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Abstract

Alcohol consumption occurring in a social or solitary setting often yields different beha-

vioural responses in human subjects. For example, social drinking is associated with

positive effects while solitary drinking is linked to negative effects. However, the neu-

robiological mechanism by which the social environment during alcohol intake impacts

on behavioural responses remains poorly understood. We investigated whether dis-

tinct social environments affect behavioural responses to ethanol and the role of the

dopamine system in this phenomenon in the fruit fly Drosophila melanogaster. The

wild-type Canton-S (CS) flies showed higher locomotor response when exposed to

ethanol in a group setting than a solitary setting, and there was no difference in

females and males. Dopamine signalling is crucial for the locomotor stimulating effect

of ethanol. When subjected to ethanol exposure alone, the dopamine transport mutant

flies fumin (fmn) with hyper dopamine displayed the locomotor response similar to CS.

When subjected to ethanol in a group setting, however, the fmn's response to the loco-

motor stimulating effect was substantially augmented compared with CS, indicating

synergistic interaction of dopamine signalling and social setting. To identify the dopa-

mine signalling pathway important for the social effect, we examined the flies defective

in individual dopamine receptors and found that the D1 receptor dDA1/Dop1R1 is the

major receptor mediating the social effect. Taken together, this study underscores the

influence of social context on the neural and behavioural responses to ethanol.
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1 | INTRODUCTION

Alcohol is a commonly abused drug worldwide. Its consumption is

influenced by many factors including genetics, stress, and social

context.1,2 For example, social drinking is associated with positive
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subjective effects such as euphoria, positive mood, elation, and

friendliness,3 whereas solitary drinking is related to depressive symp-

toms and suicidal ideation.4 Both solitary and social drinking are asso-

ciated with negative alcohol-related outcomes that are related to

AUD likely via different mechanisms.5,6 In rodent models, ethanol

consumption alters social activity in a dose- and age-dependent man-

ner7,8 while social housing increases ethanol consumption and self-

administration in rats, mice, and voles.9–11 The mechanism by which

social environment at the time of alcohol intake affects behavioural

responses, however, remains highly understudied.

The fruit fly Drosophila melanogaster is a useful model for alcohol

research.12 In its natural environment, Drosophila prefers to lay eggs in

fermented fruits containing ethanol.13 At low ethanol doses, flies display

hyperactivity, and at high doses, they show hypoactivity followed by

sedation14 similar to humans and rodents. As in rodents, the locomotor-

stimulating effect of ethanol has been used to study euphoria.14,15 Also

as in humans and rodents, ethanol consumption alters social behaviours

in flies in that ethanol intake increases sexual arousal, disinhibits inter-

male courtship, and decreases sexual performance.16 Prior social experi-

ences also alter ethanol preference and responses. Unsuccessful mating

augments ethanol intake in male flies17 while social isolation during rear-

ing decreases ethanol sensitivity to the sedative effect of ethanol.18

There is no information, however, whether social environment at the

time of ethanol intake affects the locomotor activating effect of ethanol.

Ethanol consumption influences the dopamine system. In humans

and rodents, alcohol drinking increases dopamine release in the nucleus

accumbens.19,20 An increase in extracellular dopamine causes euphoric

responses and is a key step for addiction.21 Likewise, the ethanol-

induced increase in dopamine signalling contributes to the development

of AUD.21–23 In flies, the dopamine system is important for ethanol

effects as well.24,25 The blockade of dopamine neurotransmission or

D1 receptor mutation decreases ethanol-induced hyperactivity25 while

dopamine and ecdysone receptor (DopEcR) mutation dampens beha-

vioural sensitization.26 In this study, we investigated whether social

context impacts the locomotor-stimulating effect of ethanol and

whether dopamine influences this phenomenon in Drosophila.

