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Spatial iTME analysis of KRAS mutant
NSCLC and immunotherapy outcome
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We conducted spatial immune tumor microenvironment (iTME) profiling using formalin-fixed paraffin-
embedded (FFPE) samples of 25 KRAS-mutated non-small cell lung cancer (NSCLC) patients treated
with immune checkpoint inhibitors (ICIs), including 12 responders and 13 non-responders. An eleven-
marker panel (CD3,CD4,CD8, FOXP3,CD68, arginase-1, CD33,HLA-DR, pan-keratin (PanCK), PD-1,
and PD-L1) was used to study the tumor and immune cell compositions. Spatial features at single cell
level with cellular neighborhoods and fractal analysis were determined. Spatial features and different
subgroups of CD68+ cells and FOXP3+ cells being associatedwith response or resistance to ICIswere
also identified. In particular, CD68+ cells, CD33+ and FOXP3+ cells were found to be associated with
resistance. Interestingly, there was also significant association between non-nuclear expression of
FOXP3 being resistant to ICIs. We identified CD68dim cells in the lung cancer tissues being associated
with improved responses, which should be insightful for future studies of tumor immunity.

Kirsten Rat Sarcoma virus (KRAS) gene is one of the most commonly
mutated oncogenes in lung cancer1,2. Targeting KRAS has been challenging
until the discovery of the allosteric mutant-specific inhibition by covalent
binding to the mutant G12C residue beneath the switch-II region, which
locks it in the inactive guanosine diphosphate (GDP) bound status3. Positive
results from clinical trials of the KRASG12C inhibitors, including Sotorasib
(AMG510) and Adagrasib (MRTX849), led to approval by the US FDA for
previously treated KRASG12C-mutated advanced non-small cell lung cancer
(NSCLC)4–7. Efforts are underway to target other mutant forms of KRAS,
such as the development of MRTX 1133, a KRASG12D inhibitor with pro-
mising results8. PanKRAS inhibitor RMC-6236which binds CyclophilinA,
a chaperone protein, and active GTP-bound RAS (RAS ON inhibitor) is in
phase 1 trial of patients with G12 mutations (NCT05379985). However,
there are challenges including short duration of response, primary and
secondary resistance to KRAS inhibitors. Both genomic and non-genomic
mechanisms have been associated with resistance to KRAS inhibitors9.

Interestingly, KRASG12C inhibitors can cause a pro-inflammatory tumor
microenvironment (TME) with increased T cells, macrophages and den-
dritic cell infiltration10.KRAS is known to have immunemodulatory effects
and tumor microenvironment changes are critical for durable treatment
responses11,12. Increasedmacrophage infiltration in theTMEofMRTX1133-
treated tumors inmice has been reported, and it has been shown that T cell
immunity is essential for durable responses to KRAS inhibition8. KRAS
inhibitor combination with immune checkpoint inhibitors (ICIs) is under
clinical development13. Understanding the crosstalk between immu-
notherapy and KRAS-targeted therapies has great scientific and clinical
significance.

ICIs are currently used as monotherapy or combination therapy in
frontline and subsequent lines of therapy formetastatic NSCLC aswell as in
the neoadjuvant and adjuvant settings14–19. Primary and acquired resistance
to ICIs are common with response rates of ~20% for monotherapy and of
~40% for combination therapy, while most patients eventually have
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progression of the disease20,21. Reports on the outcome of ICI treatment in
KRAS mutated NSCLC are inconclusive due to heterogeneity and
complexity22–27. The underlying mechanisms of resistance to ICIs are not
fully understood. Co-mutations with KRAS have been thought to be pri-
mary molecular drivers that define immunological response, such as
KEAP1/STK11 mutations that are associated with reduced immune cells
infiltration and resistance to immune checkpoint inhibitors28,29. With more
KRAS inhibitors in clinical development and combination therapies of
KRAS inhibition and immunotherapy, there is an unmet need to char-
acterize the immunological features of patients with KRAS mutated lung
cancer to facilitate translational studies.

It is essential to understand the immune tumor microenvironment
(iTME)30. Recent development of single cell analytics with formalin-fixed
paraffin-embedded (FFPE) tissue samples has provides a useful tool for
dissecting the immunological features of TME31–33. In this project, we stu-
died the lung tumor tissue of patients with NSCLC who had response or
resistance to ICIs using image mass cytometry. Tumor cells and immune
cells were studied at single cell level and spatial analysis of different cell types
and cell neighborhoods (CNs). We hypothesized that the iTME was asso-
ciatedwith treatment outcomes in patientswithKRASmutatedNSCLCand
we aimed to identify the specific iTME profile that determined response
status.

