability of the epigenetic
neural signature inglioblastomasamples. a). Integrated analysis of the
individual patients' neural scores and the corresponding cell proportions
obtained from RNA sequencing deconvolution. b). Correlation between

the neural signature and DNA tumor purity. Simple linear regression P=
0.000000000063768, error bands representing the 95% confidence interval.

c). Correlation between the microglia signature and DNA tumor purity. Simple
linear regression P=0.00000000041872, error bands representing the 95%
confidenceinterval. d). Correlation between the immune cell signature and DNA
tumor purity. Simple linear regression P= 0.000000000019814, error bands
representing the 95% confidence interval. e). Correlation between the DKFZ
calibrated score for the diagnosis ‘IDH-wild-type glioblastoma’ and the neural

signature. Simple linear regression P= 0.2803, error bands representing the 95%
confidence interval.f,g). Single-cell deconvolution of DNA methylation profiles
comparef). stem cell-like and g). neuron-like signatures in NeuN* cells, healthy
cortex, glioblastoma tissue samples, and glioblastoma cell cultures. h). Overlap
between the epigenetic neural classification and TCGA subtypes after integrated
RNA sequencing analysis. i). Comparison of neural signature between patient’s
tumor tissue and cell culture in 17 glioblastomas. Two-sided t-test P= 0.2593.

j). Stability of the epigenetic neural signature during long-term cell culturing.
Data were obtained from a publicly available dataset (n =6, GSE181314) and in-
house (n=1). Two-sided t-test P= 0.8471.k). Demonstration of NeuN" staining in
glioblastoma neurospheres. n=15 biological replicates.
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Extended Data Fig. 4 | High-neural glioblastomais linked with synapse
formation and trans-synaptic signaling from proteomic profiling.

a-e) Proteomic profiling of low- (n=19) and high-neural (n=9) glioblastoma. a).
WGCNA analysis showed differentially abundant proteome modules between
both neural subgroups. b). High-neural glioblastomas are clustered to module
‘blue’ (top figure), while low-neural glioblastomas have a higher abundance in
module ‘brown’ (bottom figure). Data are mean +s.e.m. Two-sided t-test
P=0.0.029 (top figure) and P=0.002 (bottom figure). ¢, d). Network analysis
revealed e). most expressed proteins and f). associated gene ontology terms

for each neural subgroup (high-neural: top, low-neural: bottom). e). Integrating
transcriptomic single-cell data showed an OPC-/NPC-like character in high-neural
tumors (‘MEblue’). f). Transcriptomic single-cell copy number variation plot

analysis of glioblastomas with a high-neural signature. g). Inmunohistostaining
of representative low- and high-neural glioblastoma samples. n=10 biological
replicates. h). Analysis of OLIG2" cells between low- and high-neural glioblastoma
samples. **P <0.01, two-tailed Student’s t-test. i). Comparison of abundance of
cell states analyzed by reference-free deconvolution between newly diagnosed,
high-neural, and low-neural glioblastomas. j). Stem cell-like state significantly
correlated with anincrease of the neural signature in glioblastoma samples.
Simple linear regression, P=0.000003024480. Error bands representing the 95%
confidence interval. k). Ananticorrelation was seen between the abundance of
theimmune compartment and the neural signature. Simple linear regression,
P=0.000000000005. Error bands representing the 95% confidence interval.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Copy number variations and next-generation samples of our internal cohort. Of note, rarely detectable IDH mutations did not
sequencing of gene mutations between low- and high-neural glioblastoma include the pathogenic R132H mutation. d, e). Oncoprint illustrating clinical
samples. a). Copy number variation plots for all samples stratified into low- and characteristics and gene mutational status of d). low-neural and e). high-neural
high-neural glioblastoma. b, ¢). Oncoprintillustrating clinical characteristics glioblastoma samples of the TCGA dataset.