2 | METHODS

2.1 | Fly strains and culture

The wild-type strain used in the study is Canton-S (CS). The dopamine

transporter (DAT) mutant fumin (fmn) in which the roo transposon inser-

tion in the sixth intron of the DAT gene causes premature termination27

was obtained from Dr. Jackson (Tufts University, Boston, MA) and placed

in the CS background. The dopamine receptor mutants used in this study

were dumb1 (In3RL234), dumb2 (f02676) and dumb4 (MI04437) defective

in dDA1/Dop1R1, d2r (f06521) defective in dD2R/Dop2R,26,28,29 damb

defective in DAMB/Dop1R2,30,31 and der defective in DopEcR

(c02142).26 These stocks were obtained from the Exelixis Collection

(Harvard Medical School, Boston, MA, USA) and placed in the CS back-

ground. All flies used in this study have the wild-type white allele (w+).

Flies were raised on a standard sucrose/yeast agar medium (25�C)

with 50–60% relative humidity under the 12-h light/12-h dark cycle.

Flies were collected within 24 h of eclosion, housed in mixed-sex groups

for 2 days in food bottles, anaesthetised using carbon dioxide, separated

into either a group of 13–15 males or a group of 13–15 females in

food vials, and then placed in a temperature- (25�C) and humidity-

controlled (50–60%) incubator for 24–48 h before ethanol exposure.

2.2 | Ethanol exposure and behaviour
measurement

A single fly or a group of flies (13-15) was placed in a plexiglass chamber

(60 mm L � 60 mm W � 15 mm H) and acclimated to the chamber for

10 min and then to water vapour for 10 min followed by ethanol vapour

exposure for 10 min as previously described.24 The chamber was con-

nected to the tubing delivering either humidified air for acclimation or

humidified air combined with absolute ethanol for 40, 50, or 60% ethanol

vapour, all at the 2.5 L/min flow rate. Basal and ethanol-induced

behavioural responses were analysed using the Viewer3 software

(BioObserve, Germany) that tracks and measures the walking speeds of

individual flies in mm/sec. The walking speed was measured every sec-

ond, and the highest average speed during the 30-s period after the star-

tle response noted as a top speed was used for comparison of locomotor

responses. A group of 13–15 flies represents n = 1 for the group-

exposed condition, while one fly represent n = 1 for the singly exposed

condition. Male and female data were analysed and presented separately.

2.3 | Data analysis

All statistical analyses were performed using Minitab 21 (Minitab,

State College, PA, USA). All data are reported as mean ± standard

error of the mean (SEM). Normality was determined by the Anderson

Darling goodness-of-fit test. Normally distributed datasets were

analysed by either two-tailed Student's t test or analysis of variance

(ANOVA) with post hoc Tukey or Student's t test. Non-normally dis-

tributed datasets were analysed by Kruskal–Wallis and Mann–

Whitney tests. A power analysis indicated that n = 6 was the required

sample size to achieve 80% power for detecting the effect size of

0.5 at a significance level of α = 0.05.

3 | RESULTS

3.1 | Social context affects ethanol-induced
hyperactivity

To investigate how social settings at the time of ethanol intake affect

behavioural responses, we exposed wild-type CS flies alone or in a

group to ethanol. Consistent with previous reports,25 introduction of

the ethanol vapour induced startle response, which was followed by

hyperlocomotor activity and then hypoactivity (Figure 1A,B). This
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pattern of the ethanol-induced locomotor response was similar in both

social settings and sexes. The magnitude of hyperlocomotor activity,

however, was significantly different between single and group settings.

To quantitatively compare the difference, we measured the average

speed of the flies in 30-s duration and compared the highest average

(“top speed”) per setting (Figure 1A,B right panels, C,D). The group-

exposed CS flies displayed significantly higher top speeds compared

with singly exposed CS with all ethanol concentrations under test in

both sexes (Figure 1A–C). We did not observe significant differences

between sexes in either singly or group-exposed condition (two-way

ANOVA: social setting, F1,51 = 11.31, p = 0.002; sex effect,

F1,51 = 0.89, p = 0.35; social setting � sex interaction, F1,51 = 0.76,

p = 0.388). Notably, the top speeds of three ethanol concentrations

were comparable (Figure 1D; ANOVA; ns, p > 0.05, n = 12–13); how-

ever, their latencies were significantly different in that higher ethanol

concentration caused faster onset of the top speed (Figure 1E;

