

Estimating the impact of implementing an integrated care management approach with Atrial fibrillation Better Care (ABC) pathway for patients with atrial fibrillation in England from 2020 to 2040

Elizabeth M. Camacho^{1,2} and Gregory Y.H. Lip ⁽¹⁾

¹Institute of Population Health, University of Liverpool, UK; ²Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK; and ³Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

Received 14 August 2023; revised 21 August 2023; accepted 27 September 2023; online publish-ahead-of-print 11 September 2023

Background	Stroke prevention is central to the management of atrial fibrillation (AF), but there remains a residual risk of adverse outcomes in anticoagulated AF patients. Hence, current guidelines have proposed a more holistic or integrated approach to AF management, based on the Atrial fibrillation Better Care (ABC) pathway, as follows: (A) avoid stroke with anticoagulation; (B) better symptom control with patient-centred symptom directed decisions on rate or rhythm control; and (C) cardiovascular and comorbidity management, including lifestyle factors. There has been no formal healthcare cost analysis from the UK National Health Service (NHS) perspective of ABC pathway implementation to optimize the management of AF. Our aim was to estimate the number of patients with AF in the UK each year up to 2040, their morbidity and mortality, and the associated healthcare costs, and secondly, to estimate improvements in morbidity and mortality of implementing an ABC pathway, and the impact on costs.
Results	In 2020, there were an estimated 1463 538 AF patients, resulting in £286 million of stroke care and £191 million of care related to bleeds annually. By 2030, it is expected that there will be 2115 332 AF patients, resulting in £666 million of stroke healthcare and £444 million of healthcare related to bleeds. By 2040, this is expected to rise to 2856 489 AF patients, with £1096 million of stroke healthcare and £731 million of healthcare related to bleeds for that year. If in 2040 patients are managed on an ABC pathway, this could prevent between 3724 and 18622 strokes and between 5378 and 26 890 bleeds, and save between 16 131 and 80 653 lives depending on the proportion of patients managed on the pathway. This would equate to cost reductions of between £143.9 million and £719.6 million for the year.
Conclusion	We estimate that there will be a substantial healthcare burden in the UK NHS associated with AF, from strokes, bleeds, and mortality over the next decades. If patients are managed with a holistic or integrated care approach based on the ABC pathway, this could prevent strokes and bleeds that equate to substantial NHS healthcare cost reductions, and save lives.
Keywords	Atrial fibrillation • ABC pathway • Costs

* Corresponding author. Email: gregory.lip@liverpool.ac.uk

[©] The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Key learning points

What is already known:

- Current guidelines have proposed an integrated approach to atrial fibrillation (AF) management, based on the Atrial fibrillation Better Care (ABC) pathway, as follows: (A) avoid stroke with anticoagulation; (B) better symptom control with patient-centred symptom directed decisions on rate or rhythm control; and (C) cardiovascular and comorbidity management, including lifestyle factors.
- There has been no formal healthcare cost analysis from the UK National Health Service (NHS) perspective of ABC pathway implementation to optimize the management of AF.

What this study adds:

- We estimate a substantial healthcare burden of AF patients, from strokes, bleeds, and mortality in the UK NHS over the next decades.
- If patients are managed based on the ABC pathway, this management approach could prevent strokes and bleeds, and save lives that equate to substantial NHS healthcare cost reductions.

Introduction

As the commonest sustained cardiac arrhythmia, atrial fibrillation (AF) is managed across a wide spectrum of healthcare professionals, ranging broadly from general practitioners to emergency room practitioners, internal medicine specialists, and cardiologists. While many AF patients are asymptomatic and managed in the community, the risks of stroke and mortality are no different to symptomatic patients.¹ The increasing mean age of the general population translates to greater healthcare costs for the UK National Health Service (NHS), with the greatest contribution from hospitalizations.²

Stroke prevention is central to the management of AF, but there remains a residual risk of adverse outcomes in AF patients despite oral anticoagulation. Indeed, mortality in anticoagulated AF patients remains high, but only 1 in 10 deaths are related to stroke, while 7 in 10 are cardiovascular related.³ Hence, current guidelines have proposed a more holistic or integrated approach to AF management.^{4,5} Such a streamlined approach is needed to ensure that the main pillars of AF care are delivered irrespective of how the patient is managed by different healthcare professionals.

Following confirmation of the diagnosis of AF, patients are characterized and evaluated using the 4S-AF scheme,⁶ i.e. stroke risk assessment (with the CHA₂DS₂VASc score), symptom severity (using the [European Heart Rhythm Association (EHRA) score], severity of burden (whether spontaneously terminating or permanent), and substrate (age, structural heart disease, and comorbidities). The patient is then treated according to the Atrial fibrillation Better Care (ABC) pathway,⁷ as follows: (A) avoid stroke with anticoagulation; (B) better symptom control with patient-centred symptom-directed decisions on rate or rhythm control; and (C) cardiovascular and comorbidity management, including lifestyle factors.