and gene mutational status of b). low-neural and c). high-neural glioblastoma
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Radiographic parameters and spatiotemporal
tumor sampling. a - ¢). Association of neural glioblastoma group with volume
ofa). contrast enhancement, b). FLAIR, and ¢). tumor necrosis measured by
preoperative magnetic resonance imaging. A) P=0.0374,b) P=0.1767,and

¢) P=0.6373, two-tailed Student’s t-test. d). Analysis of intertumoral difference
of neural signature within 34 newly diagnosed glioblastomas with spatial

collection of 3 to 7 samples per tumor. 23 (67.6 %) of these tumors had a pure
low- or high-neural signature in all individual biopsies with additional 10 (29.4 %)
tumors being predominantly low or high. e). Neural signature in 39 patients with
matched tumor tissue obtained from surgery at first diagnosis and recurrence.
ns: P>0.05, two-tailed Student’s t-test. f). Sankey plot illustrating a potential
switch of the neural subgroup between first diagnosis and recurrence.
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Extended Data Fig. 7| Drug sensitivity analysis of low- and high-neural cleaved caspase 3. *P<0.05, Mann-Whitney test. ). Drug sensitivity of low- and
glioblastoma cells. a). Representative microscopic images for high- (leftimage) high-neural glioblastoma cells measured by average cell area. *P < 0.05, Mann-
and low-neural (rightimage) glioblastoma cells. Green: Vimentin, yellow: cleaved Whitney test. d). Statistical difference of sensitivity to various drugs between
caspase 3, TUBB3: red, DAPI: blue. Scale bars: 10pum. n=9 biological replicates. low- and high-neural glioblastoma cells. Mann-Whitney test.

b). Drug sensitivity of low- and high-neural glioblastoma cells measured by

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02969-w

Neural signature

100

Class 1 (N=11, 8 events)
Class 2 (N=35, 28 events)

Class 3A (N=17, 14 events)
Class 3B (N=22, 13 events)

&
g
S 60
5
n .
©
2 404
=
SR
8
& 204
1p < 0.001
0 ' T ' T ' T ' T T ' J ' 1
0 12 24 36 48 60 72 84
OS [months]
f
3x10'%,
@ n=>55
3 p = 0.01 (¢}
B
9] R2=0.14 o
c g 2x10m]
(2]
S8
32
g§E
£8 1x10
°
S
4
0 T T
0.2 0.3 0.4 0.5
Neural signature
h No detectable Detectable
extracellular vesicle extracellular vesicle
levels levels

[ Low neural @ High neural

Extended Data Fig. 8 | See next page for caption.

OR(95%Cl)  Pvalue
Agel " 1.03(1.00-1.05) 0.02
Near GTR (Ref: GTR) —_— 082(0.49-1.35) 0.44
PR (Ref: GTR) —— 218(130-366) <0.01
Methylated MGMT (Ref: non-methylated) — 0.45(0.29-069) <0.01
Karnofsky| . 097 (096-0.99) <0.01
T 1
0 1 5
Odds ratio (log scale)
(95% CI)
High-neural
08 (n=150) OR(95%Cl)  Pvalue
(o] Age L} 1.01(0.98-1.03) 0.64
Near GTR (Ref: GTR) —_— 152 (0.86-2.67) 0.04
PR (Ref: GTR) —_— 2.19(1.293.70) <0.01
MGMT (Ref: non-methy 0.47 (0.29-0.73) <0.01
Karnofsky " 0.97 (0.96-1.00) 0.01