ANOVA; p < 0.05, n = 12–13). It is worth noting that the total activity

under the influence of ethanol was significantly lower in the singly

exposed males compared with other groups (p < 0.0001). In the

absence of ethanol, the baseline activity of CS in all social settings and

sexes was comparable (two-way ANOVA: social setting, F1,51 = 0.06,

p = 0.812; sex effect, F1,51 = 0.01, p = 0.905; social setting � sex

interaction, F1,51 = 0.14, p = 0.709). These results indicate that the

flies exposed to ethanol in the presence of other flies display the aug-

mented hyperlocomotor response and there is no difference between

males and females in this phenomenon.

F IGURE 1 Social context affects ethanol-induced hyperactivity. The wild-type CS flies were exposed to ethanol in a single (orange) or group
setting (blue). Shown from left to right are a single fly's walking speed trace in a singly exposed chamber, a single fly trace in a group-exposed
chamber, the average of multiple chambers per social setting with SEM in shaded colour, and top speeds (rightmost panel) of females (A) and
males (B) exposed to 60% ethanol. Ethanol exposure started at 0 min. The walking speed traces include startle response when ethanol was first
introduced in the chamber (black arrowhead), locomotor response to ethanol (0–10 min shaded in light grey), and the top speed (a 30-sec interval
showing the maximal activity during ethanol exposure is denoted by a black line). In both sexes, group-exposed flies displayed higher locomotor
responses to ethanol compared with singly exposed flies (*p < 0.05; n = 13). (C) the top speeds of female and male CS to either 40% or 50%
ethanol in different social settings were compared. In both 40% and 50% ethanol concentrations, the group-exposed CS exhibited greater top
speeds compared with singly exposed flies (*p < 0.05; n = 12). (D) the CS top speeds during exposure to various ethanol concentrations. The CS
top speeds were not different across different ethanol concentrations (ns, not significant, p > 0.05; n = 12–13). (E) the CS's latencies to the
ethanol-induced top speeds. The latencies to the ethanol-induced top speeds showed a dose-dependent relationship, where higher ethanol doses
led to shorter latencies to top speeds (different letters denote significant differences; p < 0.05; n = 12–13)
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3.2 | Concurrent social enrichment and increased
dopamine signalling amplify ethanol-induced
hyperactivity

To explore whether dopamine plays a role in the social context-

sensitive ethanol response, we tested the fmn mutant lacking DAT

thus having hyper dopamine signalling.32 Similar to CS, the group-

exposed fmn showed the enhanced hyperlocomotor response com-

pared with singly exposed fmn with all three ethanol concentrations

and in both sexes (Figure 2A–C), in which there was no sex difference

in either singly or group-exposed condition (two-way ANOVA: social

setting, F1,38 = 178.04, p < 0.0001; sex effect, F1,38 = 1.38,

p = 0.248; social setting � sex interaction, F1,38 = 0.11, p = 0.747).

The fmn's top speeds across different ethanol concentrations were

also comparable (Figure 2D; ANOVA; ns, p > 0.05, n = 9–10), but

their latencies were significantly different, where the faster top speed

onsets correlated with higher ethanol concentrations (Figure 2E;

ANOVA; p < 0.05, n = 9–10). In the absence of ethanol, the fmn's

baseline activities were similar in all social conditions and sexes (two-

way ANOVA: social setting, F1,38 = 0.01, p = 0.92; sex effect,

F1,38 = 0.03, p = 0.87; social setting � sex interaction, F1,38 = 0.08,

p = 0.776). Compared with CS, however, the fmn's response to

ethanol was substantially augmented and prolonged in a social setting

but similar in a single setting (Figure 2F: female two-way ANOVA:

genotype, F3,39 = 61.03, p < 0.0001; social setting, F3,38 = 98.42,

p < 0.0001; genotype � social setting, F3,38 = 58.70, p < 0.0001; male

two-way ANOVA: genotype, F3,39 = 42.1, p < 0.0001; social setting,

F3,38 = 91.38, p < 0.0005; genotype � social setting, F3,38 = 50.49,

p < 0.0001. n = 9–11). This suggests that both hyper dopamine activ-

ity and social enrichment interact for the augmented hyperlocomotor

activity under the influence of ethanol.

