
Modeling Mechanochemical Depolymerization of PET in Ball-Mill
Reactors Using DEM Simulations
Elisavet Anglou, Yuchen Chang, William Bradley, Carsten Sievers, and Fani Boukouvala*

Cite This: ACS Sustainable Chem. Eng. 2024, 12, 9003−9017 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Developing efficient and sustainable chemical recycling pathways
for consumer plastics is critical for mitigating the negative environmental
implications associated with their end-of-life management. Mechanochemical
depolymerization reactions have recently garnered great attention, as they are
recognized as a promising solution for solvent-free transformation of polymers to
monomers in the solid state. To this end, physics-based models that accurately
describe the phenomena within ball mills are necessary to facilitate the
exploration of operating conditions that would lead to optimal performance.
Motivated by this, in this paper we develop a mathematical model that couples
results from discrete element method (DEM) simulations and experiments to
study mechanically-induced depolymerization. The DEM model was calibrated
and validated via video experimental data and computer vision algorithms. A
systematic study on the influence of the ball-mill operating parameters revealed a
direct relationship between the operating conditions of the vibrating milling vessel and the total energy supplied to the system.
Moreover, we propose a linear correlation between the high-fidelity DEM simulation results and experimental monomer yield data
for poly(ethylene terephthalate) depolymerization, linking mechanical and energetic variables. Finally, we train a reduced-order
model to address the high computational cost associated with DEM simulations. The predicted working variables are used as inputs
to the proposed mathematical expression which allows for the fast estimation of monomer yields.
KEYWORDS: ball milling, DEM, computer vision, plastics recycling, mechanochemistry

1. INTRODUCTION
Industrialized economies have traditionally relied on linear
manufacturing processes in which raw materials are trans-
formed into useful products and later discarded as waste.1−3

Yet, this economic structure has a substantial impact on natural
resource depletion and the environment, particularly in the
case of plastics. Three hundred sixty million tons of plastics
were manufactured worldwide in 2018, but only 10% were
recycled, while the majority (80%) ended up in landfills or the
oceans.3,4 Furthermore, the degradation of plastic waste into
microplastics and hazardous water-soluble compounds endan-
gers human and animal health.2,5 Therefore, addressing the
negative environmental consequences of plastic waste manage-
ment has stimulated great interest towards a circular economic
model in which waste materials, such as plastics, will be
recycled back into the economy and will be remanufactured
into useful products.
Plastic waste recycling methods can be categorized into

preconsumer, mechanical recycling, chemical recycling, and
energy recovery pathways.6−8 Currently, the majority of
recycling infrastructures rely on mechanical recycling and
waste-to-energy processes. The distinct difference between
those two methods is the final product: recycled plastic versus
energy. Energy recovery methods refer to burning down waste

to produce energy. This can be a sustainable solution,
especially for mixed plastics that are hard to separate and/or
recycle. However, in most cases, waste-to-energy routes hinder
circularity and reusability of plastics. On the contrary, in
mechanical recycling, the plastic waste is physically molded
into new plastic products,9 allowing for multiple uses of the
same material into the production chain. However, the
mechanical and thermal degradation of the polymer during
processing compromise the integrity and quality of recycled
plastic products.10 As a result, each plastic product can be
recycled a limited number of times and only if mixed with large
quantities of virgin polymers.3,11 Chemical recycling routes
have recently emerged as promising methods to directly
depolymerize polymers into their monomeric molecules,
bypassing material degradation issues of mechanical recy-
cling.12 Particularly for the case of PET waste, chemical
recycling depolymerization routes focus on hydrolysis,
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glycolysis, alcoholysis, and ammonolysis reactions.13 Typically,
such processes operate at extreme conditions (e.g., high
temperatures and/or pressures) and use large amounts of
solvents, thereby hindering their economic viability. Thus, the
development of alternative processes for plastic waste is crucial
for implementing sustainable practices and reducing the
negative environmental impacts.
One promising alternative is the depolymerization of

polymers in the solid state via mechanically-induced
reactions.14−16 Mechanochemical reactions are typically
performed in ball mills, in which contacts and collisions
between grinding surfaces (balls and reactor wall) supply the
energy required to chemically transform the (usually
particulate) solid reactants caught between these surfa-
ces.15,17−20 Mechanochemistry has been successfully demon-
strated on a laboratory scale for the production of
lignocellulosic biomass,21,22 cellulose,23−25 ammonia26−29 and
lignin.30−33 Particularly for poly(ethylene terephthalate)
(PET), Štrukil34 and Tricker et al.3 recently demonstrated its
complete depolymerization to monomers inside ball mills.
Moreover, mechanochemical routes have recently been
explored for the depolymerization of various polymers such
as polystyrene (PS),35,36 polyethylene (PE),37 and poly(α-
methylstyrene) (PMS)27 and in the dechlorination of polyvinyl
chloride (PVC).38,39 In addition to the ability to efficiently
process solid reactants, ball milling is a highly scalable
industrial process being utilized in a wide variety of grinding
applications, from minerals and cement, to chemicals and
pharmaceuticals.40−44 Despite these advantages, mechano-
chemical reactions are often seen and modeled as “black-
boxes”, which hinders the fundamental understanding of
mechanically induced reactions.45 In attempts to model
mechanochemical reactions, semiempirical models have been
proposed across various branches of mechanochemis-
try.17,18,28,46,47 However, these models are often limited by
extrapolation issues, which restrict their utility in exploring
conditions such as reactor geometry or grinding media material
that would lead to optimal performance. Therefore, computa-
tional frameworks that would enable accurate predictions
under other conditions are necessary to realize the use of
mechanochemistry for waste processing.
Mathematical modeling of ball mills has been extensively

explored over the last 70 years, starting from empirical
correlations48 and semiempirical population balance mod-
els,40,43 to high-fidelity discrete element method (DEM)
models.40 First proposed by Cundall and Strack,49 DEM
models have received considerable attention due their ability to
describe the complex kinematics of moving entities and thus
have been successfully used across various applications
including the development of kinetic models for mechano-
chemical reactions.39,50 In DEM, the position and energetics of
each discrete entity are evaluated over short time scales
considering the effect of the surrounding population and
geometry to the forces acting on each entity.40,51 Parameters
such as the geometry, material properties, and processing
conditions are necessary to develop accurate digital-twin
models.52 Thus, DEM simulations provide a means to obtain
a first-principles understanding of the ball milling grinding
efficiency and the influence of mechanical factors on the
performance of mechanochemical reactions. Although DEM
models are very powerful and can replicate the dynamic
behavior of a system, several limitations exist regarding (a) the
material parameter calibration that may require expensive

experimental setups; (b) the high computational cost
associated with the numerical techniques needed to simulate
movement of discrete entities with small timesteps; and (c) the
particle shapes that are often approximated as spheres, a choice
that is not always accurate.53,54

