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Abstract
Purpose The primary purpose of this study was to develop a new machine learning model for the surgery/non-surgery
decision in class III patients and evaluate the validity and reliability of this model.
Methods The sample consisted of 196 skeletal class III patients. All the cases were allocated randomly, 136 to the training
set and the remaining 60 to the test set. Using the test set, the success rate of the artificial neural network model was
estimated, along with a 95% confidence interval. To predict surgical cases, we trained a binary classifier using two different
methods: random forest (RF) and logistic regression (LR).
Results Both the RF and the LR model showed high separability when classifying each patient for surgical or non-surgical
treatment. RF achieved an area under the curve (AUC) of 0.9395 on the test set. 95% confidence intervals were computed
by bootstrap sampling as lower bound= 0.7908 and higher bound= 0.9799. On the other hand, LR achieved an AUC of
0.937 on the test set. 95% confidence intervals were computed by bootstrap sampling as lower bound= 0.8467 and higher
bound= 0.9812.
Conclusions RF and LR machine learning models can be used to generate accurate and reliable algorithms to successfully
classify patients up to 90%. The features selected by the algorithms coincide with the clinical features that we as clinicians
weigh heavily when determining a treatment plan. This study further supports that overjet, Wits appraisal, lower incisor
angulation, and Holdaway H angle can be used as strong predictors in assessing a patient’s surgical needs.

Keywords Artificial intelligence · Orthognathic surgery · Computer-assisted decision making · Dentofacial deformities ·
Logistic models

Ein innovatives Machine-Learning-Modell für die Entscheidungsfindung bei Klasse-III-Operationen

Zusammenfassung
Zielsetzung Primäres Ziel dieser Studie war es, ein neues Machine-Learning-Modell für die Entscheidung Operation
vs. nichtoperative Behandlung bei Klasse-III-Patienten zu entwickeln und die Validität und Reliabilität dieses Modells zu
bewerten.

Data Availability The data underlying this article cannot be shared
publicly due to the privacy of individuals who participated in
the study. The data will be shared on reasonable request to the
corresponding author.

� Hakan Turkkahraman, DDS PhD
haturk@iu.edu

1 Department of Orthodontics and Oral Facial Genetics,
Indiana University School of Dentistry, 1121 West Michigan
Street, Indianapolis, IN 46202, USA

2 Indiana University School of Dentistry, Indianapolis, IN, USA

3 Department of Computer and Information Science, School of
Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN, USA

K

https://doi.org/10.1007/s00056-022-00421-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s00056-022-00421-7&domain=pdf


240 H. Lee et al.

Methoden Die Stichprobe bestand aus 196 Patienten der skelettalen Klasse III. Alle Fälle wurden randomisiert einer Grup-
pe zugewiesen, 136 der Trainingsgruppe und die übrigen 60 der Testgruppe. Anhand des Testsatzes wurde die Erfolgsquote
des künstlichen neuronalen Netzes mit einem Konfidenzintervall von 95% abgeschätzt. Zur Prädiktion chirurgischer Fälle
wurde ein binärer Klassifikator mit 2 unterschiedlichen Methoden trainiert: Random Forest (RF) und logistische Regres-
sion (LR).
Ergebnisse Sowohl das RF- als auch das LR-Modell zeigten eine hohe Trennschärfe bei der Klassifizierung der ein-
zelnen Patienten für eine chirurgische bzw. eine nichtchirurgische Behandlung. RF erreichte eine AUC („area under the
curve“) von 0,9395 in der Testgruppe. Die 95%-Konfidenzintervalle wurden mittels Bootstrap-Stichproben als untere
Grenze= 0,7908 und obere Grenze= 0,9799 berechnet. Andererseits erreichte LR eine AUC von 0,937 in der Testgruppe.
Die 95%-Konfidenzintervalle wurden durch Bootstrap-Sampling als untere Grenze= 0,8467 und obere Grenze= 0,9812
berechnet.
Schlussfolgerungen Mithilfe von RF- und LR-Modellen für maschinelles Lernen lassen sich genaue und zuverlässige Al-
gorithmen erstellen, die Patienten in bis zu 90% der Fälle erfolgreich klassifizieren. Die von den Algorithmen ausgewählten
Merkmale stimmen mit den klinischen Merkmalen überein, die wir als Kliniker bei der Festlegung eines Behandlungsplans
stark gewichten. Diese Studie belegt außerdem, dass Overjet, Wits-Appraisal, die Angulation der unteren Inzisiven und der
Holdaway-H-Winkel als starke Prädiktoren für die Beurteilung des Operationsbedarfs eines Patienten verwendet werden
können.

