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Abstract
Adoptive cell therapies involve infusing engineered immune cells into cancer patients to recognize and eliminate
tumor cells. Adoptive cell therapy, as a form of living drug, has undergone explosive growth over the past decade.
The recognition of tumor antigens by the T-cell receptor (TCR) is one of the natural mechanisms that the immune
system used to eliminate tumor cells. TCR-T cell therapy, which involves introducing exogenous TCRs into patients’
T cells, is a novel cell therapy strategy. TCR-T cell therapy can target the entire proteome of cancer cells. Engineering
T cells with exogenous TCRs to help patients combat cancer has achieved success in clinical trials, particularly in
treating solid tumors. In this review, we examine the progress of TCR-T cell therapy over the past five years. This
includes the discovery of new tumor antigens, protein engineering techniques for TCR, reprogramming strategies
for TCR-T cell therapy, clinical studies on TCR-T cell therapy, and the advancement of TCR-T cell therapy in China.
We also propose several potential directions for the future development of TCR-T cell therapy.
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Introduction
The immune system is the body’s natural defense system that
recognizes and kills tumor cells [1]. Although the immune system
may fail to eliminate tumor cells due to the exhaustion of immune
cells [2], a suppressive tumor microenvironment [3,4], and multiple
tumor escape strategies [5,6], we can enhance the immune system
through protein engineering or cell engineering to combat cancer. In
the last two decades, we have witnessed a boom in basic
immunology, particularly in the understanding of the checkpoint
mechanism of T-cell activation and the design of chimeric antigen
receptors (CARs). Meanwhile, mechanisms related to tumor
immunology, therapeutic targets, and molecular design have been
successfully translated into approved immunotherapy, saving many
cancer patients. The discovery of the immune checkpoint mechan-
ism and the development of T-cell engineering have made
immunotherapy one of the key pillars in the contemporary
treatment of cancer [7–10].
Immunotherapy can take many forms, but the majority of clinical

success comes from antibody blockade treatment and adoptive cell
transfer therapy (ACT). Antibody blockade treatment includes
immune checkpoint blockade (ICB), such as anti-PD-1 and anti-

CTLA-4 treatments [9,11–14]. Over six anti-PD-1 and anti-CTLA-4
drugs have been approved by the FDA [15]. For adoptive cell
therapy, chimeric antigen receptor T-cell (CAR-T) therapy has
achieved significant success, including the complete cure of
leukemia patients [16]. CAR-T therapy involves transducing T cells
with artificial receptors that can recognize surface antigens on
tumor cells and deliver activation signals to the T cells. More than
six CAR-T therapies have been approved for B-cell lymphoma, but
no CAR-T therapy has been approved for solid tumors [17]. Both
checkpoint blockade and CAR-T cell therapy have cured many, but
not all, cancer patients [18,19]. As of now, there are no approved
adoptive cell therapies (including CAR-T, CAR-NK, etc.) for solid
tumors [20–22].
T cells play important roles in killing tumors. The immune system

naturally uses T cell receptors (TCRs) to recognize tumor antigens
and eradicate tumor cells. The TCR molecule has evolved over 450
million years as an elegant system to balance antigen recognition,
cross-reactivity, and sensitive signaling [23–26]. It is not surprising
that people have been considering using TCR to enhance the
immune system for over 30 years [27,28]. One idea is to isolate a
potent TCR that can effectively eliminate tumor cells and then
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administer the TCR to patients by modifying their autologous T
cells. TCR-T cell therapy is the name of the treatment. Rosenberg
and his colleagues were pioneers in the first clinical trial of TCR-T
cell therapy for the treatment of melanoma. They observed a
positive response in two patients [29]. Based on TCR research, in
the 2010s, significant success has been achieved in the development
of TCR-T cell therapy for solid tumors [21].
We are on the eve of TCR-T cell therapy potentially being

approved for treating solid tumors. CAR-T cell therapy has achieved
tremendous success in treating liquid tumors but has shown limited
efficacy in treating solid tumors [30–32]. However, solid tumors
account for 95% of all cancer patients [33]. Since the antigenic
peptide is derived from protein degradation, TCRs have access to
the entire proteome as potential targets. TCR-T therapy might be the
solution for patients with solid tumors and those who do not
respond to checkpoint blockade.
There are numerous reviews available on the antigen targets,

clinical trials, engineering strategies, and the history of TCR-T cell
therapy. In this paper, we primarily focus on the recent advance-
ments in TCR-T cell therapy, particularly within the last five years,
including the discovery of novel targets, innovative protein
engineering methods, ongoing and completed clinical trials, and
the evolving trends of TCR-T cell therapy in China. We also propose
several potential directions for the advancement of TCR-T cell
therapy in the next decade.