The calibration of the DEM material parameters significantly
influences the prediction of the model. Material properties,
such as the Young’s modulus, material densities, and other
mechanical properties, are measured experimentally and are
used as the inputs to the DEM simulation.52 Two main
approaches have been proposed to calibrate the DEM material
parameters, namely, the direct and bulk measurement
methods.52,55,56 In the direct measurement approach, speci-
alized experimental setups are used to obtain the values of the
material properties required as inputs to the DEM simulation.
Although these measurements are accurately obtained, the
required experimental methods, such as the direct shear or
particle impact experiments, can be very expensive.40,52 In
contrast, in the bulk measurement approach, the values of the
material parameters are adjusted to match the DEM simulation
with experimentally observed features.55,56 Multiple authors
have used different methodologies to calibrate their DEM
material parameters via the bulk measurement approach. Most
commonly employed experiments are the drop test,57 the
angle-of-repose test,52,53 and the ring shear test,58 which
provide data that can be used to adjust the material parameters
of the simulation to mimic the observed system. More
advanced examples include high-speed filming of the dynamic
operation,59,60 which lead to collection of large, dynamic data
sets.
Another challenge associated with DEM models is the high

computational cost required to run a simulation where hours,
days, or months may be required even when supercomputers
are available. To address this, surrogate models have been
successfully employed to translate DEM process inputs to
outputs.61−63 Rogers and Ierapetritou64 used a Kriging
surrogate model to represent velocity profiles from DEM
simulation in blending application. In Metta et al.,51

mechanistic data obtained from DEM simulations were
mapped using Kriging and artificial neural network (ANN)
surrogate models for a milling process, while in Barrasso et
al.,65 collision frequency from the DEM simulations are used as
inputs into a population balance model using an ANN
surrogate framework. The main benefit of developing
surrogates is that once trained, they can be used to interpolate
simulation results for various operating conditions for which
the expensive simulations were not run (in this case DEM).
Thus, they have played a significant role in connecting
computationally expensive models with optimization algo-
rithms as they provide a means to accurately represent
simulation outputs in a fast manner.66−68

The present work is motivated by the need for an accurate
and efficient mathematical representation of reactive ball
milling to aid the process design and optimization for
mechanochemical recycling of plastic waste. The use of high-
fidelity DEM models is proposed as a means to explore the
efficiency of the mechanochemical processing of PET waste via
first principles. Following this idea, a multiscale modeling
framework that includes DEM models and computer vision
(CV) object detection algorithms for model validation, is
utilized as a tool to describe the motion of the grinding bodies
throughout the milling operation. Subsequently, the DEM
simulation is exploited and linked with experimental results to

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.3c06081
ACS Sustainable Chem. Eng. 2024, 12, 9003−9017

9004

pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.3c06081?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


construct efficient correlations that predict the mechanochem-
ical depolymerization of PET. Finally, a surrogate model is
trained to translate the mechanistic DEM inputs to outputs in
an efficient manner to provide fast estimates of yields. An
illustration of the steps and computational tools utilized to
model the mechanochemical PET depolymerization is
depicted in Figure 1.
The remainder of this paper is structured as follows. In

Section 2, the DEM model is formulated and a general outline
of the calibration and validation methodology is provided. The
performance of the DEM model is explored in the Results
section (Section 3). Section 4 highlights the mathematical link
between the DEM simulations and the mechanochemical
depolymerization experiments, while Section 5 discusses the
development of a DEM surrogate to address the high
computational cost. Finally, Section 6 provides a discussion
of the limitations of the modeling framework along with future
prospects, and Section 7 presents our summary and
conclusions.

2. METHODS
2.1. Modeling Framework. An overview of the computational

and experimental tools utilized in our work is depicted in Figure 1.
DEM simulations and experimental results are utilized in this work to
explore the efficiency of the milling operation. Material-specific
parameters that are used as inputs to the DEM model are estimated
by adjusting their values to match experimentally observed velocities
and collision frequencies. The operating conditions that contribute to
grinding efficiency and total conversion are investigated to link DEM
simulation outputs to reaction kinetics. To accomplish these
objectives, our multiscale framework includes the (a) development
of a high-fidelity DEM that replicates the kinematics of the grinding
bodies inside the laboratory-scale reactor; (b) calibration of the
material parameters based on high-throughput video experimental
data and CV tools; (c) exploration of the DEM simulation to identify
phenomena most critical to the mechanochemical process; (d)
development of correlations that link the DEM simulations and
quality attributes of the final product based on tunable process
parameters; and (e) development of a surrogate −DEM framework to
reduce the computational cost of DEM simulations. Details of the
DEM model and the calibration approach are discussed in Sections
2.2 and 2.3, respectively, followed by the kinetic correlations and the
reduced-order model in Sections 4 and 5. All of these steps combined
form the bases for the multiscale modeling approach that is used to
describe the depolymerization of PET waste in ball-mill reactors.
2.2. Discrete Element Method Model Development. A DEM

simulation is developed to model the interactions of discrete elements
using contact laws. Normal and tangential forces acting on each

discrete matter as a result of interactions with other moving bodies
and the unit geometry are evaluated, which, in turn, dictate the
particle motion. The equations of motion are solved for all entities at
each time step. User-defined particle properties including particle
sizes, shapes, and materials are selected at the beginning of each
simulation along with an appropriate contact model. The Hertz-
Mindlin contact model is applied in this work, as it is most
appropriate for noncohesive spherical shapes and has been extensively
utilized in similar applications in past literature.69−71 The time
integration for this model is set at 5 × 10−7 s. Throughout this work,
DEM simulations are run for 0.5 s real-time after steady-state
conditions have been reached. In terms of CPU time, this required a
total of 5 min for each DEM simulation on a computer with an
Intel(R) Core(TM) i9-12900, 3.20 GHz, x-64-based processor and 32
GB of RAM. Additional information on the physics and assumptions
involved in contact models can be found in the work of Cundall and
Strack.49 Detailed description of the equations surrounding DEM
calculations can be found in the work of Bhalode and Ierapetritou.52

All DEM simulations are performed in EDEM (EDEM solutions,
2021.1) commercial software that incorporates all of the related
equations of motion.
2.2.1. Ball-Mill Geometry and Contact Model Parameters.