The ABC pathway is associated with improved clinical outcomes in numerous retrospective and prospective cohorts from different regions of the world,⁸ as well as post-hoc analysis from adjudicated outcomes from clinical trials.^{9,10} The mAFA-II clinical trial, which was a prospective cluster randomized trial, showed a significant reduction in the primary outcome with the ABC pathway intervention using an mHealth app, compared to usual care.^{11,12} Ongoing clinical trials are testing the impact of implementation of the ABC pathway in Europe (AFFIRMO¹³) and in rural China (MIRACLE-AF; NCT04622514).

In this study, our aim was to estimate the impact of implementing an ABC pathway in the UK between 2020 and 2040. We considered the impact in terms of morbidity (strokes and major bleeds), mortality, and associated healthcare costs from the health service perspective.

Methods

This study used published evidence to estimate the annual prevalence of AF and the number of major non-fatal (strokes and major bleeds) and fatal events experienced by the population of AF patients. We also estimated healthcare costs associated with non-fatal events. We developed a mathematical model to estimate the expected effect of implementing an ABC pathway for AF patients. The approach to identifying parameters for the model is described below.

PICO framework

The analysis conducted is summarized in the following Population, Intervention, Comparator, Outcomes (PICO) framework:

- Population: people with AF.
- Intervention: ABC pathway.
- Comparator: standard management (may include 'A', 'B', or 'C' but not all three).
- Outcomes: strokes, major bleeds, deaths (all-cause and cardiovascular), and healthcare costs associated with strokes and major bleeds.

Prevalence of AF

We estimated the prevalence of AF in the UK population based on two routine data sources. The first was a publication of an analysis of a large primary care record database and reported the prevalence of AF in adults aged over 35 between 2000 and 2016 based on the records of over 5 million patients in the UK.¹⁴ The publication demonstrated that the trajectory of AF prevalence changed differently over time in different age groups. There was a relatively flat line in younger age groups and a much steeper slope for older age groups. This reflects both the accumulation of prevalent AF cases in older groups (as patients diagnosed with AF at a younger age become older) and a higher incidence rate of AF in older groups. Within each of three age groups (35–54, 55–74, and 75+ years), we extrapolated from the age-specific linear trends of the prevalence within each age group for each year from 2020 to 2040.

The second data source was the official government figures for the UK population projection as compiled by the Office for National Statistics.¹⁵ We multiplied the expected percentage prevalence of AF for each year and age group by the projected population in the respective age group for the same year to estimate the number of patients with AF for each year up to 2040. This incorporates the changing demographics (i.e. growing proportion of older adults) of the UK population over time.

Description	Parameter	Source
	Prevalence of AF	
Population percentage prevalence of AF—annual data were used in the analysis; selected years are presented here (all years are shown in Supplementary material online)	$\frac{2020}{35-54: 0.35\%}$ $55-74: 3.27\%$ $75+: 13.82\%$ $\frac{2030}{35-54: 0.42\%}$ $55-74: 3.76\%$ $75+: 19.51\%$ $\frac{2040}{35-54: 0.49\%}$ $55-74: 4.26\%$ $75+: 23.29\%$	Derived from Adderley et al. ¹⁴
Projected UK population—annual data were used in the analysis; selected years are presented here (all years are shown in Supplementary material online)	Thousands of people 2025 35–54: 17 298 55–74: 15 637 75+: 6599 2030 35–54: 17 543 55–74: 16 380 75+: 7309 2035 35–54: 17 814 55–74: 16 435 75+: 7976 2040 35–54: 17 584 55–74: 16 326 75+: 8911	ONS ¹⁵
Risk of fatal an	d non-fatal events (1-year probability)	
Strokes	0.014	Romiti <i>et al.</i> ⁸
Major bleeds	0.030	Additional calculations
Death from all causes	0.049	
Deaths from cardiovascular causes	0.023	
	Unit costs	
Stroke: one-year costs including acute (0–3 months) and post-acute (4–12 months) healthcare in patients with AF	£13508	Luengo-Fernandez et al. ³¹ PSSRU unit costs ¹⁹
Major bleed: one-year healthcare costs associated with gastrointestinal bleeds in patients with AF	£4297	Ramagopalan et <i>al</i> . ¹⁸ PSSRU unit costs ¹⁹
Impact of imple	menting the ABC pathway (odds ratio)	
Strokes	0.55 (95% CI 0.37-0.82)	Romiti et al. ⁸
Major bleeds	0.69 (95% CI 0.51–0.94)	
Death from all causes	0.42 (95% CI 0.31–0.56)	
Deaths from cardiovascular causes	0.37 (95% CI 0.23–0.58)	
CI: confidence interval.		

Table I Parameters used to estimate the number of patients with AF, number of fatal and non-fatal events, associated costs, and the impact of implementing ABC care pathway

Risks of fatal and non-fatal events without an ABC pathway

A systematic literature review and meta-analysis by Romiti *et al.*⁸ reported the number of strokes, major bleeds, deaths from all causes, and deaths from cardiovascular causes within study samples of AF patients. The follow-up periods varied between the studies included in the meta-analysis, so we calculated a one-year probability of each event for each study. We then used the weights attributed to each study as part of the

meta-analysis to calculate a weighted mean one-year probability for each event type. The number of events was estimated for each calendar year by applying the event probability to the estimated number of people with AF in the respective year.