The Structure and Signaling of TCR
T cells are crucial components of adaptive immunity, and the TCR
serves as the gatekeeper of T cell functions. There are 2 populations
of T lymphocytes, αβ T and γδ T cells, that can be distinguished by
the expression of either an αβ TCR or a γδ TCR respectively. The αβ
TCR is a heterodimer consisting of an α chain and a β chain, and it is
always associated with the CD3 complex. The CD3 complex consists
of CD3γ, CD3δ, two CD3ε, and two CD3ζ chains. The TCR-CD3
complex is an octameric membrane protein machinery [34–36].
Similarly, the γδ TCR is assembled from a γ chain and a δ chain, but
the structure of γδ TCR-CD3 is different from the former. Its CD3

subunits are arranged differently, the FG loop is much shorter, the
disulfide-bond between the ligand binding subunits is placed
differently and CD3 glycosylation is different [37].The ligand for
the TCR is the peptide-major histocompatibility complex (pMHC).
The peptides, particularly MHC class I-restricted antigenic peptides,
are produced from the breakdown of proteins expressed in tumor
cells or somatic cells infected by pathogens. Therefore, T cells and
TCRs are important systems for recognizing tumor cells or
pathogens by detecting the proteome of target cells [38–42]. The
structural basis of TCR-CD3 assembly has recently been elucidated,
but it remains unclear whether there is a conformational change in
the TCR-CD3 complex before and after pMHC ligation [34–36,43,44]
In addition to its antigen recognition function, TCR-CD3 can be
phosphorylated by kinases such as Lck and Fyn after pMHC
binding, initiating T cell effector functions and differentiation [45–
48] (Figure 1).

Tumor Antigens
There is no doubt that tumor antigens, as therapeutic targets, are one
of the most important components in TCR-T cell therapy. In the last
40 years, numerous tumor-associated or tumor-specific antigens have
been identified. They are classified into several groups, including
overexpressed tumor antigens, differentiation antigens, cancer-testis
antigens, neoantigens, and viral antigens [49]. An ideal tumor antigen
should be specific to the tumor to enhance effectiveness andminimize
toxicity (Figure 2). In recent years, numerous new antigens and
challenging-to-target antigens have been discovered or studied to
enhance our comprehension of tumor antigens.

Overexpressed tumor antigen
Overexpressed tumor antigens are highly expressed in tumors but
are expressed at low levels in healthy tissue. Overexpressed tumor
antigens could be targeted by TCR-T cells to eliminate tumor cells,
but they may also cause on-target, off-tumor toxicity in healthy
tissue. Overexpressed tumor antigens, such as Wilms’ tumor-1
(WT1) and preferentially expressed antigen of melanoma (PRAME),
are important therapeutic targets and have been tested in multiple

Figure 1. The structural assembly of pMHC-TCR-CD3 complex and TCR signaling cascade The fully assembled pMHC-TCR-CD3 complex has
been solved. CD8 binds to the pMHC and recruits LCK to phosphorylate CD3 and initiate TCR downstream signaling cascade.
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TCR-T clinical trials [50]. WT1 is ranked as the No. 1 tumor antigen
by the National Cancer Institute [51]. WT1 in the context of HLA-
A*24:02 has been targeted in a clinical trial for acute myeloblastic
leukemia (AML) using TCR-T cell therapy [50]. In clinical trials,
TCR-T cells targeting WT1 have shown an objective response rate
(ORR) ranging from 0% to 40% [21,50,52].
Recently, more overexpressed tumor antigens have been dis-