0

T
1
Oads ratio (log scale)
(95% Cl)

e . .
High-neural glioblastoma
100+ Class 1 (N=6, 6 events)
1 . — — Class 2 (N=34, 29 events)
__ 80+ | ! — - Class 3A (N=22, 19 events)
R
% | -k L + « + + <Class 3B (N=27, 22 events)
S .
< 60 L.
5 ] ': Median OS: 25.0 months
ke . L|
> -
240 1 o
€ 4 Medan0s:+’,
_8 11.0 months |'|
& 204
1 P <0.001 L— — Median OS: 19.0 months
0 T T T T T T T T T '_| T T 1
0 12 24 36 48 60 72 84
OS [months]
g 0.84 o Type of sampling
® Tissue
8 e @ Extracellular vesicle-DNA
o 0.6 ° @ Cell free-DNA
2
g ° l+|
‘» 0.44 o
< °
>
[0
Z 0.2 ! °
°
. ] . .
° °
0.0 N 313 o :
& @ & & & @
boo" %\O& 5 boé’ 6\0@ 5 e>°°0 5}0@ &
& ¢ é‘& 5 & © Q}\@Q 5 & ¢ @é\@
& X RGN SASECRN
i 0.8 Type of sampling
° @ Tissue
[}
: @ Extracellular vesicle-DNA in plasma
® 0.61 ® cell free-DNA in plasma
2 @ cell free-DNA in serum
©
)
‘» 0.4
I
3
z 02

Tissue

EV-DNA
CsF blood

EV-DNA  cfDNA

plasma

cfDNA
serum

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02969-w

Extended Data Fig. 8| Clinical prognostic and circulating biomarkers of
epigenetic neural glioblastomas. a). Neural signature in DNA methylation
subclasses of newly diagnosed IDH-wild-type glioblastoma. *P < 0.05, two-tailed
Student’s t-test. b). Forest plot illustrating the multivariate analysis of low-neural
patients with glioblastoma. Means are shown by closed circles and whiskers
representing the 95% confidence interval. Cox proportional hazards regression
model. ). Forest plotillustrating the multivariate analysis of high-neural patients
with glioblastoma. Means are shown by closed circles and whiskers representing
the 95% confidence interval. Cox proportional hazards regression model.

d-e). Survival outcome categorized after RANO categories for extent of
resection in patients with glioblastoma treated by radiochemotherapy with a
low- and high-neural signature. Class 1: 0 cm® CE + <5 cm® nCE tumor, Class 2: <1

cm?® CE, Class 3A: <5 cm® CE, Class 3B: =5 cm?. Log-rank test, d) P=0.0002, and

e) P=0.0011.f.) Correlation of neural signature and number of extracellular
vesicles in patient serum at time of diagnosis. Simple linear regression P=0.01.
Error bands representing the 95% confidence interval. g.) Comparison of neural
signature in healthy individuals, patients with glioblastoma, and meningeoma
patients between matched tumor tissue, extracellular vesicle-associated DNAin
serum, and cell-free DNA in serum. *P < 0.05, two-tailed Student’s t-test.

h.) Comparison of patients with no detectable (left panel) and detectable (right
panel) extracellular vesicle levels in serum stratified to their epigenetic neural
glioblastomatype.i.) lllustration of the neural signature in different types of
sampling in patients with glioblastoma.
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Extended Data Fig. 9 | Relevance of neural classificationin pediatricand
adolescent patients diagnosed with H3k27-altered diffuse midline glioma
(DMG). a). Association of tumor location with neural signature. Two-tailed
Student’s t-test. b). Volcano plot showing differentially methylated CpG sites
of genes of the invasivity signature, neuronal signature, and trans-synaptic
signaling signature. c). Cell state composition analysis in low- and high-neural
DMG. d). Synaptic gene expression (PTPRS, ARHGEF2, GRIK2, DNM3, LRRTM2,

GRIKS, NLGN4X, NRCAM, MAP2, INA, TMPRSS9)¢ is significantly correlated with
the stem cell-like state of DMG cells calculated by an overlap of single-cell DNA
methylation and single-cell RNA sequencing (599 cells from 3 study participants)
measurements. Simple linear regression. e - h). Kaplan-Meier survival analysis
of 72 DMG patients under 18 years of age with alow- and high-neural DMG. Error
bands representing the 95% confidence interval. Log-rank test, e) P=0.0017, f)
P=0.0022,g) P=0.0882,and h) P=0.3236.
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Extended Data Table 1| Clinical Characteristics