Costs of non-fatal events

Our cost estimates relate to the health and social care perspective, as recommended by healthcare decision-makers in the UK. 16 Our model

included direct primary, secondary, and community healthcare costs associated with non-fatal events (strokes and major bleeds) beyond the index hospital admission. This is a key driver of costs associated with AF and stroke in particular. The source study used for the cost of stroke was from a large study of AF patients based in Oxford in England (The OXVASC (Oxford Vascular) Study).¹⁷ This study used a robust bottom-up methodology to capture and cost healthcare resource use associated with stroke in AF patients. In 2008/09 prices, they reported that 3-month costs associated with non-fatal strokes were £10413 and annual costs in the post-acute period were £804 higher than before the stroke. We added 9 months of the annual post-acute cost difference to the 3-month acute cost to calculate a one-year cost associated with stroke (£11016). The source study used for the cost of major bleeds used a UK large primary care dataset (Clinical Practice Research Datalink) linked with secondary care data (Hospital Episode Statistics) to estimate one-year costs associated with major gastrointestinal bleeds in patients with AF.¹⁸ They reported a mean cost of £3989 in 2017/18 prices. The healthcare costs associated with strokes and major bleeds were inflated from source papers to 2020/21 GBP (£) using the NHS 'Pay and Prices' and 'Cost Inflation' Indices.¹⁹ We multiplied these costs to the estimated number of events in 2020 to estimate associated healthcare costs. At the time of the analysis, inflation rates in the UK (and across much of the globe) were unusually high and unstable. The government's target for inflation remains at 2%.²⁰ We assumed that it would take until 2030 to reach this level where it would remain until 2040. For the years between 2020 and 2030, we applied the following interest rate to the cost of the respective event from the previous year: 2021—3%; 2022 and 2023—10%; 2024-26—5%; and 2027-29-3%.

Impact of implementing an ABC care pathway

We estimated the impact of implementing an ABC pathway on the number of fatal and non-fatal events and associated healthcare costs based on the findings reported in the Romiti *et al.*'s⁸ meta-analysis. They reported a pooled odds ratio (OR) for each event type among AF patients who received ABC care vs. AF patients who did not receive ABC care. We multiplied each OR by the respective event probability in the absence of ABC care to estimate the event probability for patients receiving ABC care. We subtracted the number (and cost) of events estimated for patients receiving ABC care from those not receiving ABC care as a proxy for the impact of ABC care. However, this assumes a 100% level of fidelity or implementation to ABC care and the meta-analysis reported that the prevalence of ABC implementation management across the included studies was only around 20%. Therefore, we also estimated the impact of ABC pathway management at 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% implementation.

Results

Table 1 summarizes the model parameters used to estimate the population prevalence of AF up to 2040, the number of fatal and non-fatal events, associated costs, and impact of implementing the ABC pathway.

Figure 1 shows the estimated number of AF patients in the UK between 2020 and 2040 (panel a) and the costs associated with strokes and major bleeds in this population (panel b). The graph shows a clear increase that reflects the growing size and ageing of the population, increasing population percentage prevalence of AF, and increasing healthcare costs over time.

Supplementary material online, *Figure S1* shows trends over time in reported (2000–16) and estimated (2017–40) prevalence of AF in the UK using data published by Adderley et $al.^{14}$ for 2000–16 with linear extrapolation within each age group for 2017–40.

2020 and 2040.

In 2020, there were an estimated 1463 538 AF patients, resulting in £286 million of stroke care and £191 million of care related to bleeds annually. By 2030, it is expected that there will be 2115 332 AF patients, resulting in £666 million of stroke care and £444 million of care related to bleeds. By 2040, this is expected to rise to 2856 489 AF patients, with £1096 million of stroke care and £731 million of care related to bleeds for that year.

The estimated impact of ABC pathway management for each year from 2020 to 2040 is reported in full for each level of implementation in Supplementary material online, *Tables* S1–S11.

Figure 2 shows the estimated number of strokes (panel a) and major bleeds (panel b) prevented for three different levels of implementation of ABC pathway-based care (20, 50, and 80% of AF patients managed according to the ABC pathway) between 2020 and 2040.

Figure 3 shows the estimated number of all cause deaths (panel a) and cardiovascular deaths (panel b) prevented for three different levels of ABC care (20, 50, and 80% of AF patients managed according to the ABC pathway) between 2020 and 2040.

Table 2 summarizes the estimated impact of ABC on each of the outcomes explored in 2030 and 2040. The differences between the two years reflect the increasing prevalence of AF and increasing healthcare costs. In 2030, between 2758 and 13790 strokes and between 3983 and 19913 major bleeds could be prevented. The associated reduction in healthcare costs of this is estimated to be between $\pounds 87.4$ and $\pounds 437.1$ million. In 2030, implementation of ABC pathway management could prevent between 11945 and 59726 deaths, around half of which would be due to cardiovascular causes. By 2040, the reduction in healthcare costs is

estimated to be between £143.9 and £719.6 million and reduction in deaths is estimated to be between 16131 and 80653 for the year.