covered, and their potential in TCR-T cell therapies has been
preliminarily tested. Laminin subunit gamma 2 (LAMC2) has been
identified as an overexpressed tumor antigen in pancreatic ductal
adenocarcinoma (PDAC). ‘LAMC2203-211’ is an HLA-A2-restricted
epitope. TCR-T cell therapy targeting LAMC2 has been shown to
control tumor growth in a PDAC xenograft model [53]. CCCTC-
binding factor (CTCFL) and Claudin-6 (CLDN6) are overexpressed
in ovarian cancer and 20 times less expressed in healthy tissues.
Different HLA alleles-restricted epitopes of CTCFL or CLDN6 have
been identified. Specific TCRs were isolated from allogeneic HLA
donors, and TCR-T cell therapy targeting CTCFL has been
developed. These TCRs could recognize tumor cells from ovarian
cancer patients [54]. The immunoglobulin J chain is overexpressed
in multiple myeloma, and TCRs targeting HLA-A*01, A*24, A*03, or
A*11-restricted J chain peptides have been discovered. TCR-T cell
therapy could eliminate 99% of multiple myeloma cells in a
preclinical in vivo model [55]. Human telomerase reverse tran-
scriptase (hTERT) is overexpressed in 90% of tumors. A TCR clone,
named Radium-4, targeting an HLA-DP04-restricted hTERT peptide,
has been isolated from pancreatic cancer patients who were
vaccinated with a long hTERT peptide. Radium-4 TCR-T cell
therapy demonstrated efficient killing of tumor cells in a xenograft
mouse model and improved the survival rate. The Radium-4 TCR-T
cell therapy has the potential to reach 75% of the population and
shows promise in the treatment of solid tumors [56]. Overall,
overexpressed tumor antigens are promising therapeutic targets,

and further research is needed to address the on-target, off-tumor
issue, which emphasizes the importance of this category of tumor
antigens.

Differentiation antigen
Certain proteins are specifically expressed in particular cells to
facilitate the differentiation of tissues and organs. The proteins are
tumor-associated but not tumor-specific, as healthy tissues from the
same lineage would also exhibit relatively high expression of the
proteins. For example, both melanoma cells and skin cells express
proteins that are important for the differentiation of skin cells, such
as MART-1 and gp100 [57,58]. Targeting differentiation antigens
could lead to on-target, off-tumor toxicity, with the severity varying
[49,59]. Recently, new differentiation antigens have been discov-
ered, which could potentially serve as new targets for TCR-T cell
therapies. Alpha-fetoprotein is associated with liver cancer. HLA-
A2-restricted alpha-fetoprotein epitope has been targeted by TCR-T
cell therapy in an NSG mouse model [60]. Leukemia-associated
minor H antigen HA-1 has been targeted by TCR-T cell therapy [61].

Cancer-testis antigen
Cancer-testis antigens (CTAs) are highly expressed in tumor cells,
testis, and placental tissues, but are barely expressed in other
healthy tissues [62]. Therefore, CTAs are a group of promising
therapeutic targets with a lower risk of on-target, off-tumor toxicity.
The majority of TCR-T cell therapies target CTAs, particularly NY-
ESO-1 and the MAGE family. Recently, CTAs such as NY-ESO-1 and
MAGE have shown early-stage success in clinical trials. An anti NY-
ESO-1 TCR-T cell therapy clinical trial was performed in patients
with metastatic melanoma or metastatic synovial cell sarcoma
refractory to all standard treatments. Objective clinical responses
were observed in 4 of 6 patients with synovial cell sarcoma and 5 of
11 patients with melanoma bearing tumors expressing NY-ESO-1,

Figure 2. The generation of different categories of tumor antigens Overexpressed tumor antigens are derived from overexpression of certain
proteins. Differentiation antigens are derived from differentiation-related proteins. Cancer-testis antigens are derived from proteins which are only
expressed in tumor and testis. Neoantigens are derived from mutated proteins. Viral antigens are derived from virus-encoded proteins. Post-
translation modified antigens are derived from post-translation modified proteins. Adapted from [49].
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which indicated that TCR-based gene therapies directed against NY-
ESO-1 represent a new and effective therapeutic approach for
patients with melanoma and synovial cell sarcoma [63]. HLA-
A*02:01 transgenic mice were used to identify TCRs recognizing the
NY-ESO-1157-165 epitope [64]. TCR-T cell therapy targeting HLA-A2-
NY-ESO-1 has achieved an objective response in a phase I clinical
trial [65,66]. One trial was conducted in non-small cell lung cancer,
and two out of four patients showed clinical responses [65].
Another trial utilizing high-affinity TCR targeting HLA-A2-NY-ESO-
1 in multiple myeloma achieved a 44% objective response at one
year after the therapy [66]. By using peripheral blood mononuclear
cells (PBMC) from an allogeneic donor, high-avidity TCRs have
been isolated to target the MAGE-A4 epitope restricted by HLA-A2
[67]. TCR-T cell therapy targeting HLA-A*24:02-MAGE-A4143-151 in
recurrent esophageal cancer has been in clinical trials [68].
Preferentially expressed antigen of melanoma (PRAME) is another
important CTA. It is expressed in medulloblastoma, and TCR-T cells
targeting HLA-A*02-restricted PRAME epitopes could suppress
tumor growth in a xenograft mouse model [69].