Schlüsselwörter Künstliche Intelligenz · Kieferorthopädische Chirurgie · Computergestützte Entscheidungsfindung ·
Dentofaziale Deformitäten · Logistische Modelle

Introduction

The most important part of orthodontic treatment is a proper
diagnosis and the establishment of a treatment plan [1].
A proper diagnosis defines the problems of the patient so
that a problem list can be identified. Once the diagnosis is
made, clinicians should establish treatment goals to address
the identified problems. There are many instances in which
orthodontic therapy alone can be used to camouflage skele-
tal discrepancies with dental compensations. Other times it
is necessary for the clinician to include orthognathic surgery
as a part of the treatment plan. The pivotal part of treatment
planning is the decision about whether orthognathic surgery
is needed. Various factors such as desired profile changes,
size of the upper airway, crowding, incisor position, and
long-term stability must be taken into consideration [2].
Previous studies have identified several cephalometric mea-
surements that can be used to help distinguish between sur-
gical and non-surgical treatment with specificity as high as
90% [2–6]. The importance of this decision must be seri-
ously considered in order to protect patients from unneces-
sary risks that may lead to complications such as infection,
postoperative malocclusion, hemorrhage, bad splits, infe-
rior alveolar nerve injury, and irreversible treatment such
as extractions [7].

Expert clinicians have been sculpted by their educa-
tion and clinical experiences to develop their treatment
philosophies. It is very difficult to develop this process in
a short amount of time for inexperienced clinicians. Treat-
ment planning is a complex process in which diagnostic
data is organized and combined with background knowl-

edge and clinical experience that simply cannot be stan-
dardized into a formula [8]. An inexperienced orthodontist
would benefit greatly if an artificial intelligence (AI) system
existed that can be used to supplement this gap in experi-
ence. Moreover, AI systems may act as a complementary
method that aids in decision-making, like a second opinion.
AI systems are not new to the field of dentistry [9]. Over
the last two decades, AI models have been generated to
help with endodontic diagnosis [10], radiographic diagno-
sis [11], and to determine orthodontic treatment needs [12].
More recently in orthodontics, a variety of methods have
been studied in the construction of an AI system that can
support diagnosis, treatment planning, and planned tooth
movement [13–15].

Among the methods of constructing an AI system, su-
pervised machine learning is a method that allows comput-
ers to mimic the expert thought process and rationale in
decision making. Supervised learning methods use a train-
ing dataset usually retrospectively collected from electronic
archives and contains a set of dependent and independent
variables for each case [16]. In the context of the proposed
project, the dependent variable was the diagnostic decision
assigned to each case by the practicing orthodontist, and
independent variables were demographic data and the mea-
surements obtained from diagnostic records. Two main cat-
egories of supervised learning techniques involve discrimi-
native and generative models. Discriminative models learn
a mapping between input values and corresponding output
values for all cases in the training set by optimizing linear
or nonlinear discriminant functions [17]. Among the most
popular algorithms in this category are logistic regression
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[18], support vector machines [19], and neural networks
[20]. On the other hand, generative models estimate the un-
derlying probability distributions for each class and renders
classification based on Bayes’ rule [17]:

P.AjB/ =
P.B jA/ � P.A/

P.B/

The current project required a binary decision which leads
to two classes: surgery vs. non-surgery.

There is currently only one other study that has used
machine learning to develop and evaluate a model to incor-
porate this technology in the treatment planning of orthog-
nathic surgery cases [21]. However, this study only included
a limited number of cephalometric values and additional
objective indexes. It was our goal to increase the number
of cephalometric values in the input data set to expand
the search for causal relationships between the independent
and dependent variables. We also took into consideration
the patient’s subjective desire to seek surgical treatment for
esthetic reasons. It was our aim to develop a new machine
learning model for surgery/non-surgery decision in class III
patients and evaluate the validity and reliability of this novel
model.

Fig. 1 Flow chart representing the group allocation, training and testing processes. RF random forest, LR logistic regression
Abb. 1 Flussdiagramm, in dem die Prozesse der Gruppeneinteilung, der Trainings und der Tests dargestellt sind. RF Random Forest, LR logistische
Regression

Materials andmethods

Ethical statement

This project was submitted for review to the Indiana Uni-
versity Institutional Review Board and approved (March 03,
2021, #10220).