Results
KRAS mutation and co-mutations with clinical outcome
Figure 1a demonstrates the analysis pipeline for this study. Patients were
stratified according to their treatment response status with 13 patients who
responded to immunotherapy (responders) and 12 patients who did not
respond to immunotherapy (non-responders) (Table 1). Clinical char-
acteristics and landscape of KRAS mutations, comutations and immune
features are summarized inFig. 1b.Themajority of thepatients (21/25; 84%)
received ICImonotherapywhile a fewpatients (4/25; 16%)were treatedwith
a chemotherapy-immunotherapy combination (Fig. 1 and Supplementary
Table 1). There were no significant differences based on ICI treatment
between responders and non-responders (Supplementary Table 2). Within
the responder group, theKRASmutations were G12C (n = 4), G12V n = 3),
G12A (n = 2), G12D (n = 2), and Q61H (n = 2). Conversely, the non-
responder group had G12C (n = 5), G12D (n = 3), G12V (n = 3), and Q61L
(n = 1)KRASmutations. Themost common co-mutationwasTP53 (n = 9),
followed by ARID1A (n = 4), LRP1B (n = 4), ATM (n = 3), and SMARCA4
(n = 3). Notably, none of the responders had KEAP1, STK11, CDKN2A/B,
nor SMARCA4mutation.All patientswhohadmutations inKEAP1 (n = 3),
STK11 (n = 2), CDKN2A/B (n = 2), or SMARCA4 (n = 3) were non-
responders (Supplementary Table 3). All patients who had ATM (n = 3) or
FAT1 (n = 2) mutation were responders. The median overall survival (OS)
of responders was 26.3 months versus 15.6 months for non-responders
(p < 0.05). Programmed Cell Death Ligand 1 (PD-L1) levels were also
associated with differences in OS in KRAS mutated patients. Patients who
had PD-L1 levels at or above 50% had a significantly increased median OS
(median OS not reached) than patients who were PD-L1 negative (median
OS 17.0 months) and PD-L1 level at 1-50% (median OS not reached,
19.0 months using 95% low confidence interval, p < 0.05) (Fig. 1c). Com-
pared to patients with PD-L1 at 1% and above, the hazard ratio (HR) of
patients with negative PD-L1 was 9.55 (95% CI 1.05 ~ 87, p < 0.05). Within
the 11 patients who had PD-L1 negative or 1–50%, 6 had progression of
disease (54.5%) and 5 had partial response (45.5%). Within the 8 patients
who had PD-L1 ≥ 50%, 6 patients (75%) were responders and 2 patients
(25%) were non-responders (Fig. 1b).

Immune tumor microenvironment
Todefine the iTME,we profiled tumor samples from25patients usingmass
cytometry by time of flight imaging mass cytometry (IMC). The multiplex
IMC data were converted to Tag Image File Format (TIFF image) for
downstreamcellular image analysis. Each cell was segmentedusingmultiple
markers to define the cell area and the background. Cells were clustered

using Uniform Manifold Approximation and Projection (UMAP) with all
markers and were annotated based on the cluster’s predominant marker
profile. The cellular neighborhood was identified using the local cellular
composition (Fig. 1a). The markers used to characterize the immune and
tumor compartments of the iTME were: CD3, CD4, CD8a, FOXP3, PD-1,
PD-L1,CD68,CD33, andpan-keratin (PanCK). From this analysis, 14main
cell types were identified, including CD4 T cells (CD3+ and CD4+), CD8
T cells (CD3+ and CD8+), CD68+ cells, CD68+CD33+PD-L1+,
CD68+PancCK+, CD68+PD-L1+, FOXP3 T-reg cells (CD3+ FOXP3+),
PanCK+, PanCK+CD33+FOXP3+, PanCK+CD68+CD33+PDL1+FOXP3+,
PanCK+PDL1, PanCK+PDL1+CD33+ andCD68dim (CD68weakly positive,
no other markers) cells. Cells without all the above specific markers were
classified as “others” cell type (Fig. 1d). Single-cell measurements for all
markers and cell spatial features were extracted from all images combined
with the segmentation masks; single-cell level marker intensities of each
sample were integrated using general linear model to remove the sample
variation. The UMAP plot of cell colors was coded by the main cell types
identified in the IMC experiment, including 14main cell types based on the
combination of the 11 biomarkers (Fig. 1d).

The individual cells were clustered based on marker expression using
an unsupervised clustering algorithm, PhenoGraph34. The cell phenotype
was annotated based on the expression intensity of all measured markers.
We founddifferent levels of intensity ofCD68markers indifferent cellswith
some cells being weakly positive for CD68 (CD68dim) while others were
stronglypositive (CD68+) (SupplementaryFig. 1 andSupplementary Fig. 2).
For cells which were CD68 positive, the clustering algorithm identified
CD68/CD33/PD-L1 triple positive, CD68/PanCK double positive, and
CD68/PD-L1 double positive groups of cells. Interestingly, the CD68dim