Neoantigen
The development of a tumor is often associated with gene
mutations. Some mutations can result in the expression of proteins,
which are then further processed into peptides. The antigenic
peptide containing the point mutation could be presented on the
surface of tumor cells and referred to as a neoantigen. Neoantigens
could be highly immunogenic because their sequences differ from
the wild-type peptides and are not presented in the thymus for
negative selection. Some neoantigens are shared among different
patients and are termed public neoantigens. Public neoantigens are
promising therapeutic targets because they are highly tumor-
specific and shared by a significant number of patients [70].
The KRAS-G12V neoantigen, one of the most extensively studied
public neoantigens, has been effectively targeted by TCR-T cell
therapy [71]. The FMS-related receptor tyrosine kinase (FLT3)-
D835Y mutation is a gain-of-function mutation found in acute
myeloid leukemia (AML). The HLA-A*02:01-restricted FLT3-D835Y
epitope has recently been discovered and targeted by TCR-T cell
therapy for AML [72]. The coenzyme A synthase (COASY) - S55Y
was identified as a novel neoantigen in multiple myeloma [73]. The
QYSPVQATF peptide was identified as the HLA-A*24:02-restricted
epitope sequence from the COASY-S55Y protein. TCR-T cell therapy
targeting HLA-A*24:02-COASY-S55Y exhibited an objective re-
sponse. The MyD88 L265P mutation, a driver mutation in B-cell
lymphoma, has been effectively targeted by TCR-T cell therapy [74].
The HLA-B*07:02-restricted MyD88 L265P epitope could elicit a
strong TCR-T cell response in a xenograft model. HLA-A*02:01-
restricted neoantigen KIAA1429-D1358E was identified in head and
neck squamous cell carcinoma, and specific TCR-T cell therapy has
been developed [75]. Neoantigens derived from the fusion gene
CBFB-MYH11 in AML have been targeted by TCR-T cell therapy
[76]. An HLA-B*40:01-restricted epitope has been discovered and
could be effectively targeted in a xenograft model.

Viral antigen
Some viral infections may progress into cancer. Hepatitis B virus
(HBV) infection is responsible for over 60% of hepatocellular
carcinoma cases in Asia [77]. Human papillomavirus (HPV)
infection may lead to the development of cervical cancer, with

99.7% of cervical cancer cases being caused by HPV infection [78].
The Epstein-Barr virus (EBV) may lead to the development of
nasopharyngeal carcinoma (NPC), and 82% of EBV-associated
malignancies are NPC [79]. Viral proteins can serve as effective
therapeutic targets for TCR-T cell therapy. HBV-specific TCR-T cell
therapies have been extensively reviewed [80,81]. A high-affinity
TCR targeting HLA-A*02:01-HBs371-379 has been isolated and was
able to eliminate hepatocellular carcinoma in a xenograft
model [82]. A phase I clinical trial showed a decrease in circulating
HBsAg and HBV DNA after TCR-T cell therapy infusion targeting the
HLA-A*02:01-HBs183-191 or HLA-Cw0801-epitope [83]. Immuno-
suppressive drug-resistant HBV-specific TCR-T cell therapies could
effectively eliminate circulating tumor cells (CTC) [84]. HLA-
A*11:01-restricted epitopes from HPV E6 and E7 proteins have
been identified, and specific TCRs have been discovered.
TCR-T cells were able to inhibit the growth of cervical tumor cells
in vivo [85,86]. The HLA-A*02:01-restricted E7 peptide has also
been targeted by TCR-T cell therapy. A potent TCR was isolated
from a uterine cervix biopsy and demonstrated CD8-independent
killing of HPV-16-positive cervical tumors in a xenograft model [87].
Peptides derived from CMV pp65 and presented by HLA-A*02:01,
HLA-A*11:01, or HLA-A*24:02 have been identified, and specific
TCRs have been discovered. Clinical trials using TCR-T cells to treat
patients with cytomegalovirus (CMV) reactivation after hemato-
poietic stem cell transplantation showed a complete response and
mild adverse effects [88]. Another study utilized circular mRNA to
express CMV antigen and prime specific T cells. The study also
investigated the use of circular mRNA to express specific TCR to
target and kill HLA-A*02:01-CMVpp65-positive tumor cells [89].
The EBV antigen LMP2-derived peptide, which is presented by HLA-
A*01:01, has been targeted by TCR-T cell therapy [90].