SolidWorks 15.1 is used to create the 3D representation of the
reactor geometry that consists of one cylindrical vessel of 25 mL total
volume, as per the dimensions of the laboratory-scale ball mill used in
the experimental setup (Retch MM400 mill), as shown in Figure 2.
The experimental milling system and the DEM digital twin are shown
in Figure 4. At the beginning of each computational experiment, the
shaking frequency, number of balls and their sizes were fixed, and the
grinding media (balls) were generated.
Suitable material and contact model parameter inputs are necessary

for an accurate representation of the milling process. The stainless-
steel grinding balls are modeled using known steel properties as inputs
to the DEM ball-mill model (density 7800 kg/m3, Poisson’s ratio 0.3,
and Young’s modulus of 210 GPa).69 The properties of poly(methyl
methacrylate) (PMMA), construction material of the ball-mill vessel,

Figure 1. Main components of our study include experimental design, machine learning computer vision tools, and development of a discrete
element method model for the lab-scale reactor. When coupled with parameter estimation, we use all components to develop correlations for a
mechanochemical ball-mill reactor. A reduced-order-model (ROM) is employed to translate DEM inputs to outputs with reduced computational
cost.

Figure 2. (a) Detailed dimensions in inches of the laboratory-scale
ball-mill vessel. (b) Experimental apparatus.
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are taken from the work of Falke et al.72 (density 1180 kg/m3,
Poisson’s ratio 0.4, and Young’s modulus of 3.3 GPa). The interaction
parameters between the wall and the grinding bodies, coefficient of
restitution, and the friction coefficients (static and rolling) were varied
iteratively to match the velocity and number of collisions between the
simulation and motion-tracking experiments. More details about the
estimation of the parameters are provided in Section 3.
2.3. Mechanochemical Reactions. Poly(ethylene terephthalate)

(PET) powder was milled in a Retsch MM400 ball-mill reactor with
2.1 mol equiv of sodium hydroxide (NaOH) relative to terephthalic-
acid ethylene glycol repeat units, following the reaction scheme
illustrated in Figure 3. The experimental procedure including the
materials can be found in Tricker et al.3 and is also detailed in the
Supporting Information (SI). The resulting products of the
mechanochemical hydrolysis reaction are ethylene glycol (EG) and
disodium terephthalate (Na2TPA). The latter was used to characterize
monomer yields using high-performance liquid chromatography
(HPLC) according to the procedure detailed in our prior
experimental study.3 In summary, depolymerization kinetics were
explored by investigating the effect of the operating frequencies and
ball mass on the achieved conversion. All of the experiments were
performed in a 25 mL stainless-steel vessel using stainless-steel
grinding balls with diameters of 20 mm at frequencies ranging from 25
to 30 Hz.
The monomer yield was observed to progress linearly until

reaching an inflection point of sharp increase in yields, indicating the
transformation of the PET/NaOH powder into a homogeneous phase
(characterized by the formation of wax). Further experimental
investigation of the depolymerization kinetics is outside the scope
of this study, while in-depth discussion of the experimental setup and
kinetics have been reported in our previous study.3 Additional
information on the experimental methods can also be found in the SI.
The experimental monomer yields obtained from our previous work
are used in this work to develop correlations that link the DEM model
with the depolymerization yields in Section 4. The achieved yields are
depicted in Tables S2−S4.
2.4. Design of Ball Milling Experiments for the Calibration

of the DEM Model Parameters. A transparent PMMA milling
vessel with an interior shape and volume identical to those used in the
depolymerization experiments was manufactured and used in motion-
tracking experiments without reactants (PET) present, thus
neglecting the PET particle-to-particle interactions. This hypothesis
has been employed in previous DEM literature,40,73 and it is based on
the assumption that the collisions between grinding media are far
more significant than the collisions between the powder particles (e.g.,
due to the high relevant mass difference between the two entities).
Specifically, the movement of the ball(s) and their average velocities
are assumed to not be affected by the presence of powder particles;
thus, the kinetic energy and the collision frequency between the
ball(s) and walls are not affected. This is important as this allows us to
use simulations without powder particles to extract the model outputs
used in the proposed model discussed in Section 4. To support this
hypothesis, experiments with and without powder were performed
and recorded, which validated the assumption that the presence of
powder particles (at the specific fill levels of experimentation) does
not significantly impact the path of the ball. Video files from
experiments including powder can be found in the SI.
The mill’s operation was filmed on the experimental apparatus

depicted in Figure 2b using a Chronos 1.4 High Speed camera (2134
fps). A total of eight milling experiments were performed, and the

results were filmed. Stainless-steel balls with d = 20.6 and 17.5 mm
were used in the motion experiments, with the milling frequency
varied between 22.5 and 30 Hz. These operating settings were
specifically chosen to allow a direct comparison between the
observations from the motion experiments and the PET depolyme-
rization yields achieved in our previous experimental study.3 The
completed list of milling runs is highlighted in Table 1. Video files of
the recordings can be accessed in the SI.
2.5. Object Detection and Tracking Algorithm. The advance-

ments in both optical imaging and machine learning (ML) in the past
decade enabled detailed process design and optimization of complex
systems with data and measurements that were inaccessible
before.74,75 CV is a technology suitable for the acquisition, processing,
and analysis of visual inputs (e.g., digital images/videos) and,
therefore, an integral aspect of automation and calibration for a
variety of experimental and computational applications. A simple
algorithmic approach was implemented to analyze the movement of
objects (grinding balls) between adjacent frames and evaluate the
velocities of the balls. The data were then utilized to fine-tune the
material parameters of the DEM model and replicate the motion
experiments.
The OpenCV (Open-Source Computer Vision) and Numpy

libraries76−78 in Python are used for object tracking and image
processing. The MOSSE tracker (Minimum Output Sum of Squared
Error) is utilized to identify the moving ball(s). MOSSE is known to
be very robust, especially for identification of high-speed objects (such
as the milling balls) or changes in lighting and scale.76,77

The positions of the balls in the x- and y-directions were recorded.
The influence of the z-direction on the total velocity is assumed to be
insignificant due to the relatively small reactor volume. Once the
coordinates of the ball in space and time were identified, the velocity
was calculated as the change in position between two consecutive
frames using eqs 1−3. In addition, after a collision occurs, the ball
changes direction; thus, the number of collisions is identified as the
number of times the sign of the velocity vector changes. The ball
diameter was used as the standard to measure the distance in the
videos, and the time step was set as the video frame rate. Figure 4a,b
illustrates the video footage for one milling ball and its detection from
the CV algorithm.