cluster was distinctly detected in the responders rather than the non-
responders (Fig. 2a, b). Five clusters of PanCK positive tumor cells were
identified: PanCK positive, PanCK/PD-L1 double positive, PanCK/PD-L1/
CD33 triple positive, PanCK/CD33/FOXP3 triple positive, and PanCK/
CD68/CD33/PD-L1/FOXP3 positive (Fig. 2a, b). The phenotypic maps
were colored to show the expression and spatial distribution of the indivi-
dual markers and subtype cells (Fig. 2c). As illustrated in Fig. 2a (respon-
ders) andFig. 2b (non-responders), therewas enrichment ofCD8+Tcells in
responders, and enrichment of FOXP3+ Treg cells and PanCK/CD33/
FOXP3 triple positive cells in non-responders. The cell marker spatial
localization was analyzed using fractal analysis to quantify the spatial dis-
tribution of the individual cells using average fractal dimension (FD). We
utilized FD to determine the morphologies of immune and tumor markers
and quantify the difference between responders and non-responders. Large
FDwas commonly associated with amore complex spatial distribution and
a plethora of short-term variations35,36. In our analysis, we found that
immune cellmarkers includingCD3,CD4,CD8, andCD68were associated
with slightly larger FD in responders as compared to non-responders.
Interestingly, there was no difference in FOXP3, PD-1 or PD-L1 FD scores
between responders and non-responders. However, CD33 showed a lower
FD in responders as compared to non-responders (p < 0.05, Fig. 2d).

Diverged immune cell phenotypes in responder versus non-
responders
Toevaluate the iTMEdiversity in the tissues,wemeasured the frequencies of
each cell subtype composition between responders and non-responders
across the 14 diversity markers, i.e., CD4 T cell, CD8 T Cell, CD68,
CD68+CD33+PDL1+, CD68+PanCK+, CD68+PDL1+, FOXP3+Treg cell,
others, PanCK, PanCK+CD33+FOXP3+, PanCK+CD68+CD33+

PDL1+FOXP3+, PanCK+PDL1+, PanCK+PDL1+CD33+, and CD68dim

(CD68 weakly positive) (Fig. 3a). Within the responders, we found that
CD68dim cells (28.85%) were the major cell type followed by CD8+ T cells
(14.14%) and PanCK+PDL1+ cells (10.32%). In the non-responders,
PanCK+CD33+FOXP3+ cells (36.49%), CD68+ (22.31%), and CD8+

(8.39%) were the top three abundant cell types. CD68dim cells were pre-
dominant (top cell population based on the percentage) in 12/13 respon-
ders. However, ≥5% CD68+ cells were detected in all tumors from the 12
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non-responders (Fig. 3c).Also, 8/13 responders compared toonly 4/12non-
responders had ≥5% CD8+ T cells in their tumor tissues. Interestingly,
PanCK+CD33+FOXP3+ triple positive cells were detected in 12/12 non-

responders with ≥5% abundance and it was predominant in 9/12 non-
responders (Fig. 3b). 6/13 responders had ≥5% PanCK+PDL1+ cells
(Fig. 3b).An increase in Foxp3+T regulatory cells CD3+CD4+FOXP3+)was

Fig. 1 | Overview of the patient characteristics and immune tumor micro-
environment. aWorkflow of the multiplex IMC imaging analysis of tumor tissues
from the 25 patients with non-small cell lung cancer (NSCLC). Created with
BioRender.com. b KRAS mutation, co-mutations, clinical features and main cell

types of each patient grouped by response to immune checkpoint inhibitors (ICIs).
c Overall survival (OS) by response to ICIs and Programmed Cell Death Ligand 1
(PD-L1) levels. dUniformManifold Approximation and Projection (UMAP) plot of
the main cell types identified with color coded different groups of cells.
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associated with non-responders (p < 0.01) (Fig. 3d). We found different
subtypes of CD68 positive cells with CD68dim cells associated with respon-
ders and enrichment of other CD68+ cells were correlated with non-
responders (p < 0.001). Furthermore, PanCK+/CD33+/FOXP+ triple posi-
tive cells were enriched in non-responders (p < 0.001) and PanCK positive,
CD68+/PanCK+ double positive, and PanCK+/PDL1+ double positive cells
were associated with response to ICIs (p < 0.001; Fig. 3d). To measure the
degree of iTME heterogeneity, diversity score of a tumor was calculated
based on the 14 tumor and immune cell subtypes. We found that all
responders had high diversity scores. The non-responders were stratified
into two distinct subgroups, i.e., one subgroupwith high diversity score and
the other subgroup with low diversity scores (Fig. 3e).

Differences in iTME landscape and cellular neighborhoods
between responders and non-responders
To demonstrate and quantify the spatial heterogeneity of iTME, we visua-
lized the tissues as aggregates of cellular neighborhood (CN), where a cel-
lular neighborhood was defined as the local cellular composition around a
cell. We identified 9 CNs (C0-C8). The CN clusters were named using the
predominant cell types (Fig. 4a). The density of the individual CN was
characterized by the proportions of each cell type that constituted most of
the cells in the region (Fig. 4b). Figure 4a, b illustrate the CN composition
and density of the iTME architecture within each tissue sample from the 25
patients. C0 was observed in majority of non-responders. It was enriched
with PanCK+, CD33+ cells, and FOXP3+T regulatory cells and lack of other
cell types. Conversely, most responders were enriched for C3 and C6-7,
which contained CD8+ T cells and CD68dim cells. The analysis revealed
distinct patterns in the iTME architecture where the individual CN shared
little to no overlap and had distinct borders within the tissues in both
responders and non-responders.