Characteristic N Low-neural High-neural P
glioblastoma glioblastoma | value
(n=213) (n=150)
Age, mean (SD), years 61.4 60.9 (10.2) 61.8 (9.7) 0.41
(10.0)
Sex, n (%)
Female 139 83 (39.0) 56 (37.3)
(38.3) 0.83
Male 224 130 (61.0) 94 (62.7) '
(61.7)
Location, n (%)
106 68 (31.9) 38 (25.3)
Frontal (29.2) 0.19
. 145 80 (37.6) 65 (43.3)
Parietal (39.9) 0.31
141 71 (33.3) 70 (46.7)
Temporal (38.8) 0.02
- 55 30(14.1) 25 (16.7)
Occipital (15.2) 0.55
Hemisphere, n (%)
166 99 (46.5) 67 (44.7)
Left (45.7)
. 174 103 (48.4) 71 (47.3)
Right (47.9) 0.55
23 11 (5.2) 12 (8.0)
B
oth (6.3)
Karnofsky prior surgery, mean 84.6 83.0(12.9) 86.7 (11.4) <0.01
(SD), % (12.4) .
Extent of resection, n (%)
142 92 (43.2) 50 (33.3)
Gross total (39.1)
99 59 (27.7) 40 (26.7)
Near gross total (27.3) 0.08
. 122 62 (29.1) 60 (40.0)
Partial (33.6)
MGMT promoter methylation
status, n (%)
Non-methylated 174 107 (50.2) 67 (44.7)
(47.9) 0.38
189 106 (49.8) 83 (55.3) '
Methylated (52.1)
Karnofsky prior adjuvant 85.4 84.4 (13.0) 86.7 (12.1) 0.09
treatment, mean (SD), % (12.7) '

Clinical characteristics of patients with glioblastoma who were treated with combined radio chemotherapy after surgical resection. SD: standard deviation, MGMT:
06-methylguanine-DNA-methyltransferase.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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X

A description of all covariates tested
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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Software and code

Policy information about availability of computer code

Data collection 3D volumetric segmentation was processed using BRAINLAB Elements software (v3.0). lllumina EPIC (850k) array was used for analyzing
genome-wide DNA methylation patters of tumor tissues. For proteomic data processing, Proteome Discoverer 3.0. was used and searched
against a reviewed FASTA database (UniProtKB: Swiss-Prot, Homo sapiens, February 2022, 20300 entries). Analysis of serum flow cytometry
data was performed using the BioLegend LEGENDplex software. Cell counting of confocal images was conducted with Image). Next-
generation sequencing were done by a 201 gene panel (Agilent, SureSelect Custom Tier2, 1.235Mbp).Sequenced reads were mapped to
GRCh38 using the nf-core/sarek (v3.3.2) pipeline. SNV and Structural variant calling was done using Strelka (v4.4.0.0) and Manta
(v1.6.0).Annotation of the detected variants was performed using SNPeff (v5.1d).