Study design

This was a retrospective study, and the sample consisted of
196 skeletal class III patients who visited the Department
of Orthodontics and Orofacial Genetics, Indiana University.
The subjects included in the study had a negative ANB
value and a Wits analysis that measured less than negative
one millimeter. The exclusion criteria for the study included
subjects with missing teeth except for third molars, mal-
formed teeth, craniofacial anomalies such as cleft palate,
and patients with a documented anterior functional shift.

A full set of orthodontic records was collected for each.
Treatment plans were decided by 1 orthodontic resident
and 2 faculty orthodontic specialists. All 3 clinicians were
blinded against the others’ decisions, when the initial treat-
ment decision was first made. A complete agreement was
reached in 167 out of 196 cases (85%) during this blinded
initial treatment decision process. The remaining 29 cases
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Table 1 Description of the lateral cephalometric data
Tab. 1 Beschreibung der lateralen kephalometrischen Daten

Measurement Description

Maxilla to cranial base

SNA (°) Angle between sella, nasion and A point

SN-palatal plane (°) Angle between sella-nasion and palatal plane

Occlusal plane to SN (°) Angle between sella-nasion and occlusal plane

A-N perpendicular (mm) Distance from A point to the plane drawn perpendicularly from nasion to the Frankfort horizontal plane

Mandible to cranial base

SNB (°) Angle between sella, nasion and B point

SNPg (°) Angle between sella, nasion and pogonion

FMA (FH-MP) (°) Angle between Frankfort horizontal plane and gonion-gnathion

SN-MP (°) Angle between sella-nasion and gonion-gnathion

Mandibular plane to occlusal plane
(°)

Angle between mandibular plane and occlusal plane

B-N perpendicular (mm) Distance from B point to the plane drawn perpendicularly from nasion to the Frankfort horizontal plane

Pog-N perpendicular (mm) Distance from pogonion to the plane drawn perpendicularly from nasion to the Frankfort horizontal plane

Y-Axis (SGn-SN) (°) Angle between the sella-gnathion and sella-nasion

Maxilla to mandible

ANB (°) Angle between sella, nasion and B point

Palatal plane to mandibular plane
angle (PP-MP) (°)

Angle between the ANS-PNS and Go-Gn lines

Wits appraisal (mm) Distance between the projections of points A and B on the occlusal plane

Maxillary length (ANS-PNS)
(mm)

Linear distance from anterior and posterior nasal spines

Mandibular length (Co-Gn) (mm) Linear distance from condylion to gnathion

Cranial base

Ba-S-N (°) Angle between basion, sella and nasion

Upper incisors to maxilla

U1-SN (°) Angle between long axis of upper incisor and sella-nasion

U1-NA (°) Angle between long axis of upper incisor and nasion-A point

U1-NA (mm) Distance from upper incisor tip to nasion-A point line

U1-palatal plane (°) Angle between long axis of upper incisor and palatal plane

U1 protrusion (U1-APo) (mm) Distance from upper incisor tip to A point-pogonion line

Lower incisors to mandible

L1-MP (°) Angle between long axis of lower incisor and mandibular plane

L1-NB (°) Angle between long axis of lower incisor and nasion-B point

L1-NB (mm) Distance from lower incisor tip to nasion-B point line

L1 protrusion (L1-APo) (mm) Distance from lower incisor tip to A point-pogonion line

Holdaway ratio Ratio of the linear distance from the labial surface of the mandibular central incisor to the NB line over
the linear distance of the chin to the same line

Incisors to each other

Interincisal angle (U1-L1) (°) Angle between the long axes of upper and lower incisors

Overjet (mm) Vertical overlap between upper and lower incisors

Overbite (mm) Sagittal overlap between upper and lower incisors

Soft tissue

Upper lip to E-plane (mm) Distance from the upper lip stomion to the E-plane

Lower lip to E-plane (mm) Distance from the lower lip stomion to the E-plane

ILG (mm) Distance between the upper and lower lip at rest

Nasolabial angle (Col-Sn-UL) (°) Angle between columella, subnasale and upper lip

H-Angle (Pg0UL-Pg0Na0) (°) Angle between soft tissue nasion, pogonion and upper lip

UFH (G0-Sn0) (mm) Soft tissue upper face height. Distance between soft tissue glabella and subnasale

LFH (Sn0-Me0) (mm) Soft tissue lower face height. Distance between subnasale and soft tissue menton
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Table 1 (Continued)
Tab. 1 (Fortsetzung)