Post-translational modified antigen
Protein post-translational modifications (PTMs) are present in
multiple autoimmune diseases and tumors. Protein phosphoryla-
tion, sumoylation, and acetylation may offer new targets for TCR-T
cell therapy [91]. An antigen discovery pipeline called Protein
Modification Integrated Search Engine (PROMISE) could help
identify thousands of new cancer-specific PTM antigens [92].
PTM antigens could elicit a higher T-cell response compared to
unmodified antigens do [93]. Therefore, targeting PTM antigens
could be an important focus for future TCR-T cell therapy. More
work is needed to identify tumor-specific PTM antigens. The
mechanism of PTM antigen production may also offer new
therapeutic targets for other strategies.

Human endogenous retrovirus (HERV)-derived antigen
HERV could be expressed in tumor cells and produce tumor-specific
antigens. HERV-E is expressed in renal cell carcinomas but not in
normal kidneys. HLA-A2 and HLA-A11-restricted HERV-E epitopes
have been utilized to identify specific T cells [94–96].

Discovery and Engineering of TCR for Cell Therapy
Most tumor antigens consist of self-peptides and are tolerated by
wild-type TCRs. As a result, isolating high-potency TCRs from
peripheral T cells is challenging. Protein engineering is commonly
utilized to modify wild-type TCRs and produce high-potency TCRs.
For a very long time, high-affinity maturation was the only
methodology adopted in the protein engineering of TCR, based on
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the assumption that TCR potency is correlated to binding affinity
[97]. However, high affinity is not necessarily correlated with TCR
potency [98]. On one hand, high-affinity maturation may pose a risk
of off-target toxicity. High-affinity-matured cancer-testis tumor
antigenMAGE-A3-specific TCR had cross-reactivity with the cardiac
antigen TITIN and caused fatal effects in the TCR-T cell therapy [99–
101]. On the other hand, high-affinity of TCR may also lead to
severe on-target off-tumor effect. In this clinical trials, Of the 9
patients, 3 patients developed severe neurologic toxicity and 2 of
them died due to necrotizing leukoencephalopathy with extensive
white matter defects [102].
Recently, TCR has been identified as a mechano-sensor capable of

detecting force transmitted from the internal cytoskeleton [103–112].
Under force, TCR-T cells can form transient hydrogen bonds and/or
salt bridges with pMHC to prolong the dynamic binding [103,113].
The mechanism is also known as a catch bond. Moreover, the
duration of the dynamic binding between TCR-T cells and pMHC is
found to be associated with TCR signaling strength. Therefore, the
potency of TCR can be enhanced through protein engineering to
increase the duration of dynamic binding, independent of affinity
maturation (Figure 3). By employing dynamic binding engineering,
individuals could acquire TCRs with high potency and low
affinity [114]. The low-affinity phenotype could help prevent off-
target toxicity toward healthy tissue. Thus, engineering catch bonds
or prolonging dynamic binding could generate high-potency and low-
toxicity TCRs [114]. The protein engineering of TCR based on the
dynamic binding theory may represent a new and promising direction
for TCR-T cell therapy in the future (Figure 4).

Strategies to Improve TCR-T Cell Therapy beyond TCR
Engineering
The success of TCR-T cell therapy depends on tumor-specific
antigens, potent TCRs, and the presence of healthy, long-lived T
cells. In combination with other strategies, TCR-T cells could be
further enhanced to improve metabolic fitness and memory

phenotype percentage, while reducing exhaustion.
Gene editing is a powerful molecular tool for modifying TCR-T

cells. A study utilizing zinc finger nuclease technology successfully
transferred HLA-A*02:01-NY-ESO-1-specific TCR into the TCR α
locus, resulting in high-level expression of TCR and a high
percentage of stem memory and central memory phenotype [115].
CRISPR/Cas9, the most popular gene editing tool, has been
extensively applied in TCR-T cell therapy. CRISPR-Cas9 gene
editing could enhance the consistency of therapeutic efficacy.
Endogenous TCR could be replaced by transgenic TCR to improve
the correct pairing of TCR [116,117]. For example, the simultaneous
knockout of TRAC and TRBC using CRISPR-Cas9 and the
concomitant overexpression of transgenic TCR could further
enhance the expression and function of anti-tumor TCR, including
structurally modified TCR [117]. CRISPR-Cas9 knockout of TCRβ
and overexpression of αβ TCR or γδ TCR could enhance the
eradication of tumor cells. NY-ESO-1-specific TCR can be integrated
into the TCR locus using CRISPR/Cas9 [118,119]. In a clinical trial,
the knockout of TCRα (TRAC) and TCRβ (TRBC) could reduce TCR
mispairing. Further removal of programmed cell death protein 1
(PD-1; PDCD1) could enhance anti-tumor immunity. The TCR-T
cells edited with CRISPR-Cas9 could persist for 9 months [120].
TCR-T cell therapy could be enhanced by overexpressing

