Skip to main content
. 2024 Apr 24;168(3):527–535. doi: 10.1007/s11060-024-04673-8

Table 5.

Simple logistic regression analysis between single (= 0) and multiple (= 1) reoperation and categorical independent variables

Model Missing data Std. Error Censored (0) Z p-value AUC p-value
Patient age 0 0.096 20 1.24 0.21 0.6 0.31
Sex 0 0.10 22 1.419 0.15 0.61 0.25
Location* 0 0.098 14 1.877 0.06 0.65 0.09
WHO grade 0 0.105 11 0.35 0.72 0.53 0.77
Simpson grade 0 0.091 17 2.269 0.02 0.69 0.05
PR expression 0 0.110 25 0.687 0.49 0.56 0.58
Ki67-MIB1 0 0.10 20 0.210 0.83 0.51 0.86
Multivariate Cox proportional hazards regression analysis– only variables with p < 0.2 from univariate analysis were included
Variable Estimate HR 95% CI Std. Error Z p-value
Age 3,115 0,5342 to 20,63 0,908 2.723 0.27
Location* 1,000 0,09634 to 10,38 1,134 1,974 0.45
Simpson 0,1333 0,009325 to 1,591 1,252 3,447 0.15

* Location is expressed as continue variable (SB = 1; PF = 2; BC = 3; LV = 4) # Sex is expressed as binary variable (1 = M; 0 = F) ¥WHO grade is expressed as binary variable (1 = WHO grade I; 2 = WHO grade 2)