Discussion

In this analysis, we estimate that by 2040 there will be 2856489 AF patients, with £1096 million of stroke healthcare and £731 million of healthcare related to bleeds that year in the UK. In 2040, the ABC pathway could prevent between 3724 and 18622 strokes and between 5378 and 26890 bleeds, and save between 16131 and 80653 lives, depending on the proportion of patients managed on the pathway. This would equate to healthcare cost reductions of between £143.9 and £719.6 million.

As the population prevalence of AF increases over time, enhanced patient management based on the ABC pathway will become even more vitally important to improving patient outcomes and making efficient use of health service resources. Our prior modelling analysis estimated that given the number of newly diagnosed AF patients at age 65 will rise over the decade between 2020 and 2030, screening and treatment of AF has the potential to substantially reduce the health and social care costs of AF-related stroke in the NHS.²¹

There is limited existing evidence regarding the cost-effectiveness of the ABC pathway. A study from China used data from the mAFA-II trial to estimate the cost-effectiveness of using mHealth as a means of streamlining and integrating care for AF patients via the ABC pathway, from the perspective of a public healthcare provider in China.²² They reported that this was likely to be cost-effective over 30 years compared with usual care. Although not typical ABC pathway management, the SAFETY program in Australia reported that providing AF patients with a structured post-discharge package of coordinated care had a high probability of being cost-effective over a lifetime horizon.²³

In the UK context, the components of ABC pathway-based care that are likely to result in additional use of NHS resources may well already be in place, as evident in the NHS Health Checks and CVD Prevention Strategy focused on 'atrial fibrillation, blood pressure, and cholesterol'²⁴ and efforts to prevent AF-related strokes ('Detect, Protect, Perfect').²⁵ Also, it is worth reemphasizing that the core of the collaborative care element of the ABC pathway is the improved communication and collaboration between healthcare professionals, whether general practitioners or hospital doctors. This should really just be made part of optimized guideline-directed 'usual care' already, so in theory should not require additional resources. Indeed,