Data analysis Methylation arrays were processed with R (version 1.40.0). Integrative analysis of methylation and gene expression was performed with
hdWGCNA's ConstructNetwork function. For single-cell data analysis, the AddModuleScore function of the Seurat package was used and
projected to the cell-level UMAP (Uniform Manifold Approximation and Projection) provided by GBMap's integration algorithm.
Computational analysis of spatially resolved transcriptomic data was employed by the SPATA2 package (v2.01) and spatial correlation analysis
was performed by the MERINGUE package. Visualization of the analysis was done using the ggraph package. Cell state composition analysis of
DNA methylation arrays was performed via the engine provided in EpiDISH package. Absolute tumor-purity of DNA methylation arrays was
calculated using the RF_purify Package in R.Statistical analyses were conducted using GraphPad Prism v10. Confocal image analyses was done
using Imagel v.2.9.0. Data analysis of drug sensitivity was performed using staining using CellProfiler 2.2.0 and MATLAB R2021b. Seurat was
used for single-cell data analysis. Magnetencephalography recordings were analyzed using NUTMEG software suite version 4. Functional data
from resting state MRI was analyzed were preprocessed using SPM12 as implemented in MATLAB (Version: 9.13.0 (R2022b) Update 2). Single
cell transcriptomc data were analyzed through the GBMap reference dataset.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Ildat files of the clinical cohort (363 glioblastoma patients) are available on Gene Expression Omnibus (GEO) under GSE240704. The methylation data provided by
Capper et al. as illustrated in Extended Data 1 are accessible under GSE109381. TCGA-GBM cohort analyzed for external validation and as shown in Figure 1d is
accessible under https://portal.gdc.cancer.gov/projects/TCGA-GBM. Data files used in the spatial transcriptomic analyses are accessible under https://
doi.org/10.5281/zen0do.10863736. Single-cell RNAseq dataset GBMap is available from the original publication and can be accessed through cellXgene (https://
cellxgene.cziscience.com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c) and human motor cortex single cell RNAseq dataset is available from Allen Brain
Institute at https://portal.brain-map.org/atlases-and-data/rnaseg/human-m1-10x.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The human datasets used in this study include patients of both sexes (male and female) which applied reported findings to
both sexes. Furthermore, patients sex was taken into consideration as a prognostic variable for survival analyses and details
are reported in Supplementary Table 1.

Reporting on race, ethnicity, or  Does not apply to our human datasets.
other socially relevant

groupings

Population characteristics All patients described in this study are individuals diagnosed with glioblastoma or diffuse midline glioma. Clinical
characteristics are listed in Supplementary Table 1 and contain known variables that might influence survival (as the primary
outcome of this study), such as age, Karnofsky Performance Status, sex, MGMT status, and location.

Recruitment The inclusion criteria for this research were patients diagnosed with either IDH-wildtype glioblastoma or H3 K27-altered
diffuse glioma, who qualified for methylation analysis and provided informed consent. Exclusion criteria included cases with
invalid DNA methylation data, those lost to follow-up, and additional specifications outlined in the methods section. The
selection process was unbiased, focusing exclusively on the patients' diagnoses without regard to other variables.

Ethics oversight This study complied with all relevant ethical regulations and experiments were approved by the medical ethics committee of

the Hamburg chamber of physicians (PV4904, Hamburg, Germany).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The research focused on patients who had surgery for either glioblastoma or diffuse midline glioma. No specific sample size calculation was
applied for clinically oriented patient groups, with inclusion extending to all patients listed in the institutional databases. Selection criteria for
participation are comprehensively outlined in the Methods section.

In regards to in vitro or in vivo data: all experiments were performed in triplicates or quintuplicates in accordance to international standards.

Data exclusions  No data were excluded from the analyses.

Replication All presented experiments were performed in triplicates if not otherwise stated. Findings were reproducible with biological replicates
performed on separate animals/cells and external cohorts for patients.

Randomization  Patients, animals, and cell cultures were separated into a low-neural and high-neural group based on the neural signature score calculated
from each individual DNA methylation array.
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Blinding Data collection of clinical outcomes and methylation profiles were acquired by different research teams. This data was combined for analysis
only after the samples had been processed, enabling a coherent examination of the findings. Moreover, the linkage between clinical
information and methylation signatures was concealed from all investigators to ensure objectivity.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study

Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
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Palaeontology and archaeology |:| |Z MRI-based neuroimaging
Animals and other organisms
Clinical data
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Antibodies