Measurement Description

Facial proportions (hard tissue)

Upper face height (N-ANS) (mm) Distance between nasion and anterior nasal spine

Lower face height (ANS-Me)
(mm)

Distance between anterior nasal spine and menton

UFH (N-ANS/(N-ANS+ANS-
Me)) (%)

The ratio of lower face height and total face height

LFH (ANS-Me/(N-ANS+ANS-
Me)) (%)

The ratio of upper face height and total face height

Posterior face height (Co-Go)
(mm)

The distance between condylion and gonion

PFH:AFH (Co-Go : N-Me) (%) The ratio of posterior face height and anterior face height

Profile

Convexity (NA-APo) (°) Angle between nasion, A point and pogonion

Facial angle (FH-NPo) (°) Angle between Frankfort horizontal plane and nasion-pogonion

(15%) were re-evaluated for a second time as a group, and
a final treatment decision was made by complete agreement
of all the examiners.

A flow chart representing the group allocation, training,
and testing processes is shown in Fig. 1. All the cases were
allocated randomly, 136 to the training set and the remain-
ing 60 to the test set. Randomization to the training and test
sets was stratified by age, gender, and surgery, with propor-
tional allocation to training/test sets based on those three
factors. The test set was not used for the model construc-
tion and only used to evaluate the validity of the constructed
model. To assess the reliability of the constructed model,
50 cases from the training set were used. The input values
were obtained from 46 cephalometric measurement values
(Table 1) and 7 additional indexes (Table 2). Categorical
variables (“Sex at birth”, “Chief complaint” and “Molar
classification”) in the data were first converted into one-hot
encoding vectors. With this extension the number of fea-
tures increased from 53 to 60. All feature values were nor-
malized to between 0 and 1. A regularization constant that
adjusts the tradeoff between regularization and empirical
error was set to 0.5. Tracing and measurement of the lat-
eral cephalogram for each patient were performed digitally
by one investigator (H.L.) using Dolphin Imaging Version

Table 2 Additional input data
Tab. 2 Ergänzende Input-Daten

Indexes Description

Chronologic age Grouping based on chronologic age rounded to nearest whole number

Skeletal age Grouping based on the cervical vertebral maturation (CVM) method

Sex at birth Grouped by male or female

Chief complaint (CC) Grouping “Facial esthetic in the CC”, “Appearance of teeth in the CC”, and “Functional issues in the CC”, “Other”

Maxillary crowding Grouped by amount of crowding, none, mild: 1–3mm, moderate: 4–6mm, severe: 7–9mm, very severe: >9mm

Mandibular crowding Grouped by amount of crowding, none, mild: 1–3mm, moderate: 4–6mm, severe: 7–9mm, extremely severe: >9mm

Molar classification Grouping class I, end-on class III, full step class III, beyond full step class III

12.0.09.39 (Patterson Dental Supply Inc., Chatsworth, CA,
USA). Of the 196 included patients, 20 were randomly cho-
sen and the cephalometric radiographs were traced again by
the same examiner to measure method error of the tracing.

Statistical analyses

Bland–Altman plots, intraclass correlation coefficients
(ICCs), and standard deviation of the repeated measure-
ments were calculated for each cephalometric measure-
ment. Using the test set, the success rate of the artificial
neural network model was estimated, along with a 95%
confidence interval (CI). To predict surgical cases, we
trained a binary classifier using two different methods:
random forest (RF) and logistic regression (LR).

These two machine learning algorithms were chosen as
representative examples of the broader category of tech-
niques that they belong to. RF is a non-parametric classi-
fier and operates as an ensemble of decision trees, where
each decision tree in the ensemble is considered a weak
learner [22]. It is inspired by the fact that a large number
of poorly correlated weak learners can outperform an in-
dividual constituent learner when operated as a committee.
Classification in RF is performed by majority voting. The
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key component of the RF algorithm is the diversity of the
individual models. To create a set of poorly correlated mod-
els, RF uses a random subset of features to create decision
trees. The smaller the number of features selected, the less
the correlation among individual models will be. However,
if too few features are selected, then more trees will be
needed, which will in turn increase the computational cost
of training. LR belongs to the broader category of discrimi-
native classifiers. Unlike other discriminative classifiers, LR
uses a probabilistic discriminative model and can perform
classification and feature selection at the same time when
a 1-norm regularizer is used to optimize the discriminant
vector. LR optimizes a linear hyperplane to maximize the
joint posterior probabilities of training examples. As the
decision surface between two classes is constrained to be
linear, LR in general has very good generalization proper-
ties and is less likely to overfit the training data compared
to other more complex algorithms such as artificial neu-
ral networks (ANNs) or nonlinear support vector machines
(SVMs) [23] that can generate highly nonlinear decision
boundaries. Confidence of a classification decision can be
readily interpreted by the posterior probabilities which LR
generates during testing. Hyperparameters of each classifier
were tuned on the training set by 10-fold cross validation
to maximize the area under the receiver operating charac-
teristics (ROC) curve (AUC).