additional T cell effector molecules, such as receptors, cytokines,
and chemokines, to activate the TCR-T cells. Co-transduction of the
CD3 complex with TCR could further enhance T cell functions by
increasing sensitivity to low amounts of antigens and facilitating
faster infiltration of tumors [121,122]. The TNF and STAT3
signaling pathways are associated with the response to TCR-T cell
therapy. Prefusion serum levels of IL-15, CX3CL1, and Flt-3L are
higher in responding patients compared to nonresponders, suggest-
ing that overexpression of TNF, pSTAT3, IL-15, CX3CL1, Flt-3L, and
other cytokines may help boost TCR-T cell response [123].
Overexpression of c-Jun has been found to improve the proliferation
and longevity of TCR-T cells. TCR-T cells overexpressing c-Jun and

Figure 3. TCR is a mechano-sensing receptor In the absence of force, the TCR forms short-term dynamic bindings with pMHC. When a force of
10-15 pN is applied to the TCR, it can form transient hydrogen bonds and/or salt bridges with specific pMHC to create long-term dynamic binding,
also known as catch bond. Adapted from [103].
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targeting hepatocellular carcinoma could improve the survival of
mice with tumor growth [124]. The fusion of the TRAF-binding
motif from 4-1BB ICD at the C-terminal of CD3z could enhance the
persistence and expansion of TCR-T cells both in vitro and in vivo
[125]. The induced expression of IL-12 in the PDCD1 locus could
enhance the function of NY-ESO-1-specific TCR-T cells and
eliminate established tumors in a xenograft mouse model, with
greater TCR-T cell expansion potential [126]. Overexpression of IL-7
and CCL-19 could promote long-term memory formation in TCR-T
cells, enhance the antitumor efficacy of TCR-T cells, and elicit a
better response when combined with anti-PD-1 treatment [127].
The insertion of the intracellular domain of CD28 or 4-1BB into
CD3z has been shown to enhance the proliferation and persistence
of TCR-T cells, and improve the antitumor activity of TCR-T cells in
a xenograft mouse model [128]. TCR-T cells secreting an anti-PD-1
antibody have been tested in a clinical trial aimed at treating EBV-
related head and neck squamous cell carcinoma [129]. Applying a
logic switch in TCR-T cell therapy may enhance the effectiveness
and safety of T cell therapy. Multiple studies have reviewed the
synergistic effects of combining CAR-T and TCR-T [130]. Both CAR
and transgenic TCR could be co-expressed effectively in the same T
cell. The dual function of CAR and TCR could prevent tumor escape
and enhance signaling.
During the preparation of TCR-T cells, supplementing with other

proteins or metabolites may reprogram the T cell phenotype and
improve the anti-tumor efficacy. Metabolism-related pathways can
be targeted to enhance the function and persistence of TCR-T cells.
Aging and senescent TCR-T cells can be treated with spermidine to
restore autophagic flux and reduce the expression of PD-1, TIM-3,
and LAG-3. Spermidine treatment further enhances the functions of
TCR-T cells and suppresses tumor growth in a xenograft mouse

model [131]. Manipulating mTOR signaling could enhance the
fitness and cytotoxicity of TCR-T cells [132]. TCR-T cells supple-
mented with a p38 inhibitor, IL-7, and IL-15, but not IL-2, could
further increase T cell proliferation, leading to a largely naïve
phenotype and sustained expression of effector molecules such as
granzyme B and IFN-γ [133].
T cell-derived induced pluripotent stem cells can be utilized for

the production of TCR-T cells. iPSC-derived T cells could enhance
the off-the-shelf and universal application of TCR-T cell therapy. It
could solve the problem of the short lifetime typically experienced
by CTLs [134]. Melanoma-specific TCR or neoantigen-specific TCR
has been introduced into T cell-derived iPSCs, and the production of
TCR-iPSCs could be rapid and of high quality [135,136]. γδTCR has
also been used in the bispecific T cell engager (BiTE) format for
solid tumors. The γδ TCR induced phosphoantigen-dependent
killing of tumor cells by αβ TCR in a melanoma xenograft model
[137].