Following the abstract visualization analysis of CN C0, we found the
marker FOXP3 being positive within the cytoplasm of the PanCK+ cell in
four tumor tissues of non-responders (S03, S04, S05 and S22, Fig. 4c). We
thenreviewedC2and foundadistinct FOXP3+ signalwhichwas localized in
the nucleus in tissues of S11 (responder) and S18 (responder) (Fig. 4c).
Upon further analysis of the localization of themarkers and the cell nuclear
signal, we identified CD4+CD8+ double positive T cell in two samples, one
from a responder (S11) and one from a non-responder (S15) (Fig. 4d).
To better visualize the spatial pattern of cellular neighborhoods and cell

types, we demonstrated the detailed IMC images, cell type annotation in
color images, and CN color-coding of tissue from a non-responder (S15)
(Fig. 4d, e). Although, CD4+CD8+ double positive T cell was detected, they
were uncommonanddispersed by the other cells such as PanCK+, FOXP3+,
and CD68+ cells (Fig. 4e).

Discussion
In this study,we conducted spatial iTMEprofiling usingFFPE samples of 25
KRAS mutated NSCLC patients treated with ICIs. We studied the tumor
and immune cell compositions and spatial features at the single cell level and
by cellular neighborhoods. We found spatial features and the different
subgroups ofCD68positive cells andFOXP3+ cells associatedwith response
and resistance to checkpoint inhibitors.

Inour study, 12patients hadapartial response (responders) and13had
progression of disease (non-responders) to ICIs.Only 4 patients (16%)were
never smokers and most patients were smokers, which was expected con-
sidering the association of KRAS mutation and tobacco smoking37. Con-
sistent with other reports, KEAP1, STK11, CDKN2A/B, and SMARCA4
mutations were associated with resistance to immunotherapy (Fig. 1)28,29,38.
Our finding of ATM mutation being associated with responses was con-
sistent with a large dataset report39. Others reported that STK11 andKEAP1
mutational inactivation resulted in fewer immune cells in KRAS mutated
lung cancer40. We did not have enough samples to compare STK11/KEAP1
mutated versusnon-mutatedpatients for the iTMEanalysis.KRAS-mutated
cancers are heterogeneous with different mutation allele subtypes and co-
mutations41–43. KRASG12D mutation has been reported to be more immu-
nosuppressive. However, we found no statistically significant difference
between different KRAS mutation alleles regarding responses to immu-
notherapy and iTME features, possibly due to our limited sample size
(Supplementary Table 4)44. We found patients with PD-L1 level ≥50%
had significantly longer survival than patients with PD-L1 < 50%,
which suggests further larger studies and prospective clinical trials are
required to determine the impact of PD-L1 expression in KRAS-
mutated patients. Our data suggests that KRAS-mutated patients with
PD-L1 ≥ 50% may benefit from the use of immunotherapy as com-
pared to those with PD-L1 < 50%. Our results are consistent with the
emerging data on preference of chemoimmunotherapy over immu-
notherapy alone for KRAS mutated patients who had PD-L1 < 50% or
with co-mutation of KEAP1/STK1145.

We compared the responders and non-responders to identify the
differences of the population distribution of cell subtypes in iTME. It is well
known that CD8+ T cells are associated with response to ICIs46. Not sur-
prisingly, therewere increasedCD8+T cells in the responders in the present
study (Figs. 2 and 3). Tumoral immune cell infiltration especially tumor-
infiltrating lymphocytes (TILs) are important for immunotherapy but there
were tumors which had abundant TILs but not responding to
immunotherapy47–49. We found high diversity, more subtypes of immune
cells, in responders but not in the non-responders (Fig. 3e). The ones with
low diversity could be the immune desert type tumors, that have fewer types
of immune cells detected50. This is consistentwith the transcriptomic data of
two distinct transcriptional states of tumor microenvironmental signature
with resistance to ICIs39. Our data suggested an immune suppressive
environment in non-responders despite the presence of immune cells. The
lack of functional immunity against cancer has not been fully understood.
The functional status of myeloid cells is critical for cancer immunity,
responses and resistance to ICIs51. We found different types of CD68
positive cells based on the intensity of the CD68 (weakly positive and
strongly positive cells). The CD68 weakly positive cluster (CD68dim) was
detected in the responders but not in the non-responders (Fig. 2a, b). CD68
is commonly used as a monocyte/macrophage marker. However, CD68 is
also expressed in non-myeloid cells such as lymphoid cells, fibroblasts and
tumor cells52. There is a lack of consensus in the human macrophage
markers panel for staining. It is well known that the functional status of
macrophages is context-dependent53. We suspect M1 versus M2 macro-
phages definition could be oversimplified and the spectrum of macrophage