Results

Descriptive statistics

Descriptive statistics including mean, standard deviation,
minimum and maximum values for the cephalometric input
data are given in Table 3.

Reliability analyses

Bland–Altman plots, intraclass correlation coefficient
(ICC), and standard deviation of the repeated measurements
were calculated for each cephalometric measurement. The
ICC was used to evaluate the test–retest reliabilities of the
tracings. The values were scored as follows: ICC less than
0.50, poor reliability; ICC between 0.50 and 0.75, moderate
reliability; ICC between 0.75 and 0.90, good reliability, and
ICC greater than 0.90, excellent reliability [24]. The ICC
for each repeated measurement was greater than 0.83 for
all measurements except for two soft tissue measurements,
interlabial gap (0.69) and nasolabial angle (0.74), demon-
strating good reliability. For the initial, blinded treatment
decisions, an 85% interexaminer agreement was achieved.

Results with RF

The number of trees in the ensemble and the number of fea-
tures to subsample for training individual models are con-
sidered as tuning parameters. Another parameter that affects
the performance of individual trees is the minimum number
of samples required for each leaf node beyond which split-
ting of the node stops. These three parameters were tuned
by grid optimization to maximize AUC performance for the
ensemble and the final model was trained by the following
values of these parameters: number of decision trees= 200,
number of features to sample= 7, minimum leaf size= 5.
An AUC of 0.9395 was obtained on the testing set. The
95% CIs were computed by bootstrap sampling as lower
bound= 0.7908 and higher bound= 0.9799. As the lower
bound was higher than 0.50, the results were statistically
significantly better than a random classifier. The ROC curve
is plotted in Fig. 2a. Feature importance scores were com-
puted for the RF classifier. Although scores and rank of fea-
tures varied between different runs, RF consistently found
“Molar classification”, “Overjet (mm)”, and “Wits appraisal
(mm)” as the top three features with the highest importance
scores. RF assigned an absolute importance score of 0.05
or higher to around 80% of the 53 features available. Using
a probability threshold of 0.50, the RF model was able to
correctly classify cases with a 90% accuracy. The sensitiv-
ity for this model was 84% and the specificity was 93%.
The RF model also showed a strong negative predictive
value (NPV) of 93% and a positive predictive value (PPV)
of 84% (Fig. 2b).

Results with LR

Categorical variables (“sex at birth”, “chief complaint” and
“class”) in the data were first converted into one-hot en-
coding vectors. With this extension the number of features
increased from 53 to 60. All feature values were normal-
ized to between 0 and 1. A regularization constant that
adjusted the tradeoff between regularization and empirical
error was set to 0.5. LR achieved an AUC of 0.937 on the
test set. The 95% CIs were computed by bootstrap sam-
pling as lower bound= 0.8467 and higher bound= 0.9812.
As the lower bound was higher than 0.50, the results were
statistically significantly better than a random classifier. The
ROC curve is plotted in Fig. 2c. Only 8 of the 60 features
had a non-zero weight (Table 4), which suggests that the
model finds the rest of features not useful for discriminating
between surgical and non-surgical cases. Using a probabil-
ity threshold of 0.50, the LR model was able to correctly
classify 78% of the patients. The sensitivity for this model
was 89% and specificity was 73%. This model also showed
a NPV of 94% and a PPV of 61% (Fig. 2d).
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Table 3 Descriptive statistics of the variables
Tab. 3 Deskriptive Statistik der Variablen