= =v x
t

x x
t t

d
dx

2 1

2 1 (1)

= =v
y
t

y y

t t
d
dy

2 1

2 1 (2)

= +v v vx y
2 2

(3)

3. RESULTS
3.1. Discrete Element Method Model Calibration.

3.1.1. High-Speed Video Analysis. To study the milling

Figure 3. Alkaline hydrolysis of poly(ethylene terephthalate) through ball milling

Table 1. Operating Settings of Recorded Video Experiments

frequency (Hz) number of balls diameter (mm)

30, 27.5, 25, 22.5 1 20.6
30, 27.5, 25, 22.5 1 17.5
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process, the collected video experiments are analyzed. Figure 4
a,b illustrates frames from the raw video data and the detection
of the balls using the OpenCV computer vision algorithm
(Raw video data can be found in the SI). The horizontal (x)
and vertical (y) positions of the grinding ball are tracked and
extracted from each recorded experiment. The Savitzky−Golay
filter was then utilized to smooth the collected velocity data
and eliminate any experimental noise, as shown in Figure 5.
Figure 5 displays a representative section of the ball velocity in
the x-direction (νx‑ball), as well as the collision events for a
milling frequency of 30 Hz and dball = 20.6 mm. Two end-on
collisions in the x-direction occurred per milling cycle, with
νx‑ball remaining relatively constant. Additionally, the velocity in
the y-direction is approximately one order of magnitude lower,
confirming this observation. Velocity and collision time
evolutions were extracted from the recorded experiments
shown in Table 1 and were utilized to calibrate the DEM
material and contact parameters.
3.1.2. Calibration of the DEM Model. The DEM

simulations were executed with the initial set of material
parameters as inputs. Next, the comparison metrics (average
velocities and collision events) were extracted at every time
step under the same operating conditions as those for the
recorded milling experiments. The material parameters were
adjusted guided by the sensitivity analysis results (discussed in
Section 3.2) to match the experimentally observed features.
Finally, the material parameters were considered to be
calibrated when the relative difference of the comparison
metrics was insignificant.

Experiments performed for one stainless-steel ball with
diameters of 17.5 and 20.6 mm and milling frequency ranging
from 22.5 to 30 Hz are chosen as the validation set. As an
initial estimate, the material and contact parameters for steel-
PMMA interactions were chosen based on the work of Falke et
al.,72 where properties of materials similar to the ones used in
our experimental setup were evaluated. Lower and upper
bounds were set in such a way that they restrict the available
search space based on the physical meaning of the interaction
parameters. A sensitivity analysis was initially performed to
guide the parameter estimation process and identify a
combination of parameters that correspond to velocities and
collision frequencies close to the ones extracted from the
experimental data and the CV algorithm.
The final set of parameters and their respective bounds for

the two validation cases tested (d = 17.5 mm and d = 20.6
mm) are presented in Table 2. For this set, the average ball
velocity is compared in Figures 6 and 7 for the validation cases,
which reveals that the values are in very good agreement for
the different operating conditions tested and can thus validate
the model (Table 3). The reader is referred to Figure S1 for a
comparison of the velocity trajectory between the experimental
and DEM data. A coefficient of restitution (CR), a static
friction coefficient (SF), and a rolling friction coefficient (RF)
equal to 0.11, 0.7, and 0.5, respectively, were identified. Known
material parameters such as densities, Young moduli, and the
Poisson’s ratio were not varied.
Once the DEM parameters are estimated, the simulation can

be executed under different conditions and the results can be
used to further analyze the ball milling system. In the future, if
powder particles or other entities are introduced within the
DEM simulation, then new parameters (e.g., coefficient of

Figure 4. (a) Experimental setup includes a vibratory 25 mL reactor and one stainless-steel ball of varying diameters. (b) The OpenCV computer
vision python library is used to track each ball as it moves inside the milling vessel. (c) Replication of the experimental setup using the DEM
software.

Figure 5. A typical segment of the x-direction of the velocity vector
for the case of one stainless-steel ball with a diameter equal to 20.6
mm 30 Hz milling frequency as evaluated from the recorded
experiment and the object detection algorithm. The gray line
illustrates the raw experimental data, while the red line denotes the
smoothed velocity data. The collision events are denoted by black
circles.

Table 2. DEM Material Parameters, and their Respective
Bounds in the Sensitivity Analysis Study

symbol value bounds

density, ball (kg/m3) ρball 7800 constant
density, wall (kg/m3) ρwall 1180 constant
Young modulus, ball (GPA) Eball 210 constant
Young modulus, wall (GPA) Ewall 3.3 constant
Poisson ratio, ball [−] νball 0.3 constant
Poisson ratio, wall [−] νwall 0.4 constant
coefficient of restitution, ball−wall
[−]

CR 0.11 0.1−0.7

static friction coefficient, ball−wall
[−]

SFμs,b−w 0.7 0.3−0.7

rolling friction coefficient, ball−wall
[−]

RFμr,b−w 0.5 0.1−0.5

time step [s] Δt 5 × 10−7

simulation time [s] t 0.5
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restitution, static, and rolling friction) will be required to
describe the interactions between PET particles and balls/
walls. The parameters that are identified in this work that
describe the interactions between the ball(s) and walls will not
be affected.

3.2. Sensitivity Analysis for the Material-Based DEM
Parameters. Sensitivity analysis is used to qualitatively and
quantitatively analyze the extent of variability in the response
of a mathematical formulation to design or operational
variables. The main goal of such an analysis is to identify the
importance of each material parameter to the model
response69,79 and determine their effects on complex model
formulations.69,79−81 Additionally, the issue of solution multi-
plicity whereby various material parameter values might result
in solutions that fit the data may occur, since the
corresponding system of equations is underdetermined.52,60,82

This is a common challenge in the bulk measurement material
parameter identification problem, where there is not one
unique solution to the system. In this work, we use a variance-
based sensitivity analysis approach to exploit how the material-
based parameters affect the overall behavior of the model.
Specifically, our objective is to evaluate the impact of calibrated
material parameters on the predicted average velocity and
identify if multiple combinations of contact parameters can
lead to a similar model response. Overall, sensitivity analysis
studies map the system response subject to the values of the
material parameters and allow for further exploitation of the
system and accurate calibration of the parameters.
The coefficient of restitution (CR), rolling friction (RF), and

static friction (SF) for stainless-steel and PMMA interactions
are changed iteratively within their respective bounds, as
shown in Table 2. The coefficient of restitution determines the
relative velocity effect of the (in)elasticity of two colliding
bodies. Hence, high values of coefficient of restitution will lead
to higher velocities and vice versa, as is observed in Figure 8.
The coefficient of rolling friction determines the required
torque to be applied to an object at rest on a given surface to
put into rolling motion, while the coefficient of static friction
determines the required normal force to be applied to the same
object to begin moving. For very low static friction coefficient
values, the grinding ball moves faster indicating that small force
and torque requirements are necessary for its movement.
Through this sensitivity analysis, we see that all parameters

are important and strongly influence the resulting average
velocities. In Figure 8, we report the averages and standard
deviations from results of three sets of simulation runs.
Replications are performed to quantify the variability of the
results caused by the stochasticity of the DEM simulation
initialization. It can be seen that the effects of the three
material parameters to the final average velocity are nonlinear.
In addition, solution multiplicity is observed at some instances
for low coefficient of static friction (SF = 0.3) where similar
average velocities are identified for different combinations of
parameters. The solution multiplicity for the bulk measure-
ment approach is a known issue, and hence, proper upper and
lower bound values should be chosen in such a way that
parameter values with no physical meaning are excluded from
the grid search. For the present case (vavg = 2.13 m/s), it was
found that the set of parameters that corresponds to the
measured velocity is unique and the solution multiplicity is not
observed at this material parameter space. All in all, the
sensitivity results in this work allowed for the mapping of the
system’s response to further guide the simulation runs in the
identified regions and identify material parameters that lead to
results consistent with the experimentally measured values.
3.3. Influence of Milling Parameters on the Kinetic

Energy of the Grinding Balls. Once the materials and
contact parameters of the DEM model are calibrated, and the

Figure 6. Average velocities measured from the recorded experiments
(squares) and the DEM simulations (triangles) for dball = 17.5 mm
(green) and dball = 20.6 mm (blue) for the identified set of material
parameters. The velocities are compared for different vibration
frequencies (22.5−30 Hz).