Table 1 | Patient characteristics

PD PR p-valuea

Age Median (IQR) 67 (57-72) 65 (56-74) 0.757

Gender Female 4 (33.3%) 6 (46.2%) 0.806

Male 8 (66.7%) 7 (53.8%)

Smoking Status Never 3 (25.0%) 1 (7.7%) 0.364

Current 1 (8.3%) 3 (23.1%)

Former 8 (66.7%) 9 (69.2%)

Histology Adenocarcinoma 10 (83.3%) 13 (100.0%) 0.308

Squamous 1 (8.3%) 0 (0.0%)

Others 1 (8.3%) 0 (0.0%)

Stage IIB 0 (0.0%) 1 (7.7%) 0.511

III 1 (8.3%) 2 (15.4%)

IV 11 (91.7%) 10 (76.9%)

PD-L1 Negative 3 (25.0%) 5 (38.5%) 0.105

1% to <50% 3 (25.0%) 0(0%)

50% and above 2 (16.7%) 6 (46.2%)

Unknown 4(33.3%) 2(15.4%)

IQR Interquartile range, PD progression of disease, PR partial response.
aChi-square test.
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status could be continuous rather than dichotomous. There could be many
subsets of CD68 expressing cells with distinct functions. In our study we
found a group of cells with lower levels of CD68 expression (CD68dim cells)
distinguished themselves from those with higher expression of CD68. The
CD68dim cells identified in the present study are not well-defined and war-
rant further analysis. We found CD68 positive cells (not CD68dim) and
PanCK+/CD33+/FOXP3+ cells being associatedwith resistance to ICIs (Fig.
3d), which was generally in agreement with the complexity of the myeloid
cells and the context dependent functional spectrum of myeloid derived

suppressor cells (MDSCs)54,55. Tumor cells expressing immune markers
could be part of the mechanism of immune escape in the cancer immune
cycle. We found two different patterns of FOXP3 expression, i.e., nuclear
expressionwhichwas consistentwithT reg cells and cytoplasmic expression
of FOXP3 (Fig. 4c). Cytoplasmic FOXP3+ tumor cells were reported pre-
viously, and they were associated with worse prognosis in patients with
breast cancer56. Conversely, significantly elevated FOXP3+ T reg densities
were found in responders compared to non-responders in melanoma by
IMC analysis of TME which could mediate tumor rejection after the ICIs57.

Fig. 2 | Cell spatial distribution, composition and fractal analysis in tumor tis-
sues. a Cell type distribution color coded by the 14 different cell types across the
tissue samples in responders. b Cell type distribution color coded by the 14 different
cell types across the tissue samples in non-responders. c Representative tissue image
of immune and tumor cell markers illustrated by IMC. The top two panels represent
nuclei (blue) and markers of CD3 (yellow), CD4 (green), CD8 (red), FOXP3 (teal),

Arg1 (orange), and CD68 (purple). The bottom two panels represent nuclei (blue)
and markers of CD33 (green), CD68 (purple), PanCK (yellow), PD-1 (teal), PD-L1
(red), and HLA-DR (orange). CD68 was included in both panels because CD68
positivity was commonly seen in all samples. d Fractal analysis comparing individual
cell marker distribution of average fractal dimension (FD) scores between respon-
ders and non-responders. *p < 0.05; ns not significant.
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We found FOXP3+ expression being associated with resistance to ICIs (Fig.
3d). Our result was consistent with the findings of enriched CD68+ mac-
rophages and FOXP3+ cells in ICI refractory NSCLC58,59. Targeting FOXP3
by the PRMT5 inhibitor could be promising in lung cancer treatment60–62.

Interestingly, we found CD4+CD8+ double positive T (DPT) cells in
the KRAS mutated NSCLC tissues (Fig. 4d). The RAS/MAPK signaling
pathway is critical for thymocytes differentiating from CD4-CD8-double
negative toCD4+/CD8+DPTs and for positive selection ofDPTs intoCD4+

or CD8+ single cells by T cell receptor(TCR)63,64. KRAS knockout is
embryonically lethal and KRASG12D knockin mutation caused CD4+/CD8+

double positive T lymphoblasts leukemia in the mice model65,66. Little is
known about CD4+/CD8+ DPT cells found in peripheral tissues (~5%) but
they were associated with peripheral immune tolerance and outcome of
cancer67–73. Interestingly, CD4+/CD8+ DPT cells were identified and were
found to form dense compartments that were highly correlated with
responders and effector T cells functional gene expression inmelanoma57. It