Surgery Non-surgery

Mean SD Min Max Mean SD Min Max

Maxilla to cranial base

SNA (°) 79.06 4.39 68.80 90.30 78.06 4.28 69.30 93.90

SN-palatal plane (°) 8.39 4.03 0.40 17.00 7.78 3.54 –2.50 18.70

Occlusal plane to SN (°) 14.08 5.36 0.50 23.40 14.87 4.83 1.50 29.40

A-N perpendicular (mm) –1.15 4.81 –11.00 12.20 –2.15 3.88 –15.00 11.40

Mandible to cranial base

SNB (°) 83.52 4.02 74.70 95.00 80.45 4.03 71.40 94.90

SNPg (°) 84.10 3.70 75.80 95.20 81.38 4.07 73.60 96.80

FMA (FH-MP) (°) 23.73 5.75 9.40 37.10 22.36 5.70 5.70 33.70

SN—MP (°) 30.48 6.34 16.20 42.70 29.38 5.76 10.90 42.90

Mandibular plane to occlusal
plane (°)

17.95 4.45 10.10 32.40 15.66 4.15 7.50 25.10

B-N perpendicular (mm) 5.66 7.13 –9.30 22.50 0.29 6.28 –19.70 22.70

Pog-N perpendicular (mm) 7.42 7.09 –10.60 23.50 1.98 7.01 –17.30 30.80

Y-Axis (SGn-SN) (°) 65.39 4.15 54.30 75.10 66.34 4.08 53.30 75.40

Maxilla to mandible

ANB (°) –4.45 2.36 –11.50 –0.30 –2.38 1.58 –6.40 –0.10

Palatal plane to mandibular plane
angle (PP-MP) (°)

23.66 5.70 12.60 39.10 22.74 5.15 7.80 33.30

Wits appraisal (mm) –9.77 3.18 –19.00 0.50 –5.84 2.51 –15.90 –1.10

Maxillary length (ANS-PNS)
(mm)

47.04 4.37 39.60 55.50 46.16 4.25 36.80 64.70

Mandibular length (Co-Gn) (mm) 123.35 9.75 102.20 150.60 114.21 8.46 96.60 141.40

Cranial base

Ba-S-N (°) 132.47 5.68 116.70 146.90 132.19 5.70 120.00 152.70

Upper incisors to maxilla

U1-SN (°) 110.81 9.04 89.80 140.60 108.78 6.89 91.70 128.90

U1-NA (°) 31.74 8.29 13.30 50.20 30.73 6.43 16.20 47.60

U1-NA (mm) 8.73 3.17 1.90 18.40 8.37 2.40 3.20 14.00

U1-palatal plane (°) 119.20 8.32 98.40 144.30 116.56 6.44 100.10 134.00

U1 protrusion (U1-APo) (mm) 4.92 3.58 –2.00 15.60 5.86 2.63 0.00 13.20

Lower incisors to mandible

L1-MP (°) 84.32 8.18 66.90 112.30 87.50 7.03 68.80 104.00

L1-NB (°) 21.36 8.56 –1.40 51.30 20.07 6.31 5.90 36.10

L1-NB (mm) 4.25 3.17 –4.60 11.80 2.96 2.38 –1.70 8.80

L1 protrusion (L1-APo) (mm) 6.55 3.58 –1.80 14.70 3.76 2.64 –2.50 11.30

Holdaway ratio –0.19 2.50 –12.70 5.30 0.50 3.58 –20.20 13.70

Incisors to each other

Interincisal angle (U1-L1) (°) 131.35 13.48 80.10 163.90 131.60 10.41 108.20 159.10

Overjet (mm) –1.38 2.93 –12.00 3.90 2.46 1.96 –3.70 5.90

Overbite (mm) 1.34 2.55 –4.40 11.50 1.77 1.64 –4.60 4.70

Soft tissue

Upper lip to E-plane (mm) –5.81 3.78 –13.00 4.20 –4.21 2.81 –11.50 4.10

Lower lip to E-plane (mm) –1.43 4.49 –8.90 9.20 –1.86 3.10 –11.10 7.30

ILG (mm) 0.82 0.69 –0.70 3.90 1.19 0.78 –0.60 5.20

Nasolabial angle (Col-Sn-UL) (°) 102.77 11.09 79.10 128.50 106.24 9.83 77.80 129.70

H-Angle (Pg0UL-Pg0Na0) (°) 8.01 5.84 –6.80 22.10 11.00 4.30 1.10 22.30

UFH (G0-Sn0) (mm) 64.22 5.53 54.30 78.70 62.69 4.42 52.50 78.20

LFH (Sn0-Me0) (mm) 69.90 7.84 53.00 91.40 66.50 6.17 48.80 79.60

K



246 H. Lee et al.

Table 3 (Continued)
Tab. 3 (Fortsetzung)

Surgery Non-surgery

Mean SD Min Max Mean SD Min Max

Facial proportions (hard tissue)