3.3 | The social context-associated
ethanol-induced hyperactivity requires the D1
dopamine receptor dDA1/Dop1R1

Dopamine is a key neurotransmitter for the ethanol-induced hyperlo-

comotor activity.24,25 We first surveyed all dopamine receptors regard-

ing their contributions to the ethanol-induced hyperactivity. To do this,

we administered ethanol to individual dopamine receptor mutants;

dumb1 and dumb4 defective in dDA1/Dop1R1 (D1), d2r defective in

dD2R/Dop2R (D2), damb defective in DAMB/Dop1R2 (D5), and der

defective in dopamine/ecdysone receptor (DopEcR).26,28–30 All dopa-

mine receptor mutants, regardless of sex, showed ethanol-induced

hyperactivity in both social settings (Figure 3A–D, n = 9–11). These

data suggest that deficiency in a single dopamine receptor does not

affect hyperlocomotor response to ethanol.

We next investigated which dopamine receptor is important for

the social context-sensitive ethanol responses. When we compared

the top speeds of the dopamine receptor mutants exposed to ethanol

in a single versus social setting, the d2r, damb, and der mutant females

showed the enhanced hyperactivity in a social setting whereas dumb1

and dumb4 did not show significant difference between single and

social settings (Figure 3E, n = 10–11). In males, on the other hand, d2r

and der mutants showed the enhanced hyperactivity in a social setting

while dumb and damb mutants did not show significant differences

(Figure 3F, n = 9–11). In the absence of ethanol, the social environ-

ment did not affect the baseline activities of all the dopamine receptor

mutants while there were differences in basal activities among differ-

ent genotypes (female two-way ANOVA: social setting, F1,122 = 0.03,

p = 0.874; genotype, F5,122 = 6.74, p < 0.0001; genotype � social

setting, F5,122 = 58.70, p = 0.999; male two-way ANOVA: social set-

ting, F1,124 = 0.616, p = 0.874; genotype, F5,124 = 6.73, p < 0.0001;

genotype � social setting, F5,124 = 58.70, p = 1.000). Together, these

data indicate that the D1 receptor dDA1/Dop1R1 is important for the

social environment-sensitive ethanol-induced hyperlocomotor activity

in both sexes while DAMB/Dop1R2 is also involved in this process

only in males.

3.4 | The dDA1/Dop1R1 is critical for the fmn's
social context-sensitive ethanol-induced hyperactivity

Because dDA1/Dop1R1 is a key receptor for the social context effect,

we asked whether dDA1/Dop1R1 is also responsible for the aug-

mented hyperactivity of the fmn and social context interaction. To

address this, we examined the double mutant fmn;dumb4 defective in

both DAT and dDA1//Dop1R1 upon exposure to ethanol in a social

setting. The double mutant showed the ethanol response comparable

with those of CS and dumb4, suggesting that dDA1/Dop1R1 defi-

ciency substantially dampened the fmn's ethanol-induced hyperactiv-

ity (Figure 4A: group female ANOVA: F3,52 = 14.05, p < 0.0001;

group male ANOVA: F3,52 = 24.17, p < 0.0001; n = 14). The singly

exposed flies of all genotypes, on the other hand, showed similar loco-

motor responses and top speeds (Figure 4B: single female ANOVA:

F3,52 = 0.28, p = 0.837; single male ANOVA: F3,52 = 1.51, p = 0.226,

n = 14). The baseline activities of all genotypes were not impacted by

the social setting (female two-way ANOVA: social setting,

F1,111 = 0.001, p = 0.949; genotype, F3,111 = 140.63, p < 0.0001;

genotype � social setting, F3,111 = 0.03, p = 0.992; male two-way

ANOVA: social setting, F1,111 = 0.12, p = 0.735; genotype,

F3,111 = 156.72, p < 0.0001; genotype � social setting,

F3,111 = 0.001, p = 1.000). These data indicate that dDA1/Dop1R1 is

a key receptor mediating the fmn and social environment interaction

for the locomotor response to ethanol.