Figure 7. Comparison of predicted and measured velocity from the
recorded experiments and the DEM simulations for dball = 17.5 mm
(green) and dball = 20.6 mm (blue). Triangle, square, star, and circle
symbols denote the frequency of operation that was set at 22.5 25,
27.5, and 30 Hz, respectively.

Table 3. Average Velocities and Collision Frequency as
Calculated from the Recorded Experiments and the DEM
Simulation

milling
frequency
(Hz)

ball
diameter
(mm)

average
velocity
(m/s)

average velocity
DEM (m/s)

collision
frequency
(1/s)

30 17.5 2.57 2.57 60
20.6 2.50 2.49 60

27.5 17.5 2.44 2.42 55
20.6 2.29 2.28 55

25 17.5 2.25 2.26 50
20.6 2.13 2.14 50

22.5 17.5 2.07 2.07 45
20.6 1.86 1.95 45

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.3c06081
ACS Sustainable Chem. Eng. 2024, 12, 9003−9017

9008

https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06081?fig=fig7&ref=pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.3c06081?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


kinematics are accurately captured, DEM simulations can be
executed to investigate the parameters that influence the
mechanochemical process. Specifically, the entities within the
reactor system are tracked over simulation time to evaluate the
influence of the degrees of freedom (e.g., milling frequency and
ball sizes) on the kinetic energy which is known to be
important for characterizing mechanochemical reactions.83,84

This systematic analysis provides the necessary tools for
identifying the optimal operating regime that will lead to
higher monomer yields.
Figure 9 illustrates the relationship between the average

kinetic energy, the ball sizes, and the milling frequencies. For
lower milling frequencies, the evaluated average kinetic energy
is relatively small for all the studied combinations of sizes. In
our previous experimental study on the depolymerization
kinetics within the same mill,3 it was shown that for milling
frequencies lower than 25 Hz, the extent of the depolymeriza-
tion reaction is rather small. This implies that the impact
intensity of the collisions and the mechanical energy induced
are not sufficient to activate the mechanochemical reaction,
assuming that the behavior of the mill for the remainder of the
reaction time (∼20 min) will follow a similar trend. In
contrast, for higher milling frequencies and ball sizes, complete

depolymerization was achieved at smaller milling times.3 This
observation is quantified with the results of the DEM
simulations, which indicate that under these conditions, the
average kinetic energy of the grinding media is considerably
higher. In general, increasing the ball size and the vibration
frequency had a positive effect on the kinetic energy (Ekin)
during ball milling. This analysis constitutes the basis of the
following section, which links the outputs of the DEM
simulations to mechanochemical yields.

4. LINKING DEM OUTPUTS TO MECHANOCHEMICAL
YIELD

Understanding and quantifying kinetic information on a
reaction is an essential step toward predicting the reaction
pathway, controlling, and optimizing the reactor, and
eventually assessing efficiencies at larger scales. The kinetics
of most of the reactions are dictated by their energy descriptor,
i.e., temperature or potential in thermochemical and electro-
chemical reactions, respectively. For the case of mechano-
chemical reactions, it has been demonstrated that the critical
energetic descriptor is the kinetic energy of the moving
balls.17,84 In other words, the reaction rate is expected to be
proportional to the milling intensity, via a kinetic parameter a,
and consequently to the kinetic energy of the ball and collision
frequency. Measuring parameters such as velocities, however,
often requires sophisticated experimental setups to record the
milling process, while the estimated kinetic parameters will still
be dependent on the system specifics. DEM models can
computationally estimate the kinetic energy and collision
frequencies (i.e., the energy descriptor) for different sets of
operating conditions without the need for performing
expensive experiments. This will enable the use of the model
for the efficient exploration of conditions that would lead to
optimal performance. Of course, the exact value of the
proportionality parameter a is expected to be dependent on
the system specifics not captured by DEM in this work, such as
the substrate or the fill level.
Linking data from DEM simulations with the achieved yields

will further enable exploitation of the reaction kinetics for
mechanochemical reactions. To accomplish this goal, we utilize
experimental results discussed in our previous experimental
study for PET depolymerization,3 and results from DEM
simulations performed for the same operating settings. These

Figure 8. Average velocity values for the case of one stainless-steel 20.6 mm ball at a milling frequency of 25 Hz for different rolling (RF) and static
friction (SF) coefficients and coefficient of restitution values (CR). The red circle indicates the value of the ball’s velocity as extracted from the
experimental data for the particular set of operating conditions.

Figure 9. Average kinetic energy of a mill operating with one
stainless-steel ball of different sizes operating at different milling
frequencies.
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are subsequently used to construct correlations to relate the
milling parameters to the depolymerization kinetics. This way,
information about the systems’ specifics such as the type or
size of grinding media and reactor can be incorporated.
4.1. Relationship between the Total Energy and

Reaction Yields. Figure 10 depicts the progression of
depolymerization over time for PET samples (1 g of PET +
0.42 g of NaOH) milled with one stainless-steel ball (d = 20
mm) at operating frequencies of 25, 27.5, and 30 Hz. The
monomer yield initially follows a linear relationship with
respect to the milling time (t ≤ 12.5 min) until an inflection
point after which the depolymerization rate increases rapidly
and complete depolymerization is reached within 17.5−38 min
depending on the operating conditions. This inflection point
corresponds to the transition of the PET/NaOH powder to a
homogeneous waxy phase. Finally, complete depolymerization
of PET powder was observed at 20, 25, and 40 min for 30,
27.5, and 25 Hz, respectively. The transition to wax phase is
not instantaneous, and for some time, the contents of the
reactor are a mix of powder and wax. A comprehensive table
with all of the experimental results highlighting the yield and
the corresponding phases is provided in Tables S2−S4.
DEM simulations are executed, and simulation results are