Upper face height (N-ANS) (mm) 51.60 5.00 42.40 67.80 50.02 3.35 43.20 58.00

Lower face height (ANS-Me)
(mm)

64.90 6.55 50.40 80.90 60.56 5.84 46.90 77.30

UFH (N-ANS/(N-ANS+ANS-
Me)) (%)

44.32 2.32 38.60 48.50 45.30 2.03 40.20 51.20

LFH (ANS-Me/(N-ANS+ANS-
Me)) (%)

55.68 2.32 51.50 61.40 54.70 2.03 48.80 59.80

Posterior face height (Co-Go)
(mm)

48.18 6.88 35.50 71.30 45.03 5.93 33.50 66.90

PFH:AFH (Co-Go: N-Me) (%) 56.98 4.43 47.40 68.70 56.62 4.17 48.70 70.50

Profile

Convexity (NA-APo) (°) –10.70 6.23 –32.70 4.00 –7.18 4.36 –17.80 2.20

Facial angle (FH-NPo) (°) 93.91 3.66 84.80 101.70 91.14 3.79 80.70 105.20

SD standard deviation, Min minimum,Max maximum

Discussion

Machine learning has been applied in many areas in den-
tistry for classification problems [13, 25]. The decision for
surgery or non-surgery can be seen as a classification prob-
lem. Both models used in this study have previously been
proven to be useful when the primary goal was outcome
prediction and important interactions, or complex nonlin-
earities existed in a data set [26]. As RF is an ensemble
of 200 decision trees and each individual tree in turn con-
tains multiple leaf nodes (each node constitutes a rule) the
results predicted by RF cannot be easily interpreted by the
end user. It is often used as a black-box system, which may
not present a desirable use case scenario in clinical settings.
LR only used a single rule involving eight variables mak-
ing it a far better interpretable model than RF. The best
measurement to determine the success of each model is to
assess their performance over a range of various threshold
settings rather than a single operating point. Both the RF
and the LR model showed high separability when classify-
ing each patient for surgical or nonsurgical treatment with
an AUC of 0.9395 and 0.937, respectively.

At a probability threshold of 0.50, RF was a little better
overall at correctly classifying 90% patients for surgical or
non-surgical treatment. RF was also slightly better for cor-
rectly identifying non-surgical patients with a specificity of
93%. Similarly, high levels of success were seen in other
machine learning models when faced with classification be-
tween extractions [27] or surgery [21]. LR was slightly
better for identifying patients requiring surgery with a sen-
sitivity of 89%, but the tradeoff was that it was a bit worse
for PPV. This shows that the model had a higher chance of
identifying a patient as needing surgery when it was not rec-

ommended by the clinicians. In this study, borderline cases
were defined by the 29 cases in which complete agreement
was not obtained in the initial blinded treatment planning
by each clinician. Of these cases, 22 were assigned to the
training set and 7 were in the test set. In both models, all the
cases that failed to identify the need for surgery were bor-
derline cases. In the LR model, only 1 of the misidentified
non-surgery cases was considered a borderline case. There
were no borderline cases misidentified in the RF model for
non-surgery. For the misidentified surgery cases, 2 of the
cases in the LR model were considered borderline cases.
There were 3 borderline cases misidentified in the RF model
for surgery.

For this study, the input features were increased when
compared to studies using similar models to expand the
search for causal relationships between the independent and
dependent variables [21, 27]. Many of the selected features
are identical to what was found in previous studies that eval-
uated the surgery decision for skeletal class III patients [2,
4, 28]. More importantly, all these features play an impor-
tant role in our clinical evaluation and treatment planning
process. From a clinician’s perspective, the greatest indi-
cator for orthognathic surgery is a severe anteroposterior
(AP) discrepancy between both jaws. This is mostly seen
with patients with a very negative ANB and Wits appraisal
[28]. These patients also tend to present with a very nega-
tive overjet and severe class III molar classification.