203040506070809090100 200 203 303 30 30 30 30 30 90 90 100 203 203 2128 4137 5516 6895 8274 9653 11032 12411 13790 203 203 3933 5974 7965 9956 19772018 209679188 23963357 299541697 204 27518672 41278008 55037344 68796.680 82256015 9637188 23963327 29953357 299541697 204 27518672 41276008 55037344 68796.680 82256015 96315351 110074687 173733526 204 204 27518672 41727617 41376767 4377566 4377566 4377566 204 204 277493 3174957239 117986 12086 15107 18129 21150 24172 277193 2040 27746 9064 12086 15107 18129 21150 24172 277193 30214 2040 3724 5586 7449 937146 52764 59726 9637536 9637834 4177617 93075130 2040 27748 37746 598645078 117173 11173 11173 11335 14897 16759 14807 2040 57764 598645078 34512567 2994460104 4477617 930755130 2040 <					% of AF patie	nts managed on	ABC pathway			
200275841375516689582249653110321141113790200Cost reduction (L)—strokes590833989862509119816679149770848179725018209679188239633357269585227299541697Bleeds prevented398359747965995611946139399159301792119913Cost reduction (L)—strokes590833989862509119816679149770848179725018209679188239633357269589527299541697Bleeds prevented39835974796599561194817972501820967918823953357295941323137593359Cost reduction (L)—bleeds27518672412780655037344687908255601596.315351110074687123834023137593359Daths prevented87 427 011131140 517174 854 022218 567 5282.62 281 033305 994 539347 708437 155 043Daths prevented87 427 011131140 517174 854 022218 567 5282.62 281 033305 994 539437 155 043Daths prevented37245386317972211932117021170211722719330214 2040 37245586333836418084137676174337551020384297722649219 2040 53764553756529584507834515256524261074387675172719330214 2040 537880671075614435111731303514897 <t< th=""><th></th><th>20</th><th>30</th><th>40</th><th>50</th><th>60</th><th>70</th><th>80</th><th>60</th><th>100</th></t<>		20	30	40	50	60	70	80	60	100
Strokes prevented 2758 4137 5516 6895 8274 9653 11032 12411 13790 Cost reduction (L)strokes 59908339 89862509 119816679 149770848 179725018 209679188 239633357 295587527 299541697 Bleeds prevented 3383 5974 7955 9956 11948 139399 15930 17721 19913 Cost reduction (L)stroke 27518672 41278008 55037344 6876680 82556015 96315351 110074687 123844023 137933595 Cost reduction (L)total 87427011 131140517 174854022 21857522 205281033 30594339 3173505 39715505 Deaths prevented (all cause) 11945 174867 12384023 1377806 82556015 96315351 110074687 123844023 377505 Deaths prevented (CV) 6043 9064 12086 15107 18129 21150 24172 27193 30214 Deaths prevented 3724 5586 7449 9311 11173 13035 24172 27193 30214 Deaths prevented 3724 5586 7449 9311 11173 13035 24172 27193 30214 Deaths prevented 3724 5586 134565 295845078 31512591 31460104 4376617 493057130 Deaths prevented 5378 8067 16134 161347 161347 16137 24102	2030	•								
Cost reduction (L)—strokes599083398986.509119816.6791497708481797250182096.6791882396.333572695387527299541697Bleeds prevented39835974796599561194613939159301792119913Cost reduction (L)—bleeds27518672412780085503734468796.6808255601596.315351110074.687123834023137593359Cost reduction (L)—bleeds27518672417780085503734468796.6808255601596.315351110074.687123834023137505555555555555555555Cost reduction (L)—total87427011131140.517174.844.022218.567.5282.62.2810.33305.944.537397.325505555555555555555555555555555555555	Strokes prevented	2758	4137	5516	6895	8274	9653	11032	12411	13 790
Bleeds prevented38359747955194813939159301792119913Cost reduction (L)—bleeds275186724127800855037344687966808255601596315351110074687123834023137593359Cost reduction (L)—bleeds275186724127800855037344687966808255601596315351110074687123834023137593359Cost reduction (L)—bleeds27518672417810218567528262 281 033305 994 539349 708 044393 421 550437 135 056Deaths prevented (all cause)1194517791823890298633583641808477815375459726Deaths prevented (all cause)119451791823890298633583641808477815375459726Deaths prevented (all cause)372455867449931111173130352417227193302142040372455867449931111173130351489716759186272040372455861947993111117313035241722419326497204037245586197230522465375652958450783451525913944601044437656172649221920405378806710756134451613411173113352151224201264922192040537880671075613445161341132461091358953311585445531811937752	Cost reduction (\pounds) —strokes	59908339	89862509	119816679	149 770 848	179725018	209679188	239633357	269587527	299541697
Cost reduction (£)—bleeds 27518672 41278008 55037344 68796680 82556015 96315351 110074687 123834023 137593359 Cost reduction (£)—total 87427011 131140517 174854022 218567528 262281033 305994539 347708 4371550 437135056 Cost reduction (£)—total 87427011 131140517 174854022 218567528 262281033 305994539 394708044 393471550 437135056 Deaths prevented (all cause) 11945 17918 23890 29863 35836 41808 47781 53754 59726 Deaths prevented (CV) 6043 90641 12086 12107 18129 21150 24172 27193 30214 2040Strokes prevented (CV) 6043 9064 12086 7449 9311 11173 13035 14897 16759 4377513 205Strokes prevented (CV) 5086 14792539 19723052 246537565 295845078 345152591 394460104 443767617 493075130 205cost reduction (£)—strokes 88615026 19723052 246537565 295845078 345152591 394460104 443767617 493075130 205cost reduction (£)—bleeds 45294446 6797466 9958688 113246109 1613475 214201 24201 24201 205cost reduction (£)—bleeds 45287026 28782640 359783675 4137740409 503677144 572697219	Bleeds prevented	3983	5974	7965	9956	11948	13939	15930	17921	19913
Cost reduction (£)—total 87 427 011 131 140 517 174 854 022 218 567 528 262 281 033 305 994 539 349 708 044 393 421 550 437 135 056 Deaths prevented (all cause) 11945 17918 23 890 29 863 358 36 41808 477 81 53754 59726 Deaths prevented (all cause) 11945 17086 15 107 18129 21150 24172 27193 302 14 Deaths prevented (CV) 6043 9064 12086 15 107 18129 21150 24172 27193 302 14 2040 3724 5586 7499 9311 11173 13035 14897 16759 437 75/13 2040 3724 5586 7499 9311 11173 13035 14897 16759 18622 Strokes prevented (CV) 6415026 14772656 295845078 345152591 394460104 443767617 493075130 Deats prevented (L)—strokes 98615026 10756 137450 158544553 181193775 2	Cost reduction (\pounds) —bleeds	27518672	41 278 008	55037344	68 796 680	82 556 015	96 315 351	110074687	123834023	137593359