Antibodies used Primary antibodies used:
- Mouse anti-human nuclei clone 235-1 (1:100; Millipore)
- rabbit anti-Ki67 (1:500; Abcam ab15580)
- rat anti-MBP (1:200, Abcam ab7349)
- mouse anti-nestin (1:500; Abcam ab6320)
- guinea pig anti-synapsin1/2 (1:500; Synaptic Systems)
- chicken anti-neurofilament (M+H; 1:1000; Aves Labs)
- chicken anti-PSD95 (1:500, Abcam ab18258)
- mouse anti-vimenting AF488 conjugated (1:1000, Biolegend clone 091D5)
- rabbit anti-cleaved caspase 3 (1:1000; Cell signaling #9579)
- mouse anti-TUBB3 (1:1000, Biolgend clone AA10)
- abbit anti-BDNF (1:1000, Cell signaling #47808)
- mouse anti-beta-actin (1:1000, Sigma Aldrich A2228)
- NeuN (#MAB377, Chemico, 1:200)
- Sox2 (#AB79351, Abcam, 1:200)
- OLIG2 (#AF2418, R&D Systems, 1:50)
- GFAP (#M0761, DAKO, 1:200)

Secondary antibodies used:

- Alexa 488 donkey anti-rabbit IgG (Jackson ImmunoResearch, 711-545-152)

- Alexa 594 donkey anti-mouse 1gG (Jackson ImmunoResearch, 715-585-150)

- Alexa 647 donkey anti-chicken IgG (Jackson ImmunoResearch, 703-605-155)

- Alexa 405 donkey anti-guinea pig I1gG (Jackson ImmunoResearch, 706-475-148)
- Alexa 647 donkey anti-rabbit IgG (Jackson ImmunoResearch, 711-605-152)

- Alexa 594 donkey anti-mouse 1gG (Jackson ImmunoResearch, 715-585-150)

Primary antibody used in immuno-electron microscopy:
- goat anti-RFP (1:300; #ABIN6254205 Antibodies-online Inc.; Lot#0040180316) and secondary antibody (1:10; #15796 TED Pella; Lot
#008330)

Validation All above mentioned antibodies were purchased from commercial vendors and were validated by the manufacturers and used in
accordance to previous studies:
1. anti-human nuclei clone (Milipore): PMID 31534222
2. anti-Ki67 (Abcam): PMID 31534222
3. rat anti-MBP (1:200, Abcam ab7349): PMID 32433967
4. anti-nestin (Abcam): PMID 31534222
5. anti-synapsin 1/2 (Synaptic Systems): validated in IHC and IHC-P by provider.
6. anti-neurofilament (M+H) (Aves Labs): PMID 31534222
6. anti-PSD95 (Abcam): validated in IHC-P by provider
7. anti-vimentin (Biolegend): PMID: 35022622
8. anti-cleaved Caspase 3 (Cell signaling): PMID: 7596430
9. anti- TUBB3 (Biolegend): PMID: 35022622
10. anti-BDNF (Cell signaling): PMID: 35595779




Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) All presented cell lines obtained from primary patient-derived glioblastomas were generated in the Department of
Neurosurgery, University Medical Center Hamburg-Eppendorf (Germany). These cell lines include: GS-8; GS-10; GS-11; GS-12;
GS-13; GS-57; GS-74; GS-74; GS-75; GS-80; GS-83; GS-84; GS-85; GS-90; GS-101; GS-106; GS-110; NCH 551b. Additionally, the
low-neural cell line ("SF-HH-1") and high-neural cell line ("SF-HH-2") derived from patient-derived glioblastomas of the
Department of Neurosurgery, University of California, San Francisco (UCSF) and were processed in the Monje Lab, Stanford

University.
Authentication Short Tandem Repeat fingerprinting or whole genome methylation analysis was performed every 8 weeks on all cell cultures,
Mycoplasma contamination All cell cultures were tested negative for possible contamination every 2 weeks.