Fig. 3 | Distribution of main cell types between responders and non-responders.
a Total composition of the 14 subtypes of cells in the responders and non-
responders. b Cell subtype composition of each tissue sample of the 13 responders.
c Cell subtype composition of each tissue sample of the 12 non-responders. d Box

plots highlighting the differences in each cell subtype between responders and non-
responders. eDiversity score of cell subtype population according to the mean value
of diversity (Reciprocal Simpson index) between the responders and the non-
responders. *<0.05., **<0.01, ***<0.001, ****<0.0001, ns not significant.
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Fig. 4 | Cellular neighborhood characteristics and local neighborhood clusters.
a The nine defined local cellular neighborhoods (CN) and the cell composition in
each tumor sample (C0-C8). b Composition of the nine distinct cellular neighbor-
hoods based on the frequencies of each cell types. c Color-coded cell neighborhood
map as defined in the prior panel a corresponding to the IMC images from repre-
sented tissue samples S04 (non-responder), S05 (non-responder), S22(non-

responder), S03(non-responder), S11 (responder) and S18(responder). dMagnified
images of select tumor tissues of S11 (responder) and S15 (non-responder) showing
the double positive CD4 and CD8 T cells. eHigh resolution image of seven cell type
markers (top row), cell composition map (bottom left) and corresponding color-
coded cell neighborhood map (bottom right) for S15 (non-responder).
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has been reported that effector/memory T cells andmemory/early activated
CD8+ T cells generated after ICIs were associated with TCR diversity and
response to ICIs while the origin of these cells was not clear74. The
CD4+CD8+DPT cells were proposed to be reprogrammed from CD8+

T cells since activated CD8+ could acquire CD4 expression and
CD4+CD8+DPTs had effector/memory phenotype and self-renewal
capacity69,70,73,75–77. Future studies on KRAS and peripheral DPT cells with
a larger population might be insightful for lung cancer immunotherapy.

Immune architectures are associated with cancer outcome78. Hetero-
geneity of immune cell function may exist beyond the abundance and
intensity of expression markers, and the spatial distribution of the cells is
important. In addition to analysis at the single cell level, we also conducted
spatial analysis of the cellular neighborhoods (CNs). We identified 9 CNs
(C0-C8) (Fig. 4a) and the iTME architectures differed between responders
and nonresponders (Fig. 4a, b). Similarly, a large cohort study evaluating
immunotherapy response in triple-negative breast cancer using spatial IMC
analysis showed a similar phenomenon of 16 TME cell phenotypes asso-
ciated with response most notably CD8+TCF1+T cells being the strongest
predictor of overall response79. The T cell stemness and priming by mac-
rophages is critical for ICI treatment effects. Our panel focused on the
interaction of myeloid cells and T cells within cancer. Our real-world data
for patients treated with ICIs provides additional information for ther-
apeutics development targeting myeloid cells and reducing T reg in lung
cancer. In our study,C0whichwas enrichedwithPanCK+, CD33+ cells, and
FOXP3+ T regulatory cells was observed in majority of nonresponders
(Fig. 4b). However, most responders were enriched with C3, C6-C7 which
contained mostly CD8+ and CD68+ cells (Fig. 4a, b). A larger cohort study
evaluating immunotherapy response in lung cancer patients using differ-
ential IMC markers, identified CN23 neighborhood, consisting of five
markers CD14, CD16, CD94, αSMA and CD117, most significantly asso-
ciated with overall survival suggesting specific neighborhood interactions
may have prognostic value80. Interestingly, C0 usually located inside the C1
with C1 being around the borders of the C0 (Fig. 4a). C1 contained CD68+

cells in addition to the PanCK+, CD33+ cells, andFOXP3+T regulatory cells
(Fig. 4b, c). In our FD analysis, we found that immune cell markers
including CD3, CD4, CD8, and CD68 were associated with slightly larger
FD in the responders as compared to thenon-responders andCD33 showed
a lower FD in responders (p < 0.05, Fig. 2d). FD is useful for describing and
quantifying the morphology and architecture of tumors35. Larger FD is
associated with geometrical complexity and irregularity of shapes and
patterns36. Consistent with previously reported results, patients with enri-
chedCD4+ and CD8+ T cells interacting with tumor cells were associated
with better outcome and the myeloid component/M2 macrophage were
critical for T cells80,81. The enrichment of FOXP3+T reg were associated
with worse survival and spatial interaction of suppressive myeloid cells and
T regs were prominent in more aggressive tumors80. These results indicate
that the architectures of boundary interaction of compartmentalized tumor
CNandmacrophageCNmay suppress theTcell immunity and facilitate the
peripheral immune tolerance of tumor. It is unclear how the architectures of
tumor cells and immunecellswere regulated. Future studies in spatial cancer
immunology are warranted.