	Cost reduction (\mathcal{E}) —total	87 427 011	131 140 517	174 854 022	218 567 528	262 281 033	305 994 539	349 708 044	393 421 550	437 135 056
Deaths prevented (CV) 6043 9064 12086 15107 18129 21150 24172 27193 30214 2040 3724 5586 7449 9311 11173 13035 14897 16759 18622 Strokes prevented 3724 5586 7449 9311 11173 13035 14897 16759 18622 Strokes prevented 3724 5586 7449 9311 11173 13035 14897 16759 18622 Cost reduction (£)—strokes 98615026 147922539 197230052 246537565 295845078 345152591 394460104 443767617 493075130 Bleeds prevented 5378 8067 10756 13445 16134 18823 21512 24201 26890 Cost reduction (£)—bleeds 45284666 90596888 113246109 135895331 158544553 181193775 203842997 226492219 Cost reduction (£)—total 143 7140 215 870205 287836674553 181193775 203842997<	Deaths prevented (all cause)	11 945	17 918	23 890	29 863	35836	41808	47781	53754	59 726
2040 3724 5586 7449 9311 11173 13035 14897 16759 18622 Strokes prevented 3724 5586 7449 9311 11173 13035 14897 16759 18622 Cost reduction (£)—strokes 98615026 147922539 197230052 246537565 295845078 345152591 394460104 443767617 493075130 Bleeds prevented 5378 8067 10756 13445 16134 18823 21512 24201 26890 Cost reduction (£)—bleeds 45298444 677947666 90596888 113246109 135895331 158544553 181193775 203842997 226492219 Cost reduction (£)—total 143 913 470 215 870 205 287 83 675 431 740 409 503 697 144 577 563 879 647 610 614 719 567 349 Deaths prevented (all cause) 16 131 24196 352 783 675 43326 48392 56457 64522 72587 80 653 Deaths prevented (CV) 8160 12240 16320 20400 24481 32641 36714 367714 36771 <td>Deaths prevented (CV)</td> <td>6043</td> <td>9064</td> <td>12 086</td> <td>15 107</td> <td>18129</td> <td>21150</td> <td>24172</td> <td>27193</td> <td>30214</td>	Deaths prevented (CV)	6043	9064	12 086	15 107	18129	21150	24172	27193	30214
Strokes prevented 3724 5586 7449 9311 11173 13035 14897 16759 18622 Cost reduction (£)—strokes 98615026 147922539 197230052 24537565 295845078 345152591 394460104 443767617 493075130 Bleeds prevented 5378 8067 10756 13445 16134 1823 21512 24201 26890 Bleeds prevented 5378 8067 10756 13445 16134 18823 21512 24201 26890 Cost reduction (£)—bleeds 45228444 67947666 90596888 113246109 1358544553 181193775 203842997 226492219 Cost reduction (£)—bleeds 143 913 470 215 870 205 287 826 940 359 783 675 431740 409 503 697 144 575 653 879 647 610 614 719 567 349 Cost reduction (£)—cotal 16131 24196 352 786 940 359 783 675 431740 409 575 653 879 647 610 614 719 567 349 Deaths prevented (CV) 8160 12240 <td>2040</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2040									
Cost reduction (£)—strokes 98615026 147922539 197230052 246537565 295845078 345152591 394460104 443767617 493075130 Bleeds prevented 5378 8067 10756 13445 16134 18823 21512 24201 26890 Cost reduction (£)—bleeds 45298444 67947666 90596888 113246109 135895331 158544553 181193775 203842997 226492219 Cost reduction (£)—bleeds 4529845 1332695331 158544553 181193775 203842997 226492219 Cost reduction (£)—total 143 913 470 215 870 205 287 826 940 359 783 675 431 740 409 503 697 144 575 653 879 647 610 614 719 567 349 Cost reduction (£)—total 16131 24196 352 201 359 783 675 64322 56457 64522 719 567 349 Deaths prevented (all cause) 16131 24196 352 201 0400 503 697 144 575 653 879 647 610 614 719 567 349 Deaths prevented (CV) 8160 12240	Strokes prevented	3724	5586	7449	9311	11173	13035	14897	16759	18 622
Bleeds prevented537880671075613 4451613418823215122420126 890Cost reduction (t)—bleeds45 2984446794766690596888113 246 109135895 331158544553181 193775203 842 997226 4922 19Cost reduction (t)—total143 913 470215 870 205287 826 940359 783 675431 740 409503 697 144575 653 879647 610 614719 567 349Deaths prevented (all cause)1613124196332 26140326483 92256457645227258780 653Deaths prevented (CV)81601224016 32020 40024 4812856132 6413672140 801	Cost reduction (f) —strokes	98615026	147 922 539	197 230 052	246 537 565	295845078	345152591	394460104	443767617	493075130
Cost reduction (£)—bleeds 45298444 67947666 90596888 113246109 135895331 158544553 181193775 203842997 226492219 Cost reduction (£)—total 143 913 470 215 870 205 287 826 940 359 783 675 431 740 409 503 697 144 575 653 879 647 610 614 719 567 349 Deaths prevented (all cause) 16131 24196 32261 40326 48392 56457 64522 72587 80 653 Deaths prevented (all cause) 16131 24196 32261 40326 48392 56457 64522 72587 80 653 Deaths prevented (CV) 8160 12240 16320 20400 24481 28561 3671 40801	Bleeds prevented	5378	8067	10 756	13 445	16134	18823	21512	24201	26 890
Cost reduction (£)—total 143 913 470 215 870 205 287 826 940 359 783 675 431 740 409 503 697 144 575 653 879 647 610 614 719 567 349 Deaths prevented (all cause) 16131 24196 322261 40326 48392 56457 64522 72587 80 653 Deaths prevented (cV) 8160 12240 16320 20400 24481 28561 32641 36721 40801	Cost reduction (f) —bleeds	45298444	67947666	90596888	113 246 109	135895331	158544553	181 193 775	203 842 997	226492219
Deaths prevented (all cause) 16 131 24 196 32 261 40 326 48 392 56 457 64 522 72 587 80 653 Deaths prevented (CV) 8160 12 240 16 320 20 400 24 481 28 561 32 641 36 721 40 801	Cost reduction (\mathcal{E}) —total	143 913 470	215 870 205	287 826 940	359 783 675	431 740 409	503 697 144	575 653 879	647 610 614	719 567 349
Deaths prevented (CV) 8160 12 240 16 320 20 400 24 481 28 561 32 641 36 721 40 801	Deaths prevented (all cause)	16131	24 196	32 261	40 326	48392	56457	64522	72587	80 653
	Deaths prevented (CV)	8160	12 240	16 320	20 400	24481	28561	32641	36721	40 801