Commonly misidentified lines  No commonly misidentified lines were used.
(See ICLAC register)
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Following mice were used for various experiments:
- NOD-SCID-IL2R gamma chain-deficient Jackson Laboratory) for assessing tumor burden and electron microscopy; 4-6 wekks
- NMRI-Foxn1nu immunodeficient mice (Janvier-Labs) for survival studies, 6-8 weeks
- CD1 (Jackson Laboratories) for isolation of neurons, 4-6 weeks

Animals were housed according to standard guidelines under pathogen-free conditions, in temperature (28-30°C)- and humidity
(45-50%)-controlled housing with free access to food and water in a 12 h light:12 h dark cycle.

Wild animals No wild animals were used.
Reporting on sex Both male and female mice were used for all in vivo experiments.
Field-collected samples  No field-collected samples were used.

Ethics oversight In Vivo studies were approved by the authorities for health and consumer protection in Hamburg, Germany (#17.8.17), as well as by
the Stanford University Institutional Animal Care and Use Committee (IACUC) #30342.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration n/a
Study protocol n/a

Data collection Clinical data of glioblastoma and diffuse midline glioma patients were retrieved from institutional retrospective databases. Included
patients underwent surgery between 2009 and 2023.

Outcomes Primary outcomes of clinical data were overall survival and progression-free survival. Overall survival (OS) was calculated from

diagnosis until death or last follow-up, and progression-free survival (PFS) from diagnosis until progression according to Response
Assessment in Neuro-Oncology (RANO) criteria based on local assessment (DOI: 10.1200/JC0.2009.26.3541)

Magnetic resonance imaging

Experimental design

Design type Resting-state

Design speciﬁcations 44 treatment-naive glioblastoma patients (mean age: 6519 years) underwent resting-state functional magnet resonance
imaging before surgery.Functional data were preprocessed using SPM12 as implemented in MATLAB (Version: 9.13.0
(R2022b) Update 2) according to an imaging protocol. Functional images were realigned to the mean functional volume,
unwarped and coregistrated to the structural image.




Behavioral performance measures  No behaviour perfomance measures were used.
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Preprocessing

Preprocessing software SPM12 as implemented in MATLAB (Version: 9.13.0 (R2022b) Update 2)

Normalization Images were segmented, bias corrected and spatially normalized (multi-spectral classification), and functional images were
smoothed with a 5 mm FWHM Gaussian kernel.

Normalization template MNI 1.5mm isotropic, as implemented in SPM 12's Normalization procedure

Noise and artifact removal Functional images were slice-time corrected, movement-related time series were regressed out with ICA-AROMA, and data
were high-pass filtered (> 0.01 Hz).

Volume censoring ITK-SNAP software; the segmentated volumes were reviewed independantly from two experts in the field.

Statistical modeling & inference

Model type and settings Contrast-enhancing tumor lesions were segmented semi-automatically using the ITK-SNAP software version 3.4.077 and used
as region of interest (ROI) to perform a seed-based correlation analysis and compute the voxel-based tumor to peritumoral
connectivity (Fisher z transformation). A 10mm peritumoral distance mask was created by dilating the tumor mask by 10mm
and subtracting the tumor area. The mean functional connectivity between tumor and its 10mm peritumoral surrounding
was computed after ROI-to-voxel analyses.

Effect(s) tested n/a

Specify type of analysis: [ | whole brain [ | ROI-based ~ [X Both

. . Contrast-enhancing tumor lesions were segmented semi-automatically using the ITK-SNAP software
Anatomical location(s) ) ) . )

version 3.4.0; further anatomical locations were not used
Statistic type for inference Voxel-wise

(See Eklund et al. 2016)
Correction FDR

Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity

IZ |:| Graph analysis

IZ |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson correlations were computed between the tumor (ROl as seed) and all other voxels in the brain
(seed-based functional connectivity). Correlations were then Fisher z-transformed and thresholded at z > .2.
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