There were limitations to this study. First, there were inherent lim-
itations associated with its retrospective study design as cofounding vari-
ables such as patients’ age, sex, clinical staging, prior treatment regimen, etc.
may not be controlled. Second, this was a single institution study with
limited sample size and availability of tissues.We did not have paired tissue
samples before and post ICIs treatment for comparison nor peripheral
blood/lymph node samples for profiling of systemic/reginal immune cells.
Nevertheless, this descriptive retrospective analysis had its merits as it
provided a real world clinical andmolecular information onKRASmutated
lung cancer patients treated with ICIs. We provided multiplex immune
profiling of 11 markers simultaneously by the IMC platform using FFPE
tumor tissue samples. We found CD68+ macrophages, MDSCs and
FOXP3+ cells being associated with resistance to ICIs. We also identified a
population of CD68 weakly positive (CD68dim) cells in the lung cancer

tissues that being associated with improved responses, which may be
insightful for future studies of tumor immunity.

Methods
Patients
Archived lung cancer tissue samples were obtained under IRB 17281 in
accordancewithCity ofHope IRB andguidelinesofDeclaration ofHelsinki.
The City of Hope IRB granted a waiver of informed consent under 45 CFR
§ 46.116 based on determination that this research meets the following
requirements: (i) the research involves no more than minimal risk to the
subjects; (ii) the research could not practicably be carried out without the
requested waiver; (iii) the waiver will not adversely affect the rights and
welfare of the subjects. Initially we identified 87 KRAS-mutated NSCLC
patients treated atCity ofHope.Patientswere selected through retrospective
chart review and EMR schedule review on the basis of having a KRAS-
mutation detected by NGS at City of Hope38. Following this study, the 25
patients with KRASmutated NSCLC treated with ICIs at City of Hope had
tissue samples available for this study and were selected based on tissue
availability and response status of responders vs non-responders. Twenty-
three patients had lung adenocarcinoma, 1 patient had lung squamous
cancer and 1 patient had large cell carcinoma. The clinical tissue specimens
were collected prior to initiation of treatment at time of diagnosis and were
obtained retrospectively. Response status was evaluated clinically and
radiologically. Fifteen (60%) were male and 10 (40%) were female. Four
(16%) were current smokers, 17 (68%) were former smokers, and 4 (16%)
were never smokers. Of the 25 patients, 21 patients had a single KRAS
mutation and 4 patients were found to have multiple KRAS alterations.
Eight (32%) patients’ KRAS mutations were G12C, 4 (16%) were G12V, 2
(8%)wereG12A, 4(16%)wereG12D, 2(8%)wereQ61H, 1(4%)wereQ61L,
4 were others (1 patient with G12V/G12D/G12R and 3 patients with both
KRASmutation andKRAS amplification). The tumor stage was categorized
using the American Joint Committee on Cancer (AJCC) TNM criteria and
21 patients had stage IV lung cancer, with 3 patients with Stage III and 1
patient with Stage II. Among the 25 patients, 12 had partial responses (PR)
and 13 had progression of disease (PD) based on the iRECIST criteria82.

Tissue molecular profiling of tumor and immune cells
FFPE slides were stained with heavy metal-conjugated antibodies for
imaging mass cytometry (IMC) using the Fluidigm Hyperion™ imaging
system (Fluidigm Corporation, South San Francisco, CA, USA). An
eleven-marker panel (CD3, CD4, CD8a, FOXP3, CD68, arginase-1,
CD33, HLA-DR, Pan-Keratin (PanCK), PD-1, and PD-L1) of tumor
stromal and immune markers was assessed and quantified cellular rela-
tionships in the tumormicroenvironment. The slideswere simultaneously
stained by multiple antibodies and analyzed by IMC technology. Slides
were dewaxed in xylene and hydrated in descending grades of ethanol
(100%, 95%, 80%, 70%, 5 min each). The slides were then incubated in
heated Tris/EDTA antigen retrieval solution (Dako PH9, Agilent, Santa
Clara, CA) for 30min and blocked with 3% BSA solution for 45 min at
room temperature after washed with double distilled water (ddH2O) and
Dulbecco’s Phosphate Buffered Saline (DPBS). A custom panel of 11
metal-label antibodies (Supplementary Table 5) was generated according
to the protocol fromFluidigm. The slides were stainedwith the antibodies
cocktail in 0.5% BSA overnight at 4 ˚C in hydration chamber. After being
stained with antibodies, slides were washed with 0.2% Triton-X in DPBS
and then stained with Ir-Intercalator (1:600, Fluidigm) in DPBS for
30min at room temperature. The stained slides were sent for imaging
analysis after rinse and air dry. Tiled images were taken from the prepared
slides on a Zeiss Observer Z1 using a 5x/0.16 NA objective and stitched
using Zeiss ZEN Blue software (Carl Zeiss Microimaging). The images
were oriented using Image-Pro Premier 9.3.3 (Media Cybernetics, Balti-
more, MD) to assist in locating and accurately selecting the appropriate
regions of interest (ROIs) for laser ablation and data acquisition using the
Hyperion Imaging Cytometer (Fluidigm) on ROIs of 500um x 500um.
Representative intertumoral area (avoiding boundaries between stromal
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and tumoral areas) was selected for region of interest (ROI) using the
corresponding H&E histology slides.