4 | DISCUSSION

In this study directed at investigating the effect of a social setting on

ethanol response, we found that a social setting, compared with a soli-

tary setting, promotes the ethanol-induced hyperlocomotor activity

and hyper dopamine further augments it via the D1 receptor dDA1/

Dop1R1. The hyperlocomotor activity in animal models represents a

stimulant or euphoric effect of ethanol.15 Our findings thus support
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the previous studies on human subjects reporting that social drinking

elevates euphoria and ethanol's stimulant effect.3,33 The effects of

social drinking have been studied in animal models, but they focused

on ethanol consumption or preferences. This study, to our knowledge,

is the first study in an animal model demonstrating the positive impact

of social context on the ethanol's stimulant effect. In the Wolf et al.

(B)

F IGURE 2 Concurrent social enrichment and increased dopamine signalling amplifies ethanol-induced hyperactivity. The fmn flies with the
homozygous mutation in DAT (group-exposed in magenta and singly exposed in green) and CS (group-exposed in blue; singly exposed in orange)
were exposed to ethanol. Shown from left to right are a single fly's walking speed trace in a singly exposed chamber, a single fly trace in a group-
exposed chamber, the average of multiple chambers per social setting with SEM in shaded colour, and top speeds (rightmost panel) of females
(A) and males (B) exposed to 60% ethanol. In both sexes, the group-exposed fmn displayed highly augmented locomotor responses to ethanol
compared with the singly exposed fmn (***p < 0.0001; n = 9–10). (C) the top speeds of fmn females and males to either 40% or 50% ethanol in
different social settings were compared. In both 40% and 50% ethanol concentrations, the group-exposed fmn displayed significantly higher top
speeds compared with singly exposed fmn (***p < 0.0001; n = 10). (D) the fmn's top speeds during exposure to various ethanol concentrations.
The fmn's top speeds were not different in all social conditions and sexes tested (ns, p > 0.05; n = 9–10). (E) the fmn's latencies to the ethanol-
induced top speeds. The fmn latencies to top speeds decreased with higher ethanol concentrations (different letters denote significant differences;
n = 9–10). (F) the top speeds of CS and fmn in both social settings were compared. In both sexes, the group-exposed fmn exhibited greater
locomotor responses to ethanol compared with the singly exposed fmn and singly and group-exposed CS (ns, p > 0.05; ***p < 0.0001; n = 9–10)
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study,14 the authors noted that “the average behavior of multiple indi-

vidual flies does not differ from that of a population of flies” when the

activity pattern such as the percent time spent on fast locomotion,

bout length, and bout frequency under the ethanol influence was

measured. This indicates that the top speed likely representing a peak

euphoric response, but not the activity pattern, is sensitive to social

environment.

Our study also shows the synergistic interaction of social context

and hyper dopamine on the ethanol's stimulant effect. This is in line

with the studies on human subjects reporting the impact of social

drinking on euphoria and ethanol's stimulant effect being significantly

greater in the individuals with extraversion personal trait34 that is

linked to high levels of dopaminergic activity.35,36 The dopamine

transporter mutant fmn was shown to have reduced, as opposed to

increased, locomotor response to ethanol,25 which is contrary to our

study. The fmn mutant flies in the Kong et al. study are in the white

mutant genetic background whereas fmn mutants in our study are in

the wild-type CS background with the wild-type white allele. The white

F IGURE 3 Dopamine receptors involved in the social context-dependent ethanol-induced hyperactivity. The mutants dumb1 and dumb4