extracted for the operating settings for which monomer yield
data are available. To study energetics, we extract from each
simulation run ( f = 25, 27.5, and 30 Hz) the kinetic energy (as
a function of the average velocity) and the frequency of
collisions per unit time. In Figure 11, the correlation between
the cumulative kinetic energy supplied to the milling system
over time and the observed monomer yield is depicted. When
plotted against milling time, the monomer yield followed
different trends for the three operating settings ( f = 30 27.5,
and 25 Hz), as shown in Figure 10; however, a distinct, unified
trend emerges when plotted against the energetic descriptor of
the reaction (Figure 11).
In the initial reaction regime, termed the “powder phase”,

linear progression of yields with milling intensity is observed
across all operating conditions. Samples taken from the ball
mill during this regime were uniformly in the powder phase.
The transition out of the powder phase occurs after a
cumulative energy dose of approximately 4600 J across all three
operating conditions. Subsequently, an intermediate phase,

termed the “wax phase”, occurs where the reactant material
consists of a hybrid mixture of powder and wax. Finally, the
system transitions into the homogeneous wax phase regime,
indicated by the “complete depolymerization”. This final
regime is achieved once the cumulative energy input exceeds
7100 J. Beyond that point, additional energy input no longer
influences the depolymerization of the PET, as Na2TPA
monomers have already been formed.
These observations facilitate the formulation of a linear

expression for the powder regime that will establish a
connection between the yield with the DEM simulations
within that region. This will enable the prediction of the point
of the phase transition and conversions up to approximately
40%. After progression to the wax and complete depolymeriza-
tion regimes, the relationship between energy and yields is not
linear and the data exhibit greater spread. The phase transition
event occurs suddenly, and conversion rapidly accelerates
toward complete depolymerization afterward. It is very difficult
to predict precisely when the onset of the phase transition
occurs due to high sensitivity to the prior history of the
reactant mixture up to that point. There is, however, a clear
boundary between partial and full depolymerization that can be
drawn. A model that would predict the entire trajectory from
the powder to complete depolymerization phase could be
trained using nonlinear regression. However, because of the
limited data and additional uncertainty introduced at the
transition between the powder and wax phases, it is hard to
propose such correlations that would be interpretable and
validated. The different regions are colored in these two
regimes to broadly estimate the range of possible conversions
for energy inputs above ∼4600 J. All in all, if the cumulative
energy is higher than ∼7100 J, full depolymerization can be
achieved.
The linear function that describes the powder phase is

calibrated using the available experimental data for the three
operating conditions ( f = 25, 27.5, and 30 Hz). Since the
precise phase transition point is unknown, several linear
functions are evaluated and the best set of equations is selected
by minimizing the least-squares values. The regression line is
accompanied by a shaded region signifying a 95% confidence

Figure 10. Raw experimental data for the monomer yield as a
function of depolymerization time for the case of one stainless-steel
20 mm at 25, 27.5, and 30 Hz.

Figure 11. Monomer yield as predicted using the kinetic energy and
frequency of collisions from the DEM simulations for the case of one
stainless-steel ball with d = 20 mm at f = 25, 27.5, and 30 Hz. The
boundary between the "Powder" and "Wax" is drawn at 4593 J, while
between the "Wax" and "Complete Depolymerization" phases at 7126
J.
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interval, indicating the range where the actual regression line
lies. The kinetic expression that was identified is shown in eq 4
while the kinetic parameters are reported in Table 4.

= × × <X
t

a E f E
d
d

for 4600 Jkin col tot (4)

where Ekin [J] is the average kinetic energy, fcol [1/s] is the
collision frequency, and a and b (intercept) are fitted to the
experimental data. X represents the yield, as defined in eq 5.
The lumped parameter a captures the importance of feedstock
properties. This way, the high-fidelity DEM data are combined
with the experimental results to predict the monomer yield.
The effects of the ball size, geometry, and materials are all
accounted for by the DEM model. Using this lumped
parameter approach, the use of the DEM model enables
prediction for other operating settings (e.g., ball sizes,
frequency, and geometries).

=X
n

nmonomer
monomer

PET,0 (5)

Table 4 reports the identified kinetic parameters that
characterize the link between the energy descriptor and the
yield. The nonzero y-intercept (b) indicates that there is a
short “induction” period at the start of milling where solid−
solid mixing and particle size reduction dominate before
depolymerization takes over. The predicted and experimental
values are in satisfactory agreement (r2 = 0.966), indicating
that once trained, the equations showcased in this section can
be utilized to estimate conversions using only simulation
results.
The advantage of the proposed method is that after training,

it does not require any experimental data as input for
predicting the extent of depolymerization up until the phase
transition and will only utilize results from the DEM
simulations as well as broadly estimate the range of complete
depolymerization. In addition, the model proposed here is
expected to provide good predictions within the range of the
training data. In other words, if any of the parameters that were
kept constant during our training procedure changes such as
the amount of PET milled or the fill level, the regression
parameters of eq 4 can be optimized using new experimental
data; however, the general behavior of the reaction as a
function of energetics should remain the same. Finally, it is
acknowledged that once the phase transition occurs from
powder to wax, the results of the DEM simulation might not be
as accurate. This is because parts of wax are likely to stick to
the ball surface and, therefore, might explain why there is no
clear trend between energy dose and yield in the wax and
complete depolymerization regimes.

5. REDUCED-ORDER MODEL FOR THE DEM
SIMULATION

The validated DEM model, even with a few grinding entities,
requires setup and simulations with specialized DEM software.
Once validated, the DEM model can be used to generate

enough data a priori to fit a fast surrogate model that
accurately captures the important input−output correlations
required for future tasks (i.e., process integration and design).
Surrogate models are often employed to describe systems of
equations that are expensive to solve and thus reduced through
efficient surrogates to lower cost and faster models.67,85 These
reduced-order representations can be later embedded within a
process flowsheet simulation or other models, suitable for
process optimization, control applications or further system
analysis.67

5.1. Methodology for the Construction of the
Reduced-Order Model. In the current work, mechanistic
input−output data obtained from DEM simulations are used
to fit low-cost regression models (surrogates) that represent
the mechanistic data. The outputs predicted by these
surrogates are the inputs to the DEM-mechanochemical
reaction model (DEM-MC) developed in Section 4. The
inputs selected are the milling frequency and ball-to-reactor
volume ratio (BVR), which are inputs that are scalable. Our
hypothesis is that we can identify a simple regression model to
capture the important links between these critical process
inputs and DEM outputs.
Toward this effort, we used rigorous training and compared

a variety of regressors, including linear regression, random
forests, support vector regression, and neural networks. Results
are presented here for the two top models that were found to
balance accuracy and simplicity, namely, linear and random
forest (RF) regression. Both surrogate techniques have been
utilized in a variety of applications in the literature to reduce
the cost of expensive simulations. A simple schematic of the
surrogate model−mechanochemical reaction model (SM-MC)
training is shown in Figure 12, where the ball-mill operating
conditions, namely, the milling frequency and the ball-to-
reactor volume ratio (BVR), are used as inputs while the
output of the model are the DEM simulation results used for
predicting the monomer yield. The BVR ratio is chosen such
that the SM-MC model can be used to estimate the conversion
in reactors other than the one used in the experimental work.3