Thedata of eachmarkerwere exported asTIFF format for downstream
quantification. A combination of markers including CD3, CD4, CD8,
FOXP3, CD68, arginase-1, CD33, HLA-DR, Pan-Keratin (PanCK), PD-1,
andPD-L1was used to generate cell segmentationmasks, which defined the
region of each individual cell and the background area on each image. Cell
segmentation was performed using CellProfiler based on the mix of the
markers images83, leveraging a probability image generated for cell nuclei,
cell membranes, and background through a machine learning approach
implemented in ImageJ’s Trainable Weka Segmentation plug-in84,85. The
modelwas trainedusing a combination (Fig. 1a andSupplementary Fig. 3A)
of cell membrane marker images to identify the cell membrane region, cell
nuclei marker images to delineate the cell nuclei region, and background
regions for background identification. Subsequently, this trainedmodelwas
applied to all samples to produce the probability image (Supplementary Fig.
3B). CellProfiler was then employed to segment individual cells from the
probability image. Nuclei were identified as primary objects based on the
nuclei probability using IndentifyPrimaryOjbect feature, and cytoplasmand
cell membrane were delineated by expanding identified nuclei to the border
between the cell cytoplasm/membrane and background using IdentifySe-
condaryObject feature with the propagation method86. The identified
nuclear and cellular boundaries were exported as Cell segmentation masks
in text image TIFF format files (Supplementary Fig. 3C) for signal quanti-
fication and neighborhood analysis.

Accurate cell counts and identification of spatial relationships
including co-localization and cell clustering were analyzed usingHistoCAT
software and Partek® Flow® software87,88. The IMC data underwent pre-
processing viaHistoCAT software for arcsinh transformation.Data fromall
25 patients were integrated using a general linear model to eliminate batch
effects and the same signal threshold was used across the patient tissue.
Mutated Genes are extracted from clinical reports as binary data. The Field
of view of the tissue is 500 um× 500 um (except sample 18). We detected
total of 27214 cells with an average of 1089 cells per patient. We classified
those cells into 13 subtypes based on their marker intensity profile (the
“other” cells were not included in the analysis due to a lack ofmarkers). The
amount of minimal abundant cells was 2.1% of total cells (Supplementary
Table 6). We included as many as possible patient samples for each phe-
notype to increase the detection power. Meanwhile, a novel approach,
dubbed Sensei, was utilized to determine whether the number of samples
and the number of cells were sufficient to ascertain changes between two
groups89. Single-cell measurements for all markers and cell spatial features
were extracted from all images combined with the segmentation masks;
single-cell level marker intensities of each sample were integrated using
general linear model to remove the sample variation. Multidimensional
reduction was performed via Uniform Manifold Approximation and Pro-
jection (UMAP)90, allowing for visualization of multiplexed measurement
within two-dimensional planes. An unsupervised clustering algorithm,
PhenoGraph was used to classify the cell phenotypes based on the abun-
dances of all measured markers34. The cell’s spatial features including size,
shape, and cell location were not included for the cell cluster analysis. The
cell population (percentage) difference between PR and PD patients was
tested using R’s stat package Wilcoxon test (version 3.6.2) and the results
were visualized using ggplot2 package (version 2.3)91,92. Cell population
diversitywas analyzedwith cell subtype percentages usingRdiverse package
(Ver 0.1.15)93. The high and lowdiversitywas determined using themean of
the simpson diversity index in each response groups94.

Neighborhood spatial analysis and fractal analysis
Neighborhood Spatial Analysis was performed using a cell spatial analysis
pipeline which determined the cellular composition within a 30-μm radius
around individual cells and performed unsupervised k-means clustering
(Python Scikit-learn, version 0.21.2) followed by manual annotation using
the main cell population in each cluster95. Fractal Dimension (FD) of each
marker was analyzed using the box count method implemented in FIJI

Fraclac Plug96. Each biomarker’s IMC image was binarized first and the FD
was analyzed. The results were summarized using the average FD for each
cohort. To compare the FD between the two cohorts in this study, each
Biomarker’s FDwasnormalized basedon its tumor cell biomarker (PanCK).

Statistical analysis
The clinical andmolecular features including tissue immune cell signatures
were analyzed and compared between the responders (n = 13) and non-
responders (n = 12). The OS was defined from the start of ICIs until death
due to any cause or last follow up. The association of clinical andmolecular
features with OS was analyzed by univariate COX proportional hazards
model independently. PD-L1 expressionwas categorized as negative (<1%),
1%–<50% and ≥50%. The Kaplan–Meier method was used to estimate OS
and the Log-rank test was used to compare the survival curves. The asso-
ciation of immune cell populations and expression level of immunemarkers
with clinical outcomes (OS, responses) were determined byWilcoxon tests,
Chi-square tests and logistic regression. Statistical analyses and data
visualizationwere performed using R (open source for statistical computing
anddatavisualization).All testswere two-sidedandP < 0.05was considered
statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
De-identified data is available from the corresponding author upon rea-
sonable request.
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