defective in D1 receptor, d2r defective in D2 receptor, damb defective in D5 receptor, and der defective in DA/ecdysone receptor were exposed
to ethanol in a single or group setting and their top speeds during exposure and 30 s prior to exposure (denoted as “no EtOH”; EtOH, ethanol) are
shown. (A)–(D) the movement speeds in the absence of ethanol (single: light grey, group: dark grey) and the tops speeds during ethanol exposure
of females (single: light purple, group: dark purple) and males (single: light blue, group: dark blue) were compared. (A),(B) in single exposure, both
sexes displayed significantly higher top speeds during ethanol exposure compared with the absence of ethanol for all mutants as well as CS
(*p < 0.05; **p < 0.001; ***p < 0.0001; n = 9–11). (C),(D) in group exposure, both sexes displayed significantly higher top speeds during ethanol
exposure compared with no ethanol for all mutants as well as CS (*p < 0.05, ***p < 0.0001; n = 9–11). (E),(F) the top speeds of single- and group-
exposed dopamine receptor mutant flies during ethanol exposure were compared. (E) in females, dumb1 and dumb4 flies did not show any
significant difference between the singly exposed and group-exposed flies while CS, d2r, damb, and der group-exposed flies displayed significantly
higher locomotor responses to ethanol compared with singly exposed flies (ns, not significant, p > 0.05; *p < 0.05; **p < 0.001; ***p < 0.0001;
n = 9–11). (F) in males, dumb1, dumb4, and damb flies did not show any significant difference between the singly exposed and group-exposed flies
whereas CS, d2r, and der group-exposed flies displayed higher locomotor responses to ethanol compared with singly exposed flies (ns, p > 0.05;
*p < 0.05; ***p < 0.0001; n = 9–11)
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gene codes for a subunit of ATP-binding cassette transporter impor-

tant for eye pigmentation37 and is also expressed beyond eye pigment

cells.38,39 The white mutants are defective in courtship,40

copulation,41 locomotor behaviour,42 ethanol-induced sedation,16 and

learning and memory43,44 among others. The discrepancy in the etha-

nol response is likely contributed by the genetic background. Notably,

the individuals experiencing greater euphoria from drinking have an

increased risk of alcohol use disorder,6 and consistently, the dopamine

transporter polymorphism is associated with alcohol use

disorder.45–48 Thus, our finding and follow-up study on mechanism

may provide key insight into how social context contributes to alcohol

use disorder.

Dopamine neurotransmission is important for the stimulant effect

of ethanol as well as social interaction in human subjects,35,36,49

rodents,50–52 and flies.52–55 Alcohol drinking can occur in socially iso-

lated or enriched environment, but how solitary versus social drinking

impacts dopamine signalling is unknown. We found that the flies defi-

cient in the D1 dopamine receptor dDA1/Dop1R1 are responsive to

the ethanol's stimulant effect in both solitary and social settings but

insensitive to the effect of social setting, pinpointing D1 receptor as a

major receptor mediating the social context-sensitive stimulant effect

of ethanol. We further identify that D1 receptor function is required

for the synergistic interaction of social context and hyper dopamine

on the ethanol's stimulant effect. D1 receptor has been shown impor-

tant for social interactions in rodents50,51 and courtship motivation of

male flies.29 This study underscores the critical role of D1 receptor in

convergent processing of multiple salient information such as ethanol

and social recognition. The sexually dimorphic function of the D5

receptor DAMB/Dop1R2 is notable: DAMB/Dop1R2 deficiency is

indispensable in female flies but abolishes the social context effect on

ethanol response in male flies. D5 receptor function has not been

linked to ethanol response and social interaction. The follow-up study

on the mechanism by which DAMB/Dop1R2 mediates the social con-

text effect will surely help narrow this knowledge gap. Taken together,

this study provides a useful framework to uncover the mechanism by

which dopamine signalling via D1 and D5 mediates the impact of

social context and its synergism with hyper dopamine on the ethanol's

stimulant effect, which is relevant to alcohol use disorder.

In this study we focused on the impact of social context on the

locomotor-activating effect of ethanol. Ethanol also induces loss of

movement control, hypoactivity, and sedation. It will be informative

to explore whether social environment influences these ethanol

effects in a follow-up study. We noted that the behavioural patterns

of dopamine receptor mutants under the influence of ethanol as well

as in the absence of ethanol are heterogeneous and deserve further

characterization in a follow-up study.
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