In the most severe class III cases, patients will have an
increased vertical skeletal pattern which is a combination
of AP and vertical problems that typically presents with an
increased lower face height [29]. These cases almost al-
ways require surgery because the movements necessary to
correct the vertical relationship will worsen the AP relation-
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Fig. 2 a Receiver operating characteristic curve obtained by the random forest classifier on the test set with an area under the curve of 0.9395;
95% confidence intervals are at [0.7908 0.9799]. b Classification of the random forest model with a 0.5 probability threshold. c Receiver operating
characteristic curve obtained by the logistic regression classifier on the test set with an area under the curve of 0.937; 95% confidence intervals
are at [0.8467 0.9812]. d Classification of the logistic regression model with a 0.5 probability threshold. White and blue dots in panels b and d
represent the error bars. NPV negative predictive value, PPV positive predictive value
Abb. 2 a ROC(„receiver operating characteristic“)-Kurve des Random-Forest-Klassifikators für den Testsatz mit einer Fläche unter der Kurve von
0,9395; 95%-Konfidenzintervalle liegen bei [0,7908 0,9799]. bKlassifizierung des Random-Forest-Modells mit einer Wahrscheinlichkeitsschwelle
von 0,5. c ROC-Kurve des logistischen Regressionsklassifikators für den Testsatz mit einer AUC von 0,937; 95%-Konfidenzintervalle liegen bei
[0,8467 0,9812]. d Klassifizierung des logistischen Regressionsmodells mit einer Wahrscheinlichkeitsschwelle von 0,5. NPV negativ prädiktiver
Wert, PPV positiv prädiktiver Wert

ship [30]. However, the advancement of skeletal anchorage
systems has allowed for better non-surgical treatment suc-
cess in patients with mild to moderate anterior skeletal open
bites [31].

Some of the more challenging clinical decisions are on
cases that could be considered borderline. The most im-
portant clinical consideration in these patients is whether
the patient will be able to tolerate the dental compensa-
tion without critically effecting the esthetic result [32, 33].
The angulation of the lower incisors tends to become more
compensated with camouflage treatment [34]. Patients who
will more likely require surgical treatment exhibit more

protrusive maxillary incisors, lingually inclined mandibular
incisors, and a retrusive upper lip [30]. Generally, surgical
treatment results in greater skeletal and profile changes due
to the normalization of the skeletal bases [28]. The Hold-
away H angle can be used to assess the balance of the lip
profile to the rest of the face to determine an acceptable
treatment goal for a surgical versus non-surgical approach
[35]. Eslami et al. showed that the Holdaway H angle and
the Wits appraisal can be used as critical diagnostic fea-
tures to correctly classify 81% of patients when determining
a treatment decision [4]. In another study by Stellzig-Eisen-
hauer et al., 92% of the patients were correctly classified
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Table 4 Features selected by the logistic regression classifier with non-
zero weights. Weights are optimized on normalized features
Tab. 4 Vom logistischen Regressionsklassifikator ausgewählte Merk-
male mit Gewichtungen ungleich Null. Die Gewichtungen werden für
normalisierte Merkmale optimiert

Features Weights ICC

Chief complaint: Appearance of teeth –0.3162 –

Class 1 molar occlusion –2.0211 –

Full step class III molar occlusion 2.5011 –

Overjet –1.9514 0.99

ANB (°) –0.8913 0.89

Lower incisors to mandible (°) –0.8011 0.96

H-angle (°) –0.4425 0.99

Lower face height 0.1099 0.97

ICC intraclass correlation coefficient

with the Wits appraisal being the most decisive parameter
[5]. The Holdaway H angle alone has been used to success-
fully classify 87% of patients [2].

Limitations and future directions

This study was designed as a feasibility study to demon-
strate the possibility of using machine learning with
cephalometric and demographic data and was limited by
the sample size available during the time the study was
conducted. However, even with the relatively small training
sample, the method was found to be successful at classi-
fying patients in the test sample. Further follow-up studies
with bigger data will help to improve the accuracy of the
algorithm and allow these models to serve as another tool
for orthodontists that can be used to aid in the treatment
planning of surgery cases. Furthermore, adding a larger
patient sample size will allow future studies to include the
treatment decisions of a greater variety of experienced clin-
icians to incorporate differences in treatment philosophies
to help refine the algorithm and shed more light on the
borderline cases. Future studies should also incorporate di-
agnostic variables associated with the transverse dimension
of occlusion which has been previously shown to improve
the success rate of the model [6].

Conclusions

This study shows that logistic regression and random forest
machine learning models can be used to generate accurate
and reliable algorithms to successfully classify up to 90% of
patients in the treatment planning of class III orthognathic
surgery. The features selected by each algorithm coincide
with the clinical features that we as clinicians weigh heavily
when determining a treatment plan for these patients. This

study further supports that overjet, Wits appraisal, lower
incisor angulation, and Holdaway H angle can be used as
strong predictors in assessing a patient’s surgical needs.
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