The collision frequency and the average kinetic energy of the
ball (outputs of the DEM simulation) are used as inputs to the
MC model (e.g., eq 4). Subsequently, we built the reduced-
order model to predict those two sets of variables given the
ball-mill operating settings: the frequency and the BVR
parameter. Linear regression and random forest models are
built on data obtained from 27 DEM simulation runs. The data
correspond to average velocity and collision frequency for
operating frequencies ranging from 20 to 30 Hz (equally
spaced at a step of nine increments) and ball radii equal to
14.3, 17.5, and 20 mm, respectively. Both models are trained
using the sklearn library in Python.86,87 Mathematically, the
regression problem can be presented as follows:

=
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Ç
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= argmin(MSE)opt (9)

Table 4. Kinetic Parameters Identified for eq 4

kinetic parameter (slope),
a [molmonomer/molPET,0 kJ−1]

intercept,
b [molmonomer/molPET,0]

powder phase
regime

9.49 ± 1.00 −3.03 ± 1.70
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In the context of this problem, x and y stand for the input
and output vector of the surrogate model, respectively. The
mean squared error (MSE) loss function is utilized to quantify
the disparity between predictions and actual values. The
solution of the mathematical problem results in the optimum
set of hyperparameters (φopt) and the corresponding ypredicted
vector. The optimal hyperparameters of the random forest
model are determined through a comprehensive grid search
over a wide range of values to ensure that the parameter space
is thoroughly explored.
To fit the regression models, we split the data set into

training and testing sets. 70% of the data are used for training
to find the optimal model parameters. The remaining 30% of
the data are used for testing purposes and for monitoring the
generalization performance. To monitor the accuracy of the
resulting models, we compare the R2 scores, the percentage
errors and the parity plots.
5.2. Surrogate Model Results. The performance of the

trained surrogate model (ypredicted) is first compared with the
results derived from the high-fidelity DEM simulation (ytrue)
for the three validation cases. The parity plots for the average
velocities and collision frequencies are depicted in Figure 13,
while Table 5 lists the error metrics. The percentage errors
from the surrogate approximations as depicted in Table 5 and
Figure 13 are less than 2% for the velocity predictions and less
than 4% for the collision prediction for both surrogates, with
linear regression showing better performance.
To determine the acceptable error threshold, however, it is

crucial to compare the hybrid framework performance (SM-
MC) with the experimental results to evaluate how much the

chosen surrogate model affects the prediction of the monomer
yield and not just the DEM outputs. Therefore, the model
prediction of the DEM-MC and SM-MC approaches should be
compared through the predicted yield to evaluate the
information loss and the prediction accuracy of the reduced
version in comparison with the high-fidelity approach. Table 6
reports the absolute errors between the predictions of the
DEM-MC and SM-MC approaches and the experimental data
for all operating settings. Additionally, to highlight the
prediction accuracy of the LR-MC and RF-MC surrogate
models, the parity plots comparing the actual (experimental)
and predicted yields (SM-MC) are shown in Figure 14 a and b,
respectively. These findings suggest that both surrogates can
effectively predict the resulting MC yield for the case of PET
waste in a fast manner.

Figure 12. Surrogate model for DEM ball-mill simulation.

Figure 13. Parity plots for the average velocities and collision frequency reduced-order models from linear regression (a, c) and random forest (b,
d) for the training and test data sets.

Table 5. Percentage Errors for Average Velocity and
Collision Frequency Surrogate Models for the Three
Validation Cases with Respect to the DEM-Computed
Values

average velocity
percentage error

(%)

collision
frequency

percentage error
(%)

LR RF LR RF

case study 1 (r = 10 mm and
f = 25 Hz)

0.38% 1.76% 0.26% 3.26%

case study 2 (r = 10 mm and
f = 27.5 Hz)

0.88% 1.96% 0.74% 0.74%

case study 3 (r = 10 mm and f
= 30 Hz)

0.76% 0.98% 3.36% 3.36%
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While both surrogate approaches show similar capabilities
regarding prediction accuracy, it is important to consider other
factors that are associated with the development of the model
and its implementation. For example, in comparison to a
random forest model, a linear regression model is easier to set
up and physically interpret. Taking into account the prediction
accuracy presented in Tables 5 and 6, as well as the complexity
of the resulting surrogate model, we conclude that the LR-MC
modeling approach is favorable in comparison to the more
complex random forest approach. This case study demon-
strates that the SM-MC approach can achieve comparable
results with the DEM-MC approach while offering significant
advantages in terms of computational efficiency. The SM-MC
model can generate results within seconds, whereas the DEM-
MC approach might take more time to run. The required run
time will significantly increase when studying the scaling-up
procedure of the ball milling depolymerization process, a
necessary step toward establishing mechanochemical process-
ing of plastic waste. All in all, the SM-MC approach offers a
significant advantage of being able to predict the behavior of
the system without the need for running expensive DEM
computations at unseen conditions.

6. DISCUSSION
Throughout this work, we illustrated the use of DEM models
to evaluate the energetics associated with the use of ball-mill

reactors for depolymerization purposes and the significance of
the cumulative energy dose to the resulting yield. To achieve
this objective, we trained a hybrid DEM-MC model, which
establishes a connection between the high-fidelity DEM model
and experimental data through a lumped parameter, parameter
a. Using lumped parameter a, we capture the importance of
feedstock properties. This computational framework can be
used to predict the conversion without the need for performing
additional expensive experimentation. One limitation of the
equations presented in this article is that they cannot be
directly used for extrapolation and are valid only within the
ranges of the available experimental data (e.g., PET and NaOH
quantities, fill-level). Instead, a framework employing models
of varying fidelity to describe mechanochemical depolymeriza-
tion is showcased. Once the DEM-MC hybrid framework is
trained with appropriate data that describe other types of
feedstocks or fill levels, it can be employed to elucidate results
that can be generalized to other types of ball mills to obtain the
same performance.
One additional limitation is that the breakage of PET

powder is assumed to have no influence on the total energy or
the calculated yield. While this assumption is reasonable for the
type of raw materials and fill levels explored in this work, the
incorporation of granular materials or irregular plastic shapes
that resemble actual waste materials into the DEM simulations
can provide more insight into how the PET particles break and
are converted to monomers. This will make the model more
reliable by evaluating the impact of the shape and material
properties on the process output, and will further enable the
holistic understanding of mechanochemical depolymerization
for plastic recycling, and the development of generalizable
models to predict monomer yields for different types of
feedstocks.
One significant application of the proposed modeling

framework is the simulation and quantification of energetics
and efficiency of the operation of industrial-scale ball-mill
reactors. A DEM simulation can be virtually constructed and,
based on the simulation results, estimate the residence time
required to complete depolymerization or calculate the costs
associated with the operation of a ball-mill reactor to attain a
specific yield. In our prior studies,88,89 we established a data-
driven correlation to connect the yields achieved within the
reactor with the ball-to-powder (BPR) ratio and conducted
DEM simulations for industrial-size reactors to calculate the
operating expenses. By integrating the DEM-MC framework