guideline-adherent management has been associated with improved clinical outcomes when managing patients with ${\sf AF}^{26-28}$

Limitations

As is typical for this type of analysis, it was necessary to make assumptions to generate estimates from published data. A key assumption is that the longitudinal trend in the prevalence of AF would continue along the same trajectory as has been observed in routine primary care data between 2000 and 2016. We have also assumed that the prevalence of AF in the UK (England, Scotland, Wales, and Northern Ireland) is the same as for England.

Our cost estimates do not account for any increases in healthcare costs required to provide AF patients with ABC pathway management. We also do not account for increases in AF detection with screening, which may become more prevalent over the years. Nonetheless, systematic AF screening is not currently standard care in the UK, given current recommendations from the UK National Screening Programme²⁹ and others.³⁰ We anticipate that the impact of screening may be increased costs associated with managing more AF patients, but decreased costs in other areas as we identify more cases at earlier stages and are able to support patients to live well for longer with AF.

We have included one-year costs for strokes and bleeds as we have estimated annual snapshots of costs, but recognize that for stroke in particular there are likely to be longer-term increases in health and social care.³¹ If people move into residential care following a stroke, there is likely to be a substantial cost associated with this. This is relevant given that AF-related strokes are more likely to be disabling, with lower chance of discharge to the patient's own home.³² We have also not included costs from a broader societal perspective, such as those associated with informal care (i.e. unpaid care provided by family members or volunteers) or lost earnings.

We recognize that our analysis does not account for the direct cost of ABC pathway management per se. However, the present analysis is not an economic evaluation of ABC pathway management. Rather, our analysis provides a guide for commissioners and policymakers who are interested in implementing it as to the potential healthcare cost savings.

Conclusion

We estimate that there will be a substantial healthcare burden of AF patients, from strokes, bleeds, and mortality in the UK NHS over the next decades. If patients are managed with a holistic or integrated care approach based on the ABC pathway, this management approach could prevent strokes and bleeds, and save lives equating to cost reductions of between £143.9 million and £719.6 million in 2040.

Supplementary material

Supplementary material is available at *European Heart Journal— Quality of Care and Clinical Outcomes online.*

Funding

None.

Conflict of interest: E.C.: none declared. G.Y.H.L. is a consultant and speaker for BMS/Pfizer, Boehringer Ingelheim, Daiichi Sankyo, and Anthos. No fees are received personally. G.Y.H.L. is a National Institute for Health and Care Research (NIHR) Senior Investigator and co-principal investigator of the AFFIRMO project on multimorbidity in atrial fibrillation, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 899871.

Data availability

All data relevant to the study are included in the article or uploaded as supplementary information.

References

- Wallenhorst C, Martinez C, Freedman B. Risk of ischemic stroke in asymptomatic atrial fibrillation incidentally detected in primary care compared with other clinical presentations. *Thromb Haemost* 2022;**122**:277–285.
- Burdett P, Lip GYH. Atrial fibrillation in the UK: predicting costs of an emerging epidemic recognizing and forecasting the cost drivers of atrial fibrillation-related costs. Eur Heart J Qual Care Clin Outcomes 2022;8:187–194.
- Pokorney SD, Piccini JP, Stevens SR, Patel MR, Pieper KS, Halperin JL et al. Cause of death and predictors of all-cause mortality in anticoagulated patients with nonvalvular atrial fibrillation: data From ROCKET AF. J Am Heart Assoc 2016;5:e002197.
- Chao TF, Joung B, Takahashi Y, Lim TW, Choi EK, Chan YH et al. 2021 Focused update consensus guidelines of the Asia Pacific Heart Rhythm Society on stroke prevention in atrial fibrillation: executive summary. *Thromb Haemost* 2022;**122**:20–47.
- 5. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 2021;**42**: 373–498.
- 6. Potpara TS, Lip GYH, Blomstrom-Lundqvist C, Boriani G, Van Gelder IC, Heidbuchel H et al. The 4S-AF scheme (stroke risk; symptoms; severity of burden; substrate): a novel approach to in-depth characterization (rather than classification) of atrial fibrillation. *Thromb Haemost* 2021;**121**:270–278.
- 7. Lip GYH. The ABC pathway: an integrated approach to improve AF management. *Nat Rev Cardiol* 2017;**14**:627–628.
- Romiti GF, Pastori D, Rivera-Caravaca JM, Ding WY, Gue YX, Menichelli D et al. Adherence to the 'Atrial fibrillation Better Care' pathway in patients with atrial fibrillation: impact on clinical outcomes: a systematic review and meta-analysis of 285,000 patients. *Thromb Haemost* 2022;**122**:406–414.
- Patel SM, Palazzolo MG, Murphy SA, Antman EM, Braunwald E, Lanz HJ et al. Evaluation of the atrial fibrillation better care pathway in the ENGAGE AF-TIMI 48 trial. *Europace* 2022;24:1730–1738.
- Proietti M, Romiti GF, Olshansky B, Lane DA, Lip GYH. Comprehensive management with the ABC (Atrial fibrillation Better Care) pathway in clinically complex patients with atrial fibrillation: a post hoc ancillary analysis from the AFFIRM trial. J Am Heart Assoc 2020;9:e014932.
- Guo Y, Lane DA, Wang L, Zhang H, Wang H, Zhang W et al. mAF-App II Trial Investigators. Mobile health technology to improve care for patients with atrial fibrillation. J Am Coll Cardiol 2020;75:1523–1534.
- Romiti GF, Guo Y, Corica B, Proietti M, Zhang H, Lip GYH, mAF-App II Trial Investigators. Mobile health-technology-integrated care for atrial fibrillation: a win ratio analysis from the mAFA-II randomized clinical trial. *Thromb Haemost* 2023.
- Johnsen SP, Proietti M, Maggioni AP, Lip GYH. A multinational European network to implement integrated care in elderly multimorbid atrial fibrillation patients: the AFFIRMO Consortium. *Eur Heart J* 2022;43:2916–2918.
- Adderley NJ, Ryan R, Nirantharakumar K, Marshall T. Prevalence and treatment of atrial fibrillation in UK general practice from 2000 to 2016. *Heart* 2019;**105**:27–33.
- Principal projection—UK population in age groups. Accessed 12 August 2023. https://www.ons.gov.uk/peoplepopulationandcommunity/ populationandmigration/populationprojections/datasets/ tablea21principalprojectionukpopulationinagegroups.
- 16. NICE. NICE. Health Technology Evaluations: The Manual. London: NICE; 2022.
- Luengo-Fernandez R, Yiin GS, Gray AM, Rothwell PM. Population-based study of acute- and long-term care costs after stroke in patients with AF. Int J Stroke 2013;8:308–314.
- Ramagopalan SV, Samnaliev M, Weir S, Sammon CJ, Carroll R, Alikhan R. Costs of gastrointestinal bleeding events in atrial fibrillation: a UK Clinical Practice Research Datalink study. *Future Cardiol* 2019;**15**:367–375.
- Jones K, Burns A. Unit Costs of Health and Social Care 2021. Canterbury: Personal Social Services Research Unit, University of Kent; 2021. https://doi.org/10.22024/ UniKent/01.02.92342.
- 20. Bank of England Monetary policy. Accessed 12 August 2023. https://www.bankofengland.co.uk/monetary-policy.
- Burdett P, Lip GYH. Targeted vs. full population screening costs for incident atrial fibrillation and AF-related stroke for a healthy population aged 65 years in the United Kingdom. Eur Heart J Qual Care Clin Outcomes 2022;8:892–898.
- Luo X, Xu W, Ming WK, Jiang X, Yuan Q, Lai H et al. Cost-effectiveness of mobile health-based integrated care for atrial fibrillation: model development and data analysis. J Med Internet Res 2022;24:e29408.