TCR-T Cell Therapy in Clinical Trials
The published and ongoing TCR-T cell clinical trials have been
extensively reviewed [21]. TCR-T cell therapies that have demon-
strated clinical effectiveness in solid tumors have also been
evaluated [138]. Due to the natural process of T cell signaling,
most adverse effects in TCR-T cell therapies are manageable [49].
As of now, the FDA has not approved any TCR-T cell therapy. The
first TCR-based therapy to reach the market, Tebentafusp, was
approved by the FDA in early 2022 from Immunocore. Tebentafusp
is a BiTE that targets HLA-A*02:01-gp100 and CD3 to connect tumor
cells and T cells. Tebentafusp was tested in a phase 3 clinical trial
for metastatic uveal melanoma and achieved a 73% survival rate at
one year, compared to a 59% survival rate in the control group.

Figure 4. The workflow of dynamic binding engineering of TCR The TCR library is designed and packaged as a lentiviral library for infecting
SKW-3 T cells. The TCR-T cell library is activated when antigen-presenting cells are pulsed with specific antigenic peptides. The activated TCR-T cell
library is stained with both pMHC tetramer and anti-CD69 antibody, each tagged with the appropriate fluorescent marker. High-potency and low-
affinity TCR variants are enriched based on high levels of anti-CD69 staining and low levels of pMHC tetramer staining.
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Tebentafusp has achieved a milestone victory for TCR therapy
against solid tumors [139]
Afami-cel from Adaptimmune is the leading TCR-T cell therapy

for solid tumors. Afami-cel is targeting HLA-A*02:01-MAGE-A4.
The phase 1 clinical trial included 38 patients with relapsed/
refractory metastatic solid tumors, such as head and neck cancer,
ovarian cancer, and synovial sarcoma. The overall response rate
(ORR) for synovial sarcoma was 7/16 (44%) [140]. The phase 2 trial
of Afami-cel has commenced, focusing on advanced/metastatic
synovial sarcoma or myxoid/round cell liposarcoma. This two-
cohort, open-label trial is named SPEARHEAD-1. The overall
survival (OS) data for cohort 1 of advanced synovial sarcoma has
been published. The median OS was 15.4 months. The probability
of 24-month OS was 40%. Patients with advanced synovial sarcoma
in the SPEARHEAD-1 trial have shown promising survival [141]. In
relation to cytokine release syndrome (CRS), data from cohort 1 and
cohort 2 indicated that 72.2% of patients with synovial sarcoma in
the trial experienced CRS, with 50% experiencing Grade 1 CRS. A
high level of serum IL-6 was associated with CRS, suggesting the use
of tocilizumab to control the CRS [142]. Therefore, CRS was
common in Afami-cel but most of patients are with moderate CRS.
The SPEARHEAD-1 trial has been also shown to control metastases
of refractory melanoma in combination with radiotherapy and
checkpoint blocking [143]. The duration of OS was 18.4 weeks for
the patient and the patient progressed at 28 weeks, but the tumor
was controlled after radiotherapy and checkpoint inhibitors. More
research should be done to explore the combination of TCR-T cell
therapy with radiotherapy, chemotherapy, and ICB.
HLA-A*02:01-restricted NY-ESO-1 is the most commonly targeted

antigen and has been tested in 38 cases [21]. One trial is the Lete-cel
or IGNYTE-ESO trial, which aims to target NY-ESO-1 in synovial
sarcoma and myxoid/round cell liposarcoma [144]. NY-ESO-1-
targeting TCR-T cells have achieved a response rate of 55% in
melanoma and 61% in synovial cell sarcoma [145]. A high-affinity
TCR targeting NY-ESO-1 also achieved a 36% response rate
[138,146,147]. C259 is an affinity-matured TCR that recognizes
HLA-A*02:01-NY-ESO-1. In one synovial sarcoma trial, C259 TCR-T
cell therapy achieved a 50% OS at 6 months. All patients had
circulating C259 TCR-T cells for at least 6 months. The persistent
cells mostly exhibit a central memory and stem-cell memory
phenotype [146]. The detailed mechanism of response and
resistance to C259 TCR-T cell therapy, tested in synovial sarcoma,
showed that 1 out of 42 patients had a complete response and 14 out
of 42 had a partial response. The expansion of TCR-T cells after
infusion was correlated with the response. C259 TCR-T cells
trafficked to the tumor microenvironment in some patients and
were able to maintain effector functions [147].
TCR targeting the HLA-C*08:02-restricted KRAS-G12D neoanti-