Table 6. Absolute Errors for the DEM-MC, LR-MC, and RF-
MC Models for Case Study 1, r = 10 mm and f = 25 Hz,
Case Study 2, r = 10 mm and f = 27.5 Hz, and Case Study 3,
r = 10 mm and f = 30 Hz

Na2TPA yield absolute
error (|

Xpred (%) − Xexp (%)|)

DEM LR RF

case study 1 ( r = 10 mm and f = 25 Hz)
maximum 2.55 2.39 1.51
minimum 1.23 0.94 0.12
case study 2 ( r = 10 mm and f = 27.5 Hz)
maximum 2.14 2.63 3.23
minimum 0.24 0.47 0.23
case study 3 ( r = 10 mm and f = 30 Hz)
maximum 3.71 3.46 3.61
minimum 1.66 1.55 1.51

Figure 14. (a) LR-MC and (b) RF-MC parity plots comparing the actual and the predicted monomer yield for f = 25, 27.5, and 30 Hz.
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introduced in this study for an industrial-size reactor, it
becomes feasible to predict the operating costs to achieve a
certain degree of depolymerization. Such investigations can be
very significant, as one of the primary concerns regarding the
potential of mechanochemical methods for waste processing is
the high operating costs tied to the operation of industrial-size
ball-mill vessels. A valuable extension of this would be to
investigate potential strategies to optimize operating costs in a
manner that would ensure complete depolymerization. One of
the anticipated challenges when moving from the lab to
industrial scales is the uncertainty introduced to the computa-
tional results due to changes in reactor geometries (e.g.,
vibratory versus rotating reactor). Simulation tractability
challenges will arise in scale-up studies if it becomes important
to simulate grinding media and raw materials (e.g., powders,
flakes, or films). Furthermore, challenges may arise by the
presence of a significant amount of wax at industrial-scale
reactors, even though this does not impact the internal path of
the ball at the lab scale.
Additionally, there is a huge body of literature that connects

DEM models with population balance models (PBMs), which
have been used to describe the operation of particulate
processes in pharmaceuticals and mineral processing.69,71,90,91

There is significant value in developing models that can
capture the molecular weight distribution (MWD) during
depolymerization under varying operating conditions (e.g.,
shaking frequency, number of steel balls, catalyst, carrier gas,
geometry), to enable design of the reactor and subsequent
separation systems. A fully mechanistic model would be ideal,
but it remains infeasible due to the inherent complexity of the
ball milling process and the large variability in operating
conditions between systems, including mill geometry and
selection of catalyst. This kind of work would lead to the
development of a physics-based PBM model that can predict
the evolution of MWD over time in relation to the energy
doses extracted from the mechanistic DEM model.
Moving along, an industrial-scale ball-mill reactor model can

be incorporated within a flowsheet simulator to enable the
process flowsheet design and optimization. However, because
process simulators require fast estimates to run, the connection
with high-fidelity DEMs is infeasible. In this case, the surrogate
approximations developed in this work can be more easily
integrated within flowsheet software. Such studies may allow
the investigation of potential economic and processing trade-
offs between the operation of the ball-mill unit with the
downstream separation/purification steps. We anticipate that
process-level analyses will be critical for comparing this novel
technology with alternative recycling routes and aid policy-
makers and industry stakeholders in making informed
decisions regarding its overall potential.

7. CONCLUSIONS
This article presented an integrated approach for modeling
mechanochemical depolymerization in ball mills using DEM
models, linking operating conditions to reaction yields. The
DEM material parameters were calibrated to best represent the
kinematics of the milling system. The simulation was validated
via a grid search and a sensitivity analysis study. Subsequently,
the validated model was utilized to explore the energetics of
the milling system and investigate the influence of the
operating parameters on the achieved depolymerization yield.
It was found that for combinations of small grinding ball sizes
and low milling frequencies, the kinetic energy is low, which

hinders the depolymerization reaction. In contrast, larger sizes
and milling frequencies result in higher kinetic energies and
increased monomer yields.
A mathematical model was then formulated to link the high-

fidelity DEM simulation outputs (velocity profiles and collision
frequency) to the attained depolymerization yields. Three
distinct regimes of operation (e.g., the powder, the wax, and
the complete depolymerization phases) were defined based on
the cumulative energy supplied. A linear relationship was
established to predict the progression of yield in the powder
phase regime and estimate the onset of the phase transition.
The derived equations can be effectively applied to predict the
monomer yield at unseen operating conditions using the DEM
simulation results as inputs without the need of additional
experimentation. Results demonstrate high prediction accu-
racy, hence facilitating the estimation of the monomer yield
with respect to process settings for experiments that have yet
to be performed.
Finally, a surrogate−DEM modeling approach was inves-

tigated to address the computational challenges associated with
expensive high-fidelity simulations. The DEM process variables
(milling frequency and ball-to-volume ratio) were translated to
DEM outputs (kinetic energy and collision frequency), which
were then used as inputs in the proposed model. By integrating
the mechanistic DEM data into a more data-driven framework,
the computational time required for the final solution was
significantly reduced. This enhanced efficiency enables the use
of the low-fidelity model in applications that require fast
solutions such as control or flowsheet optimization.
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(34) Štrukil, V. Highly Efficient Solid-State Hydrolysis of Waste
Polyethylene Terephthalate by Mechanochemical Milling and Vapor-
Assisted Aging. ChemSusChem 2021, 14 (1), 330−338.
(35) Balema, V. P.; Hlova, I. Z.; Carnahan, S. L.; Seyedi, M.;
Dolotko, O.; Rossini, A. J.; Luzinov, I. Depolymerization of
polystyrene under ambient conditions. New J. Chem. 2021, 45 (6),
2935−2938.
(36) Chang, Y.; Blanton, S. J.; Andraos, R.; Nguyen, V. S.; Liotta, C.
L.; Schork, F. J.; Sievers, C. Kinetic Phenomena in Mechanochemical
Depolymerization of Poly (styrene). ACS Sustainable Chem. Eng.
2023, 12, 178.
(37) Nguyen, V. S.; Chang, Y.; Phillips, E. V.; DeWitt, J. A.; Sievers,
C. Mechanocatalytic Oxidative Cracking of Poly(ethylene) Via a
Heterogeneous Fenton Process. ACS Sustainable Chem. Eng. 2023, 11
(20), 7617−7623.
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