- Gao L, Scuffham P, Ball J, Stewart S, Byrnes J. Long-term cost-effectiveness of a disease management program for patients with atrial fibrillation compared to standard care—a multi-state survival model based on a randomized controlled trial. J Med Econ 2021;24:87–95.
- 24. Size of the Prize and NHS Health Check factsheet. Accessed 12 August 2023. https://www.healthcheck.nhs.uk/commissioners-and-providers/data/size-of-theprize-and-nhs-health-check-factsheet/.
- Atrial fibrillation (AF) toolkit: working together to prevent AF-related strokes. Accessed 12 August 2023. https://aftoolkit.co.uk
- 26. Nieuwlaat R, Olsson SB, Lip GY, Camm AJ, Breithardt G, Capucci A et al. Guidelineadherent antithrombotic treatment is associated with improved outcomes compared with undertreatment in high-risk patients with atrial fibrillation. The Euro Heart Survey on Atrial Fibrillation. Am Heart J 2007;**153**:1006–1012.
- 27. Lip GY, Laroche C, Popescu MI, Rasmussen LH, Vitali-Serdoz L, Dan GA et al. Improved outcomes with European Society of Cardiology guidelineadherent antithrombotic treatment in high-risk patients with atrial fibrillation: a report from the EORP-AF General Pilot Registry. *Europace* 2015;**17**: 1777–1786.
- Gorin L, Fauchier L, Nonin E, Charbonnier B, Babuty D, Lip GYH. Prognosis and guideline-adherent antithrombotic treatment in patients with atrial fibrillation and atrial flutter: implications of undertreatment and overtreatment in reallife clinical practice; the Loire Valley Atrial Fibrillation Project. *Chest* 2011;**140**: 911–917.
- 29. King S, Fitzgerald S, Bartlett C. Evidence summary for screening for atrial fibrillation in adults: external review against programme appraisal criteria for the UK national screening Committee: UK national screening Committee. 2019. Accessed 12 August 2023. https://view-health-screening-recommendations.service.gov. uk/atrial-fibrillation/.
- Force USPST, Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB et al. Screening for atrial fibrillation: US Preventive Services Task Force recommendation statement. J Am Med Assoc 2022;327:360–367.
- Luengo-Fernandez R, Violato M, Candio P, Leal J. Economic burden of stroke across Europe: a population-based cost analysis. *Eur Stroke J* 2020;5:17–25.
- Lip G, Freedman B, De Caterina R, Potpara TS. Stroke prevention in atrial fibrillation: past, present and future. Comparing the guidelines and practical decision-making. *Thromb Haemost* 2017;**117**:1230–1239.

[©] The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.