gen achieved a 72% overall partial response in a patient with
progressive metastatic pancreatic cancer. The transgenic TCR-T
cells constituted 2% of all the peripheral circulating T cells in the
blood 6 months after the treatment [148]. TCR targeting HLA-
A*02:01-restricted p53-R175H has resulted in a 55% reduction in
tumor size in a patient with chemorefractory breast cancer. The
response lasted 6 months, and the transgenic TCR-T cell therapy
showed better infused cell immunophenotyping and extended
persistence compared to tumor-infiltrating lymphocyte (TIL)
therapy [149]. Two clinical trials have been conducted to target
HPV16 E6 or E7 proteins [150,151]. A phase I/II trial with 12

patients achieved objective tumor response in two patients and
complete regression in one patient with lung metastasis [151]. The
first-in-human, phase 1 clinical trial targeting HPV-16 E7 was
conducted for HPV-associated epithelial cancers. Tumor regression
was observed in 6 out of 12 patients with osteosarcoma. Some
resistance occurred due to defects in antigen presentation pathways
and interferon response pathways [150].

The Development of TCR-T Cell Therapy in China
The first phase 1 clinical trial of TCR-T cell therapy in China
targeting HLA-A2-NY-ESO-1 in soft tissue sarcoma has been
concluded. The TCR is affinity-matured and targets HLA-A*02:01-
NY-ESO-1. None of the 12 patients experienced serious adverse
effects. The OS rate is 41.7%, and the median progression-free
survival (PFS) is 7.2 months [152]. In another clinical trial, patients
who underwent hematopoietic stem cell transplantation and
experienced CMV reactivation were treated by targeting CMV
epitopes. The single-arm, open-label, phase I trial included 6
patients, and no severe adverse effects were observed. Four out of 6
patients received a response within 1 month. The transgenic TCR-T
cells persist for 1 to 4 months. Therefore, CMV-specific TCR-T cell
therapies are effective and safe treatments for CMV reactivation
after hematopoietic stem cell transplantation [153]. Another CMV-
specific TCR-T cell therapy in a phase I clinical trial conducted
earlier involved 7 patients and resulted in mild CRS. Six patients
achieved a complete response, and the transgenic TCR-T cells could
be detected three months after the treatment [154]. As of January
2024, there are 68 TCR-T cell therapies in clinical trials in China. We
hope to see more clinical trials of TCR-T cell therapies to be
published in the near future.

Perspectives
Given that most tumor antigens are self-peptides, TCR engineering
is almost inevitable in order to acquire high-potency TCRs.
However, high-affinity maturation may result in off-target toxicity.
A method like dynamic binding engineering, which can ensure both
high efficacy and no toxicity, is the direction of future development.
Dynamic binding engineering should be further optimized to ensure
the availability of an easy-to-follow protocol for engineering any
TCR without structural guidance.
In addition to TCR engineering, another challenge of TCR-T cell

therapy is the cost. Autologous T cell engineering and adoptive cell
transfer are challenging to optimize further and reduce the cost.
While universal TCR-T cell therapy using donors’ T cells and off-
the-shelf products may be one direction to consider, another
important option is to perform T cell engineering in situ. TCR could
be delivered by adenovirus, retrovirus, lentivirus, mRNA electro-
poration, and transposons [155]. An important area of focus would
be exploring the possibility of injecting TCRmRNA in vivo to enable
in situ engineering of T cells.
Early studies on TCR-T cells mainly focused on CD8+ T cells.

Currently, the role of CD4+ T cells are also being considered.
CD4+ T cells recognize antigenic peptides presented by MHC-II
molecules. Unlike CD8+ T cells, which mainly exert cytotoxic
effects, the function of CD4+ T cells is mainly to regulate the
adaptive immune system, enhance the function of CD8+ T cells,
and induce long-termmemory of T cells [156]. Although most of the
isolated TCRs with high affinity for tumor antigens are MHC-I
restricted and function best in the presence of CD8 co-receptors,
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studies have shown that these TCRs can function in CD4+ T cells in
the absence of CD8 co-receptors. Tumor-specific CD4+ T cells can
be produced by MHC-I molecular restriction TCR, and the tumor-
killing ability of antigen-specific CD8+ T cells can be enhanced.
The reason for this phenomenon may be related to the secretion of
multiple immune factors by CD4+T cells [157]. In addition, the use
of antigen-specific CD4+ T cells to treat tumor patients alone has
also achieved good results [158]. These results suggest that
attention should be paid to the role of CD4+ T cells in TCR-T cell